Search results for: carbon nanotubes network
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7776

Search results for: carbon nanotubes network

5496 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 297
5495 Collaborative Rural Governance Strategy to Enhance Rural Economy Through Village-Owned Enterprise Using Soft System Methodology and Textual Network Analysis

Authors: Robert Saputra, Tomas Havlicek

Abstract:

This study discusses the design of collaborative rural governance strategies to enhance the rural economy through Village-owned Enterprises (VOE) in Riau Province, Indonesia. Using Soft Systems Methodology (SSM) combined with Textual Network Analysis (TNA) in the Rich Picture stage of SSM, we investigated the current state of VOE management. Significant obstacles identified include insufficient business feasibility analyses, lack of managerial skills, misalignment between strategy and practice, and inadequate oversight. To address these challenges, we propose a collaborative strategy involving regional governments, academic institutions, NGOs, and the private sector. This strategy emphasizes community needs assessments, efficient resource mobilization, and targeted training programs. A dedicated working group will ensure continuous monitoring and iterative improvements. Our research highlights the novel integration of SSM with TNA, providing a robust framework for improving VOE management and demonstrating the potential of collaborative efforts in driving rural economic development.

Keywords: village-owned enterprises (VOE), rural economic development, soft system methodology (SSM), textual network analysis (TNA), collaborative governance

Procedia PDF Downloads 18
5494 Unveiling the Detailed Turn Off-On Mechanism of Carbon Dots to Different Sized MnO₂ Nanosensor for Selective Detection of Glutathione

Authors: Neeraj Neeraj, Soumen Basu, Banibrata Maity

Abstract:

Glutathione (GSH) is one of the most important biomolecules having small molecular weight, which helps in various cellular functions like regulation of gene, xenobiotic metabolism, preservation of intracellular redox activities, signal transduction, etc. Therefore, the detection of GSH requires huge attention by using extremely selective and sensitive techniques. Herein, a rapid fluorometric nanosensor is designed by combining carbon dots (Cdots) and MnO₂ nanoparticles of different sizes for the detection of GSH. The bottom-up approach, i.e., microwave method, was used for the preparation of the water soluble and greatly fluorescent Cdots by using ascorbic acid as a precursor. MnO₂ nanospheres of different sizes (large, medium, and small) were prepared by varying the ratio of concentration of methionine and KMnO₄ at room temperature, which was confirmed by HRTEM analysis. The successive addition of MnO₂ nanospheres in Cdots results fluorescence quenching. From the fluorescence intensity data, Stern-Volmer quenching constant values (KS-V) were evaluated. From the fluorescence intensity and lifetime analysis, it was found that the degree of fluorescence quenching of Cdots followed the order: large > medium > small. Moreover, fluorescence recovery studies were also performed in the presence of GSH. Fluorescence restoration studies also show the order of turn on follows the same order, i.e., large > medium > small, which was also confirmed by quantum yield and lifetime studies. The limits of detection (LOD) of GSH in presence of Cdots@different sized MnO₂ nanospheres were also evaluated. It was observed thatLOD values were in μM region and lowest in case of large MnO₂ nanospheres. The separation distance (d) between Cdots and the surface of different MnO₂ nanospheres was determined. The d values increase with increase in the size of the MnO₂ nanospheres. In summary, the synthesized Cdots@MnO₂ nanocomposites acted as a rapid, simple, economical as well as environmental-friendly nanosensor for the detection of GSH.

Keywords: carbon dots, fluorescence, glutathione, MnO₂ nanospheres, turn off-on

Procedia PDF Downloads 154
5493 Stock Market Prediction Using Convolutional Neural Network That Learns from a Graph

Authors: Mo-Se Lee, Cheol-Hwi Ahn, Kee-Young Kwahk, Hyunchul Ahn

Abstract:

Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN (Convolutional Neural Network), which is known as effective solution for recognizing and classifying images, has been popularly applied to classification and prediction problems in various fields. In this study, we try to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. In specific, we propose to apply CNN as the binary classifier that predicts stock market direction (up or down) by using a graph as its input. That is, our proposal is to build a machine learning algorithm that mimics a person who looks at the graph and predicts whether the trend will go up or down. Our proposed model consists of four steps. In the first step, it divides the dataset into 5 days, 10 days, 15 days, and 20 days. And then, it creates graphs for each interval in step 2. In the next step, CNN classifiers are trained using the graphs generated in the previous step. In step 4, it optimizes the hyper parameters of the trained model by using the validation dataset. To validate our model, we will apply it to the prediction of KOSPI200 for 1,986 days in eight years (from 2009 to 2016). The experimental dataset will include 14 technical indicators such as CCI, Momentum, ROC and daily closing price of KOSPI200 of Korean stock market.

Keywords: convolutional neural network, deep learning, Korean stock market, stock market prediction

Procedia PDF Downloads 425
5492 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors

Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma

Abstract:

Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.

Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole

Procedia PDF Downloads 253
5491 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record

Authors: Raghavi C. Janaswamy

Abstract:

In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.

Keywords: electronic health record, graph neural network, heterogeneous data, prediction

Procedia PDF Downloads 87
5490 Performances Analysis and Optimization of an Adsorption Solar Cooling System

Authors: Nadia Allouache

Abstract:

The use of solar energy in cooling systems is an interesting alternative to the increasing demand of energy in the world and more specifically in southern countries where the needs of refrigeration and air conditioning are tremendous. This technique is even more attractive with regards to environmental issues. This study focuses on performances analysis and optimization of solar reactor of an adsorption cooling machine working with activated carbon-methanol pair. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular adsorber that is the most important component of the machine. The results show the poor heat conduction inside the porous medium and the resistance between the metallic wall and the bed engender the important temperature gradient and a great difference between the metallic wall and the bed temperature; this is considered as the essential causes decreasing the performances of the machine. For fixed conditions of functioning, the total desorbed mass presents a maximum for an optimal value of the height of the adsorber; this implies the existence of an optimal dimensioning of the adsorber.

Keywords: solar cooling system, performances Analysis, optimization, heat and mass transfer, activated carbon-methanol pair, numerical modeling

Procedia PDF Downloads 440
5489 Secrecy Analysis in Downlink Cellular Networks in the Presence of D2D Pairs and Hardware Impairment

Authors: Mahdi Rahimi, Mohammad Mahdi Mojahedian, Mohammad Reza Aref

Abstract:

In this paper, a cellular communication scenario with a transmitter and an authorized user is considered to analyze its secrecy in the face of eavesdroppers and the interferences propagated unintentionally through the communication network. It is also assumed that some D2D pairs and eavesdroppers are randomly located in the cell. Assuming hardware impairment, perfect connection probability is analytically calculated, and upper bound is provided for the secrecy outage probability. In addition, a method based on random activation of D2Ds is proposed to improve network security. Finally, the analytical results are verified by simulations.

Keywords: physical layer security, stochastic geometry, device-to-device, hardware impairment

Procedia PDF Downloads 184
5488 Energy Management System and Interactive Functions of Smart Plug for Smart Home

Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya

Abstract:

Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.

Keywords: energy management, load profile, smart plug, wireless sensor network

Procedia PDF Downloads 273
5487 Ligand-Depended Adsorption Characteristics of Silver Nanoparticles on Activated Carbon

Authors: Hamza Simsir, Nurettin Eltugral, Selhan Karagöz

Abstract:

Surface modification and functionalization has been an important tool for scientists in order to open new frontiers in nano science and nanotechnology. Desired surface characteristics for the intended applications can be achieved with surface functionalization. In this work, the effect of water soluble ligands on the adsorption capabilities of silver nanoparticles onto AC which was synthesized from German beech wood, was investigated. Sodium borohydride (NaBH4) and polyvinyl alcohol (PVA) were used as the ligands. Silver nanoparticles with different surface coatings have average sizes range from 10 to 13 nm. They were synthesized in aqueous media by reducing Ag (I) ion in the presence of ligands. These particles displayed adsorption tendencies towards AC when they were mixed together and shaken in distilled water. Silver nanoparticles (NaBH4-AgNPs) reduced and stabilized by NaBH4 adsorbed onto AC with a homogenous dispersion of aggregates with sizes in the range of 100-400 nm. Beside, silver nanoparticles, which were prepared in the presence of both NaBH4 and PVA (NaBH4/PVA-Ag NPs), demonstrated that NaBH4/PVA-Ag NPs adsorbed and dispersed homogenously but, they aggregated with larger sizes on the AC surface (range from 300 to 600 nm). In addition, desorption resistance of Ag nanoparticles were investigated in distilled water. According to the results AgNPs were not desorbed on the AC surface in distilled water.

Keywords: Silver nanoparticles, ligand, activated carbon, adsorption

Procedia PDF Downloads 330
5486 Performance Evaluation of Clustered Routing Protocols for Heterogeneous Wireless Sensor Networks

Authors: Awatef Chniguir, Tarek Farah, Zouhair Ben Jemaa, Safya Belguith

Abstract:

Optimal routing allows minimizing energy consumption in wireless sensor networks (WSN). Clustering has proven its effectiveness in organizing WSN by reducing channel contention and packet collision and enhancing network throughput under heavy load. Therefore, nowadays, with the emergence of the Internet of Things, heterogeneity is essential. Stable election protocol (SEP) that has increased the network stability period and lifetime is the first clustering protocol for heterogeneous WSN. SEP and its descendants, namely SEP, Threshold Sensitive SEP (TSEP), Enhanced TSEP (ETSSEP) and Current Energy Allotted TSEP (CEATSEP), were studied. These algorithms’ performance was evaluated based on different metrics, especially first node death (FND), to compare their stability. Simulations were conducted on the MATLAB tool considering two scenarios: The first one demonstrates the fraction variation of advanced nodes by setting the number of total nodes. The second considers the interpretation of the number of nodes while keeping the number of advanced nodes permanent. CEATSEP outperforms its antecedents by increasing stability and, at the same time, keeping a low throughput. It also operates very well in a large-scale network. Consequently, CEATSEP has a useful lifespan and energy efficiency compared to the other routing protocol for heterogeneous WSN.

Keywords: clustering, heterogeneous, stability, scalability, IoT, WSN

Procedia PDF Downloads 133
5485 Cost Analysis of Optimized Fast Network Mobility in IEEE 802.16e Networks

Authors: Seyyed Masoud Seyyedoshohadaei, Borhanuddin Mohd Ali

Abstract:

To support group mobility, the NEMO Basic Support Protocol has been standardized as an extension of Mobile IP that enables an entire network to change its point of attachment to the Internet. Using NEMO in IEEE 802.16e (WiMax) networks causes latency in handover procedure and affects seamless communication of real-time applications. To decrease handover latency and service disruption time, an integrated scheme named Optimized Fast NEMO (OFNEMO) was introduced by authors of this paper. In OFNEMO a pre-establish multi tunnels concept, cross function optimization and cross layer design are used. In this paper, an analytical model is developed to evaluate total cost consisting of signaling and packet delivery costs of the OFNEMO compared with RFC3963. Results show that OFNEMO increases probability of predictive mode compared with RFC3963 due to smaller handover latency. Even though OFNEMO needs extra signalling to pre-establish multi tunnel, it has less total cost thanks to its optimized algorithm. OFNEMO can minimize handover latency for supporting real time application in moving networks.

Keywords: fast mobile IPv6, handover latency, IEEE802.16e, network mobility

Procedia PDF Downloads 198
5484 Enhancing Disaster Response Capabilities in Asia-Pacific: An Explorative Study Applied to Decision Support Tools for Logistics Network Design

Authors: Giuseppe Timperio, Robert de Souza

Abstract:

Logistics operations in the context of disaster response are characterized by a high degree of complexity due to the combined effect of a large number of stakeholders involved, time pressure, uncertainties at various levels, massive deployment of goods and personnel, and gigantic financial flow to be managed. It also involves several autonomous parties such as government agencies, militaries, NGOs, UN agencies, private sector to name few, to have a highly collaborative approach especially in the critical phase of the immediate response. This is particularly true in the context of L3 emergencies that are the most severe, large-scale humanitarian crises. Decision-making processes in disaster management are thus extremely difficult due to the presence of multiple decision-makers involved, and the complexity of the tasks being tackled. Hence, in this paper, we look at applying ICT based solutions to enable a speedy and effective decision making in the golden window of humanitarian operations. A high-level view of ICT based solutions in the context of logistics operations for humanitarian response in Southeast Asia is presented, and their viability in a real-life case about logistics network design is explored.

Keywords: decision support, disaster preparedness, humanitarian logistics, network design

Procedia PDF Downloads 169
5483 Effect of Organizational Resources on Improving Independency of People with Severe Disabilities: Vocational Rehabilitation Facilities in South Korea

Authors: Soungwan Kim

Abstract:

This paper discusses an analysis of how the characteristics of resources at vocational rehabilitation facilities for the disabled affect the improvement of independency skills among people with severe disabilities. The analysis results indicate that more internal financial resources and more connections to local communities among network resources had greater effects on improving the independency of people with severe disabilities. Based on this result, this paper presents strategies for mobilizing resources to improve the independency of people with severe disabilities at vocational rehabilitation facilities.

Keywords: vocational rehabilitation facility for people with disabilities, types of resources, independency, network resources

Procedia PDF Downloads 275
5482 Value Proposition and Value Creation in Network Environments: An Experimental Study of Academic Productivity via the Application of Bibliometrics

Authors: R. Oleko, A. Saraceni

Abstract:

The aim of this research is to provide a rigorous evaluation of the existing academic productivity in relation to value proposition and creation in networked environments. Bibliometrics is a vigorous approach used to structure existing literature in an objective and reliable manner. To that aim, a thorough bibliometric analysis was performed in order to assess the large volume of the information encountered in a structured and reliable manner. A clear distinction between networks and service networks was considered indispensable in order to capture the effects of each network’s type properties on value creation processes. Via the use of bibliometric parameters, this review was able to capture the state-of-the-art in both value proposition and value creation consecutively. The results provide a rigorous assessment of the annual scientific production, the most influential journals, and the leading corresponding author countries. By means of citation analysis, the most frequently cited manuscripts and countries for each network type were identified. Moreover, by means of co-citation analysis, existing collaborative patterns were detected through the creation of reference co-citation networks and country collaboration networks. Co-word analysis was also performed in order to provide an overview of the conceptual structure in both networks and service networks. The acquired results provide a rigorous and systematic assessment of the existing scientific output in networked settings. As such, they positively contribute to a better understanding of the distinct impact of service networks on value proposition and value creation when compared to regular networks. The implications derived can serve as a guide for informed decision-making by practitioners during network formation and provide a structured evaluation that can stand as a basis for future research in the field.

Keywords: bibliometrics, co-citation analysis, networks, service networks, value creation, value proposition

Procedia PDF Downloads 205
5481 Opportunities and Challenges for Decarbonizing Steel Production by Creating Markets for ‘Green Steel’ Products

Authors: Hasan Muslemani, Xi Liang, Kathi Kaesehage, Francisco Ascui, Jeffrey Wilson

Abstract:

The creation of a market for lower-carbon steel products, here called ‘green steel’, has been identified as an important means to support the introduction of breakthrough emission reduction technologies into the steel sector. However, the definition of what ‘green’ entails in the context of steel production, the implications on the competitiveness of green steel products in local and international markets, and the necessary market mechanisms to support their successful market penetration remain poorly explored. This paper addresses this gap by holding semi-structured interviews with international sustainability experts and commercial managers from leading steel trade associations, research institutes and steelmakers. Our findings show that there is an urgent need to establish a set of standards to define what ‘greenness’ means in the steelmaking context; standards that avoid market disruptions, unintended consequences, and opportunities for greenwashing. We also highlight that the introduction of green steel products will have implications on product competitiveness on three different levels: 1) between primary and secondary steelmaking routes, 2) with traditional, lesser green steel, and 3) with other substitutable materials (e.g. cement and plastics). This paper emphasises the need for steelmakers to adopt a transitional approach in deploying different low-carbon technologies, based on their stage of technological maturity, applicability in certain country contexts, capacity to reduce emissions over time, and the ability of the investment community to support their deployment. We further identify market mechanisms to support green steel production, including carbon border adjustments and public procurement, highlighting a need for implementing a combination of complementary policies to ensure the products’ roll-out. The study further shows that the auto industry is a likely candidate for green steel consumption, where a market would be supported by price premiums paid by willing consumers, such as those of high-end luxury vehicles.

Keywords: green steel, decarbonisation, business model innovation, market analysis

Procedia PDF Downloads 135
5480 An Approach to Building a Recommendation Engine for Travel Applications Using Genetic Algorithms and Neural Networks

Authors: Adrian Ionita, Ana-Maria Ghimes

Abstract:

The lack of features, design and the lack of promoting an integrated booking application are some of the reasons why most online travel platforms only offer automation of old booking processes, being limited to the integration of a smaller number of services without addressing the user experience. This paper represents a practical study on how to improve travel applications creating user-profiles through data-mining based on neural networks and genetic algorithms. Choices made by users and their ‘friends’ in the ‘social’ network context can be considered input data for a recommendation engine. The purpose of using these algorithms and this design is to improve user experience and to deliver more features to the users. The paper aims to highlight a broader range of improvements that could be applied to travel applications in terms of design and service integration, while the main scientific approach remains the technical implementation of the neural network solution. The motivation of the technologies used is also related to the initiative of some online booking providers that have made the fact that they use some ‘neural network’ related designs public. These companies use similar Big-Data technologies to provide recommendations for hotels, restaurants, and cinemas with a neural network based recommendation engine for building a user ‘DNA profile’. This implementation of the ‘profile’ a collection of neural networks trained from previous user choices, can improve the usability and design of any type of application.

Keywords: artificial intelligence, big data, cloud computing, DNA profile, genetic algorithms, machine learning, neural networks, optimization, recommendation system, user profiling

Procedia PDF Downloads 164
5479 Shear Strengthening of RC T-Beams by Means of CFRP Sheets

Authors: Omar A. Farghal

Abstract:

This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.

Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening

Procedia PDF Downloads 255
5478 Green Innovation and Artificial Intelligence in Service

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

Numerous nations have recognized the critical ought to address natural issues, such as discuss contamination, squander transfer, worldwide warming, and common asset consumption, through the application of green innovation. The rise of cleverly advances has driven mechanical basic changes that will offer assistance accomplish carbon decrease. Manufactured insights (AI) innovation is an imperative portion of digitalization, giving unused mechanical apparatuses and bearings for the moo carbon advancement of endeavors. Quickening the brilliantly change of fabricating industry is an critical vital choice to realize the green advancement change. The reason why fabricating insights can advance the advancement of green advancement execution is that fabricating insights is conducive to the generation of "innovation advancement impact" and "fetched decrease impact" so as to advance green innovation advancement, at that point viably increment the alluring yields and essentially diminish the undesirable yields. AI improvement will boost GTI as it were when the escalated of natural direction and organization environment is over a certain edge esteem. In any case, the AI improvement spoken to by mechanical robot applications still has no self-evident impact on GTI, indeed, when the R&D venture surpasses a certain edge.

Keywords: greenhouse gas emissions, green infrastructure, artificial intelligence, environmental protection

Procedia PDF Downloads 70
5477 Optimization of Structures Subjected to Earthquake

Authors: Alireza Lavaei, Alireza Lohrasbi, Mohammadali M. Shahlaei

Abstract:

To reduce the overall time of structural optimization for earthquake loads two strategies are adopted. In the first strategy, a neural system consisting self-organizing map and radial basis function neural networks, is utilized to predict the time history responses. In this case, the input space is classified by employing a self-organizing map neural network. Then a distinct RBF neural network is trained in each class. In the second strategy, an improved genetic algorithm is employed to find the optimum design. A 72-bar space truss is designed for optimal weight using exact and approximate analysis for the El Centro (S-E 1940) earthquake loading. The numerical results demonstrate the computational advantages and effectiveness of the proposed method.

Keywords: optimization, genetic algorithm, neural networks, self-organizing map

Procedia PDF Downloads 316
5476 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 267
5475 Vehicle Timing Motion Detection Based on Multi-Dimensional Dynamic Detection Network

Authors: Jia Li, Xing Wei, Yuchen Hong, Yang Lu

Abstract:

Detecting vehicle behavior has always been the focus of intelligent transportation, but with the explosive growth of the number of vehicles and the complexity of the road environment, the vehicle behavior videos captured by traditional surveillance have been unable to satisfy the study of vehicle behavior. The traditional method of manually labeling vehicle behavior is too time-consuming and labor-intensive, but the existing object detection and tracking algorithms have poor practicability and low behavioral location detection rate. This paper proposes a vehicle behavior detection algorithm based on the dual-stream convolution network and the multi-dimensional video dynamic detection network. In the videos, the straight-line behavior of the vehicle will default to the background behavior. The Changing lanes, turning and turning around are set as target behaviors. The purpose of this model is to automatically mark the target behavior of the vehicle from the untrimmed videos. First, the target behavior proposals in the long video are extracted through the dual-stream convolution network. The model uses a dual-stream convolutional network to generate a one-dimensional action score waveform, and then extract segments with scores above a given threshold M into preliminary vehicle behavior proposals. Second, the preliminary proposals are pruned and identified using the multi-dimensional video dynamic detection network. Referring to the hierarchical reinforcement learning, the multi-dimensional network includes a Timer module and a Spacer module, where the Timer module mines time information in the video stream and the Spacer module extracts spatial information in the video frame. The Timer and Spacer module are implemented by Long Short-Term Memory (LSTM) and start from an all-zero hidden state. The Timer module uses the Transformer mechanism to extract timing information from the video stream and extract features by linear mapping and other methods. Finally, the model fuses time information and spatial information and obtains the location and category of the behavior through the softmax layer. This paper uses recall and precision to measure the performance of the model. Extensive experiments show that based on the dataset of this paper, the proposed model has obvious advantages compared with the existing state-of-the-art behavior detection algorithms. When the Time Intersection over Union (TIoU) threshold is 0.5, the Average-Precision (MP) reaches 36.3% (the MP of baselines is 21.5%). In summary, this paper proposes a vehicle behavior detection model based on multi-dimensional dynamic detection network. This paper introduces spatial information and temporal information to extract vehicle behaviors in long videos. Experiments show that the proposed algorithm is advanced and accurate in-vehicle timing behavior detection. In the future, the focus will be on simultaneously detecting the timing behavior of multiple vehicles in complex traffic scenes (such as a busy street) while ensuring accuracy.

Keywords: vehicle behavior detection, convolutional neural network, long short-term memory, deep learning

Procedia PDF Downloads 133
5474 Hazardous Gas Detection Robot in Coal Mines

Authors: Kanchan J. Kakade, S. A. Annadate

Abstract:

This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.

Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller

Procedia PDF Downloads 469
5473 Hamiltonian Related Properties with and without Faults of the Dual-Cube Interconnection Network and Their Variations

Authors: Shih-Yan Chen, Shin-Shin Kao

Abstract:

In this paper, a thorough review about dual-cubes, DCn, the related studies and their variations are given. DCn was introduced to be a network which retains the pleasing properties of hypercube Qn but has a much smaller diameter. In fact, it is so constructed that the number of vertices of DCn is equal to the number of vertices of Q2n +1. However, each vertex in DCn is adjacent to n + 1 neighbors and so DCn has (n + 1) × 2^2n edges in total, which is roughly half the number of edges of Q2n+1. In addition, the diameter of any DCn is 2n +2, which is of the same order of that of Q2n+1. For selfcompleteness, basic definitions, construction rules and symbols are provided. We chronicle the results, where eleven significant theorems are presented, and include some open problems at the end.

Keywords: dual-cubes, dual-cube extensive networks, dual-cube-like networks, hypercubes, fault-tolerant hamiltonian property

Procedia PDF Downloads 472
5472 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.

Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia

Procedia PDF Downloads 468
5471 An Improved Convolution Deep Learning Model for Predicting Trip Mode Scheduling

Authors: Amin Nezarat, Naeime Seifadini

Abstract:

Trip mode selection is a behavioral characteristic of passengers with immense importance for travel demand analysis, transportation planning, and traffic management. Identification of trip mode distribution will allow transportation authorities to adopt appropriate strategies to reduce travel time, traffic and air pollution. The majority of existing trip mode inference models operate based on human selected features and traditional machine learning algorithms. However, human selected features are sensitive to changes in traffic and environmental conditions and susceptible to personal biases, which can make them inefficient. One way to overcome these problems is to use neural networks capable of extracting high-level features from raw input. In this study, the convolutional neural network (CNN) architecture is used to predict the trip mode distribution based on raw GPS trajectory data. The key innovation of this paper is the design of the layout of the input layer of CNN as well as normalization operation, in a way that is not only compatible with the CNN architecture but can also represent the fundamental features of motion including speed, acceleration, jerk, and Bearing rate. The highest prediction accuracy achieved with the proposed configuration for the convolutional neural network with batch normalization is 85.26%.

Keywords: predicting, deep learning, neural network, urban trip

Procedia PDF Downloads 139
5470 Electrochemical Properties of Li-Ion Batteries Anode Material: Li₃.₈Cu₀.₁Ni₀.₁Ti₅O₁₂

Authors: D. Olszewska, J. Niewiedzial

Abstract:

In some types of Li-ion batteries carbon in the form of graphite is used. Unfortunately, carbon materials, in particular graphite, have very good electrochemical properties, but increase their volume during charge/discharge cycles, which may even lead to an explosion of the cell. The cell element may be replaced by a composite material consisting of lithium-titanium oxide Li4Ti5O12 (LTO) modified with copper and nickel ions and carbon derived from sucrose. This way you can improve the conductivity of the material. LTO is appropriate only for applications which do not require high energy density because of its high operating voltage (ca. 1.5 V vs. Li/Li+). Specific capacity of Li4Ti5O12 is high enough for utilization in Li-ion batteries (theoretical capacity 175 mAh·g-1) but it is lower than capacity of graphite anodes. Materials based on Li4Ti5O12 do not change their volume during charging/discharging cycles, however, LTO has low conductivity. Another positive aspect of the use of sucrose in the carbon composite material is to eliminate the addition of carbon black from the anode of the battery. Therefore, the proposed materials contribute significantly to environmental protection and safety of selected lithium cells. New anode materials in order to obtain Li3.8Cu0.1Ni0.1Ti5O12 have been prepared by solid state synthesis using three-way: i) stoichiometric composition of Li2CO3, TiO2, CuO, NiO (A- Li3.8Cu0.1Ni0.1Ti5O12); ii) stoichiometric composition of Li2CO3, TiO2, Cu(NO3)2, Ni(NO3)2 (B-Li3.8Cu0.1Ni0.1Ti5O12); and iii) stoichiometric composition of Li2CO3, TiO2, CuO, NiO calcined with 10% of saccharose (Li3.8Cu0.1Ni0.1Ti5O12-C). Structure of materials was studied by X-ray diffraction (XRD). The electrochemical properties were performed using appropriately prepared cell Li|Li+|Li3.8Cu0.1Ni0.1Ti5O12 for cyclic voltammetry and discharge/charge measurements. The cells were periodically charged and discharged in the voltage range from 1.3 to 2.0 V applying constant charge/discharge current in order to determine the specific capacity of each electrode. Measurements at various values of the charge/discharge current (from C/10 to 5C) were carried out. Cyclic voltammetry investigation was carried out by applying to the cells a voltage linearly changing over time at a rate of 0.1 mV·s-1 (in the range from 2.0 to 1.3 V and from 1.3 to 2.0 V). The XRD method analyzes show that composite powders were obtained containing, in addition to the main phase, 4.78% and 4% TiO2 in A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12, respectively. However, Li3.8Cu0.1Ni0.1O12-C material is three-phase: 63.84% of the main phase, 17.49 TiO2 and 18.67 Li2TiO3. Voltammograms of electrodes containing materials A-Li3.8Cu0.1Ni0.1O12 and B-Li3.8Cu0.1Ni0.1O12 are correct and repeatable. Peak cathode occurs for both samples at a potential approx. 1.52±0.01 V relative to a lithium electrode, while the anodic peak at potential approx. 1.65±0.05 V relative to a lithium electrode. Voltammogram of Li3.8Cu0.1Ni0.1Ti5O12-C (especially for the first measurement cycle) is not correct. There are large variations in values of specific current, which are not characteristic for materials LTO. From the point of view of safety and environmentally friendly production of Li-ion cells eliminating soot and applying Li3.8Cu0.1Ni0.1Ti5O12-C as an active material of an anode in lithium-ion batteries seems to be a good alternative to currently used materials.

Keywords: anode, Li-ion batteries, Li₄O₅O₁₂, spinel

Procedia PDF Downloads 150
5469 Variation of Carbon Isotope Ratio (δ13C) and Leaf-Productivity Traits in Aquilaria Species (Thymelaeceae)

Authors: Arlene López-Sampson, Tony Page, Betsy Jackes

Abstract:

Aquilaria genus produces a highly valuable fragrant oleoresin known as agarwood. Agarwood forms in a few trees in the wild as a response to injure or pathogen attack. The resin is used in perfume and incense industry and medicine. Cultivation of Aquilaria species as a sustainable source of the resin is now a common strategy. Physiological traits are frequently used as a proxy of crop and tree productivity. Aquilaria species growing in Queensland, Australia were studied to investigate relationship between leaf-productivity traits with tree growth. Specifically, 28 trees, representing 12 plus trees and 16 trees from yield plots, were selected to conduct carbon isotope analysis (δ13C) and monitor six leaf attributes. Trees were grouped on four diametric classes (diameter at 150 mm above ground level) ensuring the variability in growth of the whole population was sampled. Model averaging technique based on the Akaike’s information criterion (AIC) was computed to identify whether leaf traits could assist in diameter prediction. Carbon isotope values were correlated with height classes and leaf traits to determine any relationship. In average four leaves per shoot were recorded. Approximately one new leaf per week is produced by a shoot. Rate of leaf expansion was estimated in 1.45 mm day-1. There were no statistical differences between diametric classes and leaf expansion rate and number of new leaves per week (p > 0.05). Range of δ13C values in leaves of Aquilaria species was from -25.5 ‰ to -31 ‰ with an average of -28.4 ‰ (± 1.5 ‰). Only 39% of the variability in height can be explained by δ13C in leaf. Leaf δ13C and nitrogen content values were positively correlated. This relationship implies that leaves with higher photosynthetic capacities also had lower intercellular carbon dioxide concentrations (ci/ca) and less depleted values of 13C. Most of the predictor variables have a weak correlation with diameter (D). However, analysis of the 95% confidence of best-ranked regression models indicated that the predictors that could likely explain growth in Aquilaria species are petiole length (PeLen), values of δ13C (true13C) and δ15N (true15N), leaf area (LA), specific leaf area (SLA) and number of new leaf produced per week (NL.week). The model constructed with PeLen, true13C, true15N, LA, SLA and NL.week could explain 45% (R2 0.4573) of the variability in D. The leaf traits studied gave a better understanding of the leaf attributes that could assist in the selection of high-productivity trees in Aquilaria.

Keywords: 13C, petiole length, specific leaf area, tree growth

Procedia PDF Downloads 512
5468 Recognition of Early Enterococcus Faecalis through Image Treatment by Using Octave

Authors: Laura Victoria Vigoya Morales, David Rolando Suarez Mora

Abstract:

The problem of detecting enterococcus faecalis is receiving considerable attention with the new cases of beachgoers infected with the bacteria, which can be found in fecal matter. The process detection of this kind of bacteria would be taking a long time, which waste time and money as a result of closing recreation place, like beach or pools. Hence, new methods for automating the process of detecting and recognition of this bacteria has become in a challenge. This article describes a novel approach to detect the enterococcus faecalis bacteria in water by using an octave algorithm, which embody a network neural. This document shows result of performance, quality and integrity of the algorithm.

Keywords: Enterococcus faecalis, image treatment, octave and network neuronal

Procedia PDF Downloads 230
5467 End-to-End Spanish-English Sequence Learning Translation Model

Authors: Vidhu Mitha Goutham, Ruma Mukherjee

Abstract:

The low availability of well-trained, unlimited, dynamic-access models for specific languages makes it hard for corporate users to adopt quick translation techniques and incorporate them into product solutions. As translation tasks increasingly require a dynamic sequence learning curve; stable, cost-free opensource models are scarce. We survey and compare current translation techniques and propose a modified sequence to sequence model repurposed with attention techniques. Sequence learning using an encoder-decoder model is now paving the path for higher precision levels in translation. Using a Convolutional Neural Network (CNN) encoder and a Recurrent Neural Network (RNN) decoder background, we use Fairseq tools to produce an end-to-end bilingually trained Spanish-English machine translation model including source language detection. We acquire competitive results using a duo-lingo-corpus trained model to provide for prospective, ready-made plug-in use for compound sentences and document translations. Our model serves a decent system for large, organizational data translation needs. While acknowledging its shortcomings and future scope, it also identifies itself as a well-optimized deep neural network model and solution.

Keywords: attention, encoder-decoder, Fairseq, Seq2Seq, Spanish, translation

Procedia PDF Downloads 176