Search results for: weather classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2952

Search results for: weather classification

732 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach

Authors: Rajvir Kaur, Jeewani Anupama Ginige

Abstract:

With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.

Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall

Procedia PDF Downloads 277
731 Dimensional Investigation of Food Addiction in Individuals Who Have Undergone Bariatric Surgery

Authors: Ligia Florio, João Mauricio Castaldelli-Maia

Abstract:

Background: Food addiction (FA) emerged in the 1990s as a possible contributor to the increasing prevalence of obesity and overweight, in conjunction with changing food environments and mental health conditions. However, FA is not yet listed as one of the disorders in the DSM-5 and/or the ICD-11. Although there are controversies and debates in the literature about the classification and construct of FA, the most common approach to access it is the use of a research tool - the Yale Food Addiction Scale (YFAS) - which approximates the concept of FA to the concept diagnosis of dependence on psychoactive substances. There is a need to explore the dimensional phenotypes accessed by YFAS in different population groups for a better understanding and scientific support of FA diagnoses. Methods: The primary objective of this project was to investigate the construct validity of the FA concept by mYFAS 2.0 in individuals who underwent bariatric surgery (n = 100) at the Hospital Estadual Mário Covas since 2011. Statistical analyzes were conducted using the STATA software. In this sense, structural or factor validity was the type of construct validity investigated using exploratory factor analysis (EFA) and item response theory (IRT) techniques. Results: EFA showed that the one-dimensional model was the most parsimonious. The IRT showed that all criteria contributed to the latent structure, presenting discrimination values greater than 0.5, with most presenting values greater than 2. Conclusion: This study reinforces a FA dimension in patients who underwent bariatric surgery. Within this dimension, we identified the most severe and discriminating criteria for the diagnosis of FA.

Keywords: obesity, food addiction, bariatric surgery, regain

Procedia PDF Downloads 76
730 Comparison of Phytochemicals in Grapes and Wine from Shenton Park Winery

Authors: Amanda Sheard, Garry Lee, Katherine Stockham

Abstract:

Introduction: Health benefits associated with wine consumption have been well documented; these include anticancer, anti-inflammatory, and cardiovascular protection. The majority of these health benefits have been linked to polyphenols found within wine and grapes. Once consumed polyphenols exhibit free radical quenching capabilities. Environmental factors such as rainfall, temperature, CO2 levels and sunlight exposure have been shown to affect the polyphenol content of grapes. The objective of this work was to evaluate the effect of growing conditions on the antioxidant capacity of grapes obtained from a single plot vineyard in Perth. This was achieved through the analysis of samples using; oxygen radical antioxidant capacity (ORAC), cellular antioxidant activity (CAA) in human red blood cells, ICP-MS and ICP-OES, total polyphenols (PP’s), and total flavonoid’s (FLa). The data obtained was compared to observed climate data. The 14 Selected Vitis Vinefera L. cultivars included Cabernet franc, Cabernet Sauvignon, Carnelian, Chardonnay, Grenache, Melbec, Merlot, Orange muscat, Rousanne, Sauvignon Blanc, Shiraz, Tempernillo, Verdelho, and Voignier. Results: Notable variation’s between cultivars included results ranging from 125 mg/100 g-350 mg/100 g for PP’s, 93 mg/100 g–300 mg/100 g for FLa, 13 mM T.E/kg–33 mM T.E/kg for ORAC and 0.3 mM Q.E/kg–27 mM Q.E/kg CAA were found between red and white grape cultivars. No correlation was found between CAA and the ORAC obtained in this study; except that white cultivars were consistently lower than red. ICP analysis showed that seeds contained the highest concentration of copper followed by skins and flesh of the grape. A positive correlation between copper and ORAC was found. The ORAC, PP’s, and FLa in red grapes were consistently higher than white grape cultivars; these findings were supported by literature values. Significance: The cellular antioxidant activities of white and red wine cultivars were used to compare the bioactivity of these grapes against the chemical ORAC measurement. The common method of antioxidant activity measurement is the chemical value from ORAC analysis; however this may not reflect the activity within the human body. Hence, the measurements were also carried out using the cellular antioxidant activity to perform a comparison. Additionally, the study explored the influence of weather systems such as El Niño and La Niña on the polyphenol content of Australian wine cultivars grown in Perth.

Keywords: oxygen radical antioxidant activity, cellular antioxidant activity, total polyphenols, total flavonoids, wine grapes, climate

Procedia PDF Downloads 290
729 Barriers to Participation in Sport for Children without Disability: A Systematic Review

Authors: S. Somerset, D. J. Hoare

Abstract:

Participation in sport is linked to better mental and physical health in children and adults. Studies have shown children who participate in sports benefit from improved social skills, self-confidence, communication skills and a better quality of life. Children who participate in sports from a young age are also more likely to continue to have active lifestyles during adulthood. This is an important consideration with a nation where physical activity levels are declining and the incidences of obesity are rising. Getting children active and keeping them active can provide long term health benefits to the individual but also a potential reduction in health costs in the future. This systematic review aims to identify the barriers to participation in sport for children aged up to 18 years and encompasses both qualitative and quantitative studies. The bibliographic databases, EMBASE, Medline, CINAHL and SportDiscus were searched. Additional hand searches were carried out on review articles found in the searches to identify any studies that may have been missed. Studies involving children up to 18 years without additional needs focusing on barriers to participation in sport were included. Randomised control trials, policy guidelines, studies with sport as an intervention, studies focusing on the female athlete triad, tobacco abuse, alcohol abuse, drug abuse, pre exercise testing, and cardiovascular disease were excluded. Abstract review, full paper review and quality appraisal were conducted by two researchers. A consensus meeting took place to resolve any differences at the abstract, full text and data extraction / quality appraisal stages. The CASP qualitative studies appraisal tool and the CASP cohort studies tool (excluding question 3 and 4 which refer to interventions) were used for quality appraisal in this review. The review identified several salient barriers to participation in sport for children. These barriers ranged from the uniform worn during school physical education lessons to the weather during participation in sport. The most commonly identified barriers in the review include parental support, time allocation, location of the activity and the cost of the activity. Therefore, it would be beneficial for a greater provision to be made within the school environment for children to participate sport. This can reduce the cost and time commitment required from parents to encourage participation. This would help to increase activity levels of children, which ultimately can only be a good thing.

Keywords: barrier, children, participation, sport

Procedia PDF Downloads 361
728 Bibliometric Analysis of Risk Assessment of Inland Maritime Accidents in Bangladesh

Authors: Armana Huq, Wahidur Rahman, Sanwar Kader

Abstract:

Inland waterways in Bangladesh play an important role in providing comfortable and low-cost transportation. However, a maritime accident takes away many lives and creates unwanted hazards every year. This article deals with a comprehensive review of inland waterway accidents in Bangladesh. Additionally, it includes a comparative study between international and local inland research studies based on maritime accidents. Articles from inland waterway areas are analyzed in-depth to make a comprehensive overview of the nature of the academic work, accident and risk management process and different statistical analyses. It is found that empirical analysis based on the available statistical data dominates the research domain. For this study, major maritime accident-related works in the last four decades in Bangladesh (1981-2020) are being analyzed for preparing a bibliometric analysis. A study of maritime accidents of passenger's vessels during (1995-2005) indicates that the predominant causes of accidents in the inland waterways of Bangladesh are collision and adverse weather (77%), out of which collision due to human error alone stands (56%) of all accidents. Another study refers that the major causes of waterway accidents are the collision (60.3%) during 2005-2015. About 92% of this collision occurs due to direct contact with another vessel during this period. Rest 8% of the collision occurs by contact with permanent obstruction on waterway roots. The overall analysis of another study from the last 25 years (1995-2019) shows that one of the main types of accidents is collisions, with about 50.3% of accidents being caused by collisions. The other accident types are cyclone or storm (17%), overload (11.3%), physical failure (10.3%), excessive waves (5.1%), and others (6%). Very few notable works are available in testing or comparing the methods, proposing new methods for risk management, modeling, uncertainty treatment. The purpose of this paper is to provide an overview of the evolution of marine accident-related research domain regarding inland waterway of Bangladesh and attempts to introduce new ideas and methods to abridge the gap between international and national inland maritime-related work domain which can be a catalyst for a safer and sustainable water transportation system in Bangladesh. Another fundamental objective of this paper is to navigate various national maritime authorities and international organizations to implement risk management processes for shipping accident prevention in waterway areas.

Keywords: inland waterways, safety, bibliometric analysis, risk management, accidents

Procedia PDF Downloads 182
727 Analysis of Brain Activities due to Differences in Running Shoe Properties

Authors: Kei Okubo, Yosuke Kurihara, Takashi Kaburagi, Kajiro Watanabe

Abstract:

Many of the ever-growing elderly population require exercise, such as running, for health management. One important element of a runner’s training is the choice of shoes for exercise; shoes are important because they provide the interface between the feet and road. When we purchase shoes, we may instinctively choose a pair after trying on many different pairs of shoes. Selecting the shoes instinctively may work, but it does not guarantee a suitable fit for running activities. Therefore, if we could select suitable shoes for each runner from the viewpoint of brain activities, it would be helpful for validating shoe selection. In this paper, we describe how brain activities show different characteristics during particular task, corresponding to different properties of shoes. Using five subjects, we performed a verification experiment, applying weight, softness, and flexibility as shoe properties. In order to affect the shoe property’s differences to the brain, subjects run for ten min. Before and after running, subjects conducted a paced auditory serial addition task (PASAT) as the particular task; and the subjects’ brain activities during the PASAT are evaluated based on oxyhemoglobin and deoxyhemoglobin relative concentration changes, measured by near-infrared spectroscopy (NIRS). When the brain works actively, oxihemoglobin and deoxyhemoglobin concentration drastically changes; therefore, we calculate the maximum values of concentration changes. In order to normalize relative concentration changes after running, the maximum value are divided by before running maximum value as evaluation parameters. The classification of the groups of shoes is expressed on a self-organizing map (SOM). As a result, deoxyhemoglobin can make clusters for two of the three types of shoes.

Keywords: brain activities, NIRS, PASAT, running shoes

Procedia PDF Downloads 373
726 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: actionable pattern discovery, education, emotion, data mining

Procedia PDF Downloads 98
725 Perceiving Interpersonal Conflict and the Big Five Personality Traits

Authors: Emily Rivera, Toni DiDona

Abstract:

The Big Five personality traits is a hierarchical classification of personality traits that applies factor analysis to a personality survey data in order to describe human personality using five broad dimensions: Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness (Fetvadjiev & Van de Vijer, 2015). Research shows that personality constructs underline individual differences in processing conflict and interpersonal relations. (Graziano et al., 1996). This research explores the understudied correlation between the Big Five personality traits and perceived interpersonal conflict in the workplace. It revises social psychological literature on Big Five personality traits within a social context and discusses organizational development journal articles on the perceived efficacy of conflict tactics and approach to interpersonal relationships. The study also presents research undertaken on a survey group of 867 subjects over the age of 18 that were recruited by means of convenience sampling through social media, email, and text messaging. The central finding of this study is that only two of the Big Five personality traits had a significant correlation with perceiving interpersonal conflict in the workplace. Individuals who score higher on agreeableness and neuroticism, perceive more interpersonal conflict in the workplace compared to those that score lower on each dimension. The relationship between both constructs is worthy of research due to its everyday frequency and unique individual psycho-social consequences. This multimethod research associated the Big Five personality dimensions to interpersonal conflict. Its findings that can be utilized to further understand social cognition, person perception, complex social behavior and social relationships in the work environment.

Keywords: five-factor model, interpersonal conflict, personality, The Big Five personality traits

Procedia PDF Downloads 158
724 Sub-Pixel Mapping Based on New Mixed Interpolation

Authors: Zeyu Zhou, Xiaojun Bi

Abstract:

Due to the limited environmental parameters and the limited resolution of the sensor, the universal existence of the mixed pixels in the process of remote sensing images restricts the spatial resolution of the remote sensing images. Sub-pixel mapping technology can effectively improve the spatial resolution. As the bilinear interpolation algorithm inevitably produces the edge blur effect, which leads to the inaccurate sub-pixel mapping results. In order to avoid the edge blur effect that affects the sub-pixel mapping results in the interpolation process, this paper presents a new edge-directed interpolation algorithm which uses the covariance adaptive interpolation algorithm on the edge of the low-resolution image and uses bilinear interpolation algorithm in the low-resolution image smooth area. By using the edge-directed interpolation algorithm, the super-resolution of the image with low resolution is obtained, and we get the percentage of each sub-pixel under a certain type of high-resolution image. Then we rely on the probability value as a soft attribute estimate and carry out sub-pixel scale under the ‘hard classification’. Finally, we get the result of sub-pixel mapping. Through the experiment, we compare the algorithm and the bilinear algorithm given in this paper to the results of the sub-pixel mapping method. It is found that the sub-pixel mapping method based on the edge-directed interpolation algorithm has better edge effect and higher mapping accuracy. The results of the paper meet our original intention of the question. At the same time, the method does not require iterative computation and training of samples, making it easier to implement.

Keywords: remote sensing images, sub-pixel mapping, bilinear interpolation, edge-directed interpolation

Procedia PDF Downloads 229
723 Analysis of Road Risk in Four French Overseas Territories Compared with Metropolitan France

Authors: Mohamed Mouloud Haddak, Bouthayna Hayou

Abstract:

Road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regards to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, french overseas regions, road safety, road traffic accidents, territorial inequalities

Procedia PDF Downloads 11
722 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria

Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas

Abstract:

This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.

Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin

Procedia PDF Downloads 19
721 Modelling Flood Events in Botswana (Palapye) for Protecting Roads Structure against Floods

Authors: Thabo M. Bafitlhile, Adewole Oladele

Abstract:

Botswana has been affected by floods since long ago and is still experiencing this tragic event. Flooding occurs mostly in the North-West, North-East, and parts of Central district due to heavy rainfalls experienced in these areas. The torrential rains destroyed homes, roads, flooded dams, fields and destroyed livestock and livelihoods. Palapye is one area in the central district that has been experiencing floods ever since 1995 when its greatest flood on record occurred. Heavy storms result in floods and inundation; this has been exacerbated by poor and absence of drainage structures. Since floods are a part of nature, they have existed and will to continue to exist, hence more destruction. Furthermore floods and highway plays major role in erosion and destruction of roads structures. Already today, many culverts, trenches, and other drainage facilities lack the capacity to deal with current frequency for extreme flows. Future changes in the pattern of hydro climatic events will have implications for the design and maintenance costs of roads. Increase in rainfall and severe weather events can affect the demand for emergent responses. Therefore flood forecasting and warning is a prerequisite for successful mitigation of flood damage. In flood prone areas like Palapye, preventive measures should be taken to reduce possible adverse effects of floods on the environment including road structures. Therefore this paper attempts to estimate return periods associated with huge storms of different magnitude from recorded historical rainfall depth using statistical method. The method of annual maxima was used to select data sets for the rainfall analysis. In the statistical method, the Type 1 extreme value (Gumbel), Log Normal, Log Pearson 3 distributions were all applied to the annual maximum series for Palapye area to produce IDF curves. The Kolmogorov-Smirnov test and Chi Squared were used to confirm the appropriateness of fitted distributions for the location and the data do fit the distributions used to predict expected frequencies. This will be a beneficial tool for urgent flood forecasting and water resource administration as proper drainage design will be design based on the estimated flood events and will help to reclaim and protect the road structures from adverse impacts of flood.

Keywords: drainage, estimate, evaluation, floods, flood forecasting

Procedia PDF Downloads 371
720 An Overview of Electronic Waste as Aggregate in Concrete

Authors: S. R. Shamili, C. Natarajan, J. Karthikeyan

Abstract:

Rapid growth of world population and widespread urbanization has remarkably increased the development of the construction industry which caused a huge demand for sand and gravels. Environmental problems occur when the rate of extraction of sand, gravels, and other materials exceeds the rate of generation of natural resources; therefore, an alternative source is essential to replace the materials used in concrete. Now-a-days, electronic products have become an integral part of daily life which provides more comfort, security, and ease of exchange of information. These electronic waste (E-Waste) materials have serious human health concerns and require extreme care in its disposal to avoid any adverse impacts. Disposal or dumping of these E-Wastes also causes major issues because it is highly complex to handle and often contains highly toxic chemicals such as lead, cadmium, mercury, beryllium, brominates flame retardants (BFRs), polyvinyl chloride (PVC), and phosphorus compounds. Hence, E-Waste can be incorporated in concrete to make a sustainable environment. This paper deals with the composition, preparation, properties, classification of E-Waste. All these processes avoid dumping to landfills whilst conserving natural aggregate resources, and providing a better environmental option. This paper also provides a detailed literature review on the behaviour of concrete with incorporation of E-Wastes. Many research shows the strong possibility of using E-Waste as a substitute of aggregates eventually it reduces the use of natural aggregates in concrete.

Keywords: dumping, electronic waste, landfill, toxic chemicals

Procedia PDF Downloads 169
719 Improving Activity Recognition Classification of Repetitious Beginner Swimming Using a 2-Step Peak/Valley Segmentation Method with Smoothing and Resampling for Machine Learning

Authors: Larry Powell, Seth Polsley, Drew Casey, Tracy Hammond

Abstract:

Human activity recognition (HAR) systems have shown positive performance when recognizing repetitive activities like walking, running, and sleeping. Water-based activities are a reasonably new area for activity recognition. However, water-based activity recognition has largely focused on supporting the elite and competitive swimming population, which already has amazing coordination and proper form. Beginner swimmers are not perfect, and activity recognition needs to support the individual motions to help beginners. Activity recognition algorithms are traditionally built around short segments of timed sensor data. Using a time window input can cause performance issues in the machine learning model. The window’s size can be too small or large, requiring careful tuning and precise data segmentation. In this work, we present a method that uses a time window as the initial segmentation, then separates the data based on the change in the sensor value. Our system uses a multi-phase segmentation method that pulls all peaks and valleys for each axis of an accelerometer placed on the swimmer’s lower back. This results in high recognition performance using leave-one-subject-out validation on our study with 20 beginner swimmers, with our model optimized from our final dataset resulting in an F-Score of 0.95.

Keywords: time window, peak/valley segmentation, feature extraction, beginner swimming, activity recognition

Procedia PDF Downloads 123
718 Water Body Detection and Estimation from Landsat Satellite Images Using Deep Learning

Authors: M. Devaki, K. B. Jayanthi

Abstract:

The identification of water bodies from satellite images has recently received a great deal of attention. Different methods have been developed to distinguish water bodies from various satellite images that vary in terms of time and space. Urban water identification issues body manifests in numerous applications with a great deal of certainty. There has been a sharp rise in the usage of satellite images to map natural resources, including urban water bodies and forests, during the past several years. This is because water and forest resources depend on each other so heavily that ongoing monitoring of both is essential to their sustainable management. The relevant elements from satellite pictures have been chosen using a variety of techniques, including machine learning. Then, a convolution neural network (CNN) architecture is created that can identify a superpixel as either one of two classes, one that includes water or doesn't from input data in a complex metropolitan scene. The deep learning technique, CNN, has advanced tremendously in a variety of visual-related tasks. CNN can improve classification performance by reducing the spectral-spatial regularities of the input data and extracting deep features hierarchically from raw pictures. Calculate the water body using the satellite image's resolution. Experimental results demonstrate that the suggested method outperformed conventional approaches in terms of water extraction accuracy from remote-sensing images, with an average overall accuracy of 97%.

Keywords: water body, Deep learning, satellite images, convolution neural network

Procedia PDF Downloads 89
717 Palaeo-Environmental Reconstruction of the Wet Zone of Sri Lanka: A Zooarchaeological Perspective

Authors: Kalangi Rodrigo

Abstract:

Sri Lanka has been known as an island which has a diverse variety of prehistoric occupation among ecological zones. Defining the paleoecology of the past societies has been an archaeological thought developed in the 1960s. It is mainly concerned with the reconstruction from available geological and biological evidence of past biota, populations, communities, landscapes, environments, and ecosystems. Sri Lanka has dealt with this subject, and considerable research has been already undertaken. The fossil and material record of Sri Lanka’s Wet Zone tropical forests continues from c. 38,000–34,000 ybp. This early and persistent human fossil, technical, and cultural florescence, as well as a collection of well-preserved tropical-forest rock shelters with associated 'on-site' palaeoenvironmental records, makes Sri Lanka a central and unusual case study to determine the extent and strength of early human tropical forest encounters. Excavations carried out in prehistoric caves in the low country wet zone has shown that in the last 50,000 years, the temperature in the lowland rainforests has not exceeded 5°C. When taking Batadombalena alone, the entire seven layers have yielded an uninterrupted occupation of Acavus sp and Canerium zeylanicum, a plant that grows in the middle of the rainforest. Acavus, which is highly sensitive to rainforest ecosystems, has been well documented in many of the lowland caves, confirming that the wetland rainforest environment has remained intact at least for the last 50,000 years. If the dry and arid conditions in the upper hills regions affected the wet zone, the Tufted Gray Lunger (semnopithecus priam), must also meet with the prehistoric caves in the wet zone thrown over dry climate. However, the bones in the low country wet zone do not find any of the fragments belonging to Turfed Gray Lunger, and prehistoric human consumption is bestowed with purple-faced leaf monkey (Trachypithecus vetulus) and Toque Macaque (Macaca Sinica). The skeletal remains of Lyriocephalus scutatus, a full-time resident in rain forests, have also been recorded among lowland caves. But, in zoological terms, these remains may be the remains of the Barking deer (Muntiacus muntjak), which is currently found in the wet zone. For further investigations, the mtDNA test of genetic diversity (Bottleneck effect) and pollen study from lowland caves should determine whether the wet zone climate has persisted over the last 50,000 years, or whether the dry weather affected in the mountainous region has invaded the wet zone.

Keywords: paleoecology, prehistory, zooarchaeology, reconstruction, palaeo-climate

Procedia PDF Downloads 140
716 Optimized Brain Computer Interface System for Unspoken Speech Recognition: Role of Wernicke Area

Authors: Nassib Abdallah, Pierre Chauvet, Abd El Salam Hajjar, Bassam Daya

Abstract:

In this paper, we propose an optimized brain computer interface (BCI) system for unspoken speech recognition, based on the fact that the constructions of unspoken words rely strongly on the Wernicke area, situated in the temporal lobe. Our BCI system has four modules: (i) the EEG Acquisition module based on a non-invasive headset with 14 electrodes; (ii) the Preprocessing module to remove noise and artifacts, using the Common Average Reference method; (iii) the Features Extraction module, using Wavelet Packet Transform (WPT); (iv) the Classification module based on a one-hidden layer artificial neural network. The present study consists of comparing the recognition accuracy of 5 Arabic words, when using all the headset electrodes or only the 4 electrodes situated near the Wernicke area, as well as the selection effect of the subbands produced by the WPT module. After applying the articial neural network on the produced database, we obtain, on the test dataset, an accuracy of 83.4% with all the electrodes and all the subbands of 8 levels of the WPT decomposition. However, by using only the 4 electrodes near Wernicke Area and the 6 middle subbands of the WPT, we obtain a high reduction of the dataset size, equal to approximately 19% of the total dataset, with 67.5% of accuracy rate. This reduction appears particularly important to improve the design of a low cost and simple to use BCI, trained for several words.

Keywords: brain-computer interface, speech recognition, artificial neural network, electroencephalography, EEG, wernicke area

Procedia PDF Downloads 272
715 A Framework Based on Dempster-Shafer Theory of Evidence Algorithm for the Analysis of the TV-Viewers’ Behaviors

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we propose an approach of detecting the behavior of the viewers of a TV program in a non-controlled environment. The experiment we propose is based on the use of three types of connected objects (smartphone, smart watch, and a connected remote control). 23 participants were observed while watching their TV programs during three phases: before, during and after watching a TV program. Their behaviors were detected using an approach based on The Dempster Shafer Theory (DST) in two phases. The first phase is to approximate dynamically the mass functions using an approach based on the correlation coefficient. The second phase is to calculate the approximate mass functions. To approximate the mass functions, two approaches have been tested: the first approach was to divide each features data space into cells; each one has a specific probability distribution over the behaviors. The probability distributions were computed statistically (estimated by empirical distribution). The second approach was to predict the TV-viewing behaviors through the use of classifiers algorithms and add uncertainty to the prediction based on the uncertainty of the model. Results showed that mixing the fusion rule with the computation of the initial approximate mass functions using a classifier led to an overall of 96%, 95% and 96% success rate for the first, second and third TV-viewing phase respectively. The results were also compared to those found in the literature. This study aims to anticipate certain actions in order to maintain the attention of TV viewers towards the proposed TV programs with usual connected objects, taking into account the various uncertainties that can be generated.

Keywords: Iot, TV-viewing behaviors identification, automatic classification, unconstrained environment

Procedia PDF Downloads 229
714 Critical Thinking Index of College Students

Authors: Helen Frialde-Dupale

Abstract:

Critical thinking Index (CTI) of 150 third year college students from five State Colleges and Universities (SUCs) in Region I were determined. Only students with Grade Point Average (GPA) of at least 2.0 from four general classification of degree courses, namely: Education, Arts and Sciences, Engineering and Agriculture were included. Specific problem No.1 dealt with the profile variables, namely: age, sex, degree course, monthly family income, number of siblings, high school graduated from, grade point average, personality type, highest educational attainment of parents, and occupation of parents. Problem No. 2 determined the critical thinking index among the respondents. Problem No. 3 investigated whether or not there are significant differences in the critical thinking index among the respondents across the profile variables. While problem No.4 determined whether or not there are significant relationship between the critical thinking index and selected profile variables, namely: age, monthly family income, number of siblings, and grade point average of the respondents. Finally, on problem No. 5, the critical thinking instrument which obtained the lowest rates, were used as basis for outlining an intervention program for enhancing critical thinking index (CTI) of students. The following null hypotheses were tested at 0.05 level of significance: there are no significant differences in the critical thinking index of the third college students across the profile variables; there are no significant relationships between the critical thinking index of the respondents and selected variables, namely: age, monthly family income, number of siblings, and grade point average.

Keywords: attitude as critical thinker, critical thinking applied, critical thinking index, self-perception as critical thinker

Procedia PDF Downloads 517
713 A Static Android Malware Detection Based on Actual Used Permissions Combination and API Calls

Authors: Xiaoqing Wang, Junfeng Wang, Xiaolan Zhu

Abstract:

Android operating system has been recognized by most application developers because of its good open-source and compatibility, which enriches the categories of applications greatly. However, it has become the target of malware attackers due to the lack of strict security supervision mechanisms, which leads to the rapid growth of malware, thus bringing serious safety hazards to users. Therefore, it is critical to detect Android malware effectively. Generally, the permissions declared in the AndroidManifest.xml can reflect the function and behavior of the application to a large extent. Since current Android system has not any restrictions to the number of permissions that an application can request, developers tend to apply more than actually needed permissions in order to ensure the successful running of the application, which results in the abuse of permissions. However, some traditional detection methods only consider the requested permissions and ignore whether it is actually used, which leads to incorrect identification of some malwares. Therefore, a machine learning detection method based on the actually used permissions combination and API calls was put forward in this paper. Meanwhile, several experiments are conducted to evaluate our methodology. The result shows that it can detect unknown malware effectively with higher true positive rate and accuracy while maintaining a low false positive rate. Consequently, the AdaboostM1 (J48) classification algorithm based on information gain feature selection algorithm has the best detection result, which can achieve an accuracy of 99.8%, a true positive rate of 99.6% and a lowest false positive rate of 0.

Keywords: android, API Calls, machine learning, permissions combination

Procedia PDF Downloads 329
712 Horizontal Development of Built-up Area and Its Impacts on the Agricultural Land of Peshawar City District (1991-2014)

Authors: Pukhtoon Yar

Abstract:

Peshawar City is experiencing a rapid spatial urban growth primarily as a result of high rate of urbanization along with economic development. This paper was designed to understand the impacts of urbanization on agriculture land use change by particularly focusing on land use change trajectories from the past (1991-2014). We used Landsat imageries (30 meters) for1991along with Spot images (2.5 meters) for year 2014. . The ground truthing of the satellite data was performed by collecting information from Peshawar Development Authority, revenue department, real estate agents and interviews with the officials of city administration. The temporal satellite images were processed by applying supervised maximum likelihood classification technique in ArcGIS 9.3. The procedure resulted into five main classes of land use i.e. built-up area, farmland, barren land, cultivable-wasteland and water bodies. The analysis revealed that, in Peshawar City the built-up environment has been doubled from 8.1 percent in 1991 to over 18.2 percent in 2014 by predominantly encroaching land producing food. Furthermore, the CA-Markov Model predicted that the area under impervious surfaces would continue to flourish during the next three decades. This rapid increase in built-up area is accredited to the lack of proper land use planning and management, which has caused chaotic urban sprawl with detrimental social and environmental consequences.

Keywords: Urban Expansion, Land use, GIS, Remote Sensing, Markov Model, Peshawar City

Procedia PDF Downloads 186
711 Automatic Multi-Label Image Annotation System Guided by Firefly Algorithm and Bayesian Method

Authors: Saad M. Darwish, Mohamed A. El-Iskandarani, Guitar M. Shawkat

Abstract:

Nowadays, the amount of available multimedia data is continuously on the rise. The need to find a required image for an ordinary user is a challenging task. Content based image retrieval (CBIR) computes relevance based on the visual similarity of low-level image features such as color, textures, etc. However, there is a gap between low-level visual features and semantic meanings required by applications. The typical method of bridging the semantic gap is through the automatic image annotation (AIA) that extracts semantic features using machine learning techniques. In this paper, a multi-label image annotation system guided by Firefly and Bayesian method is proposed. Firstly, images are segmented using the maximum variance intra cluster and Firefly algorithm, which is a swarm-based approach with high convergence speed, less computation rate and search for the optimal multiple threshold. Feature extraction techniques based on color features and region properties are applied to obtain the representative features. After that, the images are annotated using translation model based on the Net Bayes system, which is efficient for multi-label learning with high precision and less complexity. Experiments are performed using Corel Database. The results show that the proposed system is better than traditional ones for automatic image annotation and retrieval.

Keywords: feature extraction, feature selection, image annotation, classification

Procedia PDF Downloads 586
710 Designing and Using a 3-D Printed Dynamic Upper Extremity Orthosis (DUEO) with Children with Cerebral Palsy and Severe Upper Extremity Involvement

Authors: Justin Lee, Siraj Shaikh, Alice Chu MD

Abstract:

Children with cerebral palsy (CP) commonly present with upper extremity impairment, affecting one or both extremities, and are classified using the Manual Ability Classification Scale (MACS). The MACS defines bimanual hand abilities for children ages 4-18 years in everyday tasks and is a gradient scale, with I being nearly normal and V requiring total assistance. Children with more severe upper extremity impairment (MACS III-V) are often underrepresented, and relatively few effective therapies have been identified for these patients. Current orthoses are static and are only meant to prevent the progression of contractures in these patients. Other limitations include cost, comfort, accessibility, and longevity of the orthoses. Taking advantage of advances in 3D printing technology, we have created a highly customizable upper extremity orthotic that can be produced at a low cost. Iterations in our design have resulted in an orthotic that is custom fit to the patient based on scans of their arm, made of rigid polymer when needed to provide support, flexible material where appropriate to allow for comfort, and designed with a mechanical pulley system to allow for some functional use of the arm while in the orthotic. Preliminary data has shown that our orthotic can be built at a fraction of the cost of current orthoses and provide clinically significant improvement in assisting hand assessment (AHA) and pediatric quality of life scores (PedsQL).

Keywords: upper extremity orthosis, upper extremity, orthosis, 3-D printing, cerebral palsy, occupational therapy, spasticity, customizable

Procedia PDF Downloads 307
709 A Methodology for Automatic Diversification of Document Categories

Authors: Dasom Kim, Chen Liu, Myungsu Lim, Su-Hyeon Jeon, ByeoungKug Jeon, Kee-Young Kwahk, Namgyu Kim

Abstract:

Recently, numerous documents including unstructured data and text have been created due to the rapid increase in the usage of social media and the Internet. Each document is usually provided with a specific category for the convenience of the users. In the past, the categorization was performed manually. However, in the case of manual categorization, not only can the accuracy of the categorization be not guaranteed but the categorization also requires a large amount of time and huge costs. Many studies have been conducted towards the automatic creation of categories to solve the limitations of manual categorization. Unfortunately, most of these methods cannot be applied to categorizing complex documents with multiple topics because the methods work by assuming that one document can be categorized into one category only. In order to overcome this limitation, some studies have attempted to categorize each document into multiple categories. However, they are also limited in that their learning process involves training using a multi-categorized document set. These methods therefore cannot be applied to multi-categorization of most documents unless multi-categorized training sets are provided. To overcome the limitation of the requirement of a multi-categorized training set by traditional multi-categorization algorithms, we previously proposed a new methodology that can extend a category of a single-categorized document to multiple categorizes by analyzing relationships among categories, topics, and documents. In this paper, we design a survey-based verification scenario for estimating the accuracy of our automatic categorization methodology.

Keywords: big data analysis, document classification, multi-category, text mining, topic analysis

Procedia PDF Downloads 272
708 A Comprehensive Analysis of Factors Leading to Fatal Road Accidents in France and Its Overseas Territories

Authors: Bouthayna Hayou, Mohamed Mouloud Haddak

Abstract:

In road accidents in French overseas territories have been understudied, with relevant data often collected late and incompletely. Although these territories account for only 3% to 4% of road traffic injuries in France, their unique characteristics merit closer attention. Despite lower mobility and, consequently, lower exposure to road risks, the actual road risk in Overseas France is as high or even higher than in Metropolitan France. Significant disparities exist not only between Metropolitan France and Overseas territories but also among the overseas territories themselves. The varying population densities in these regions do not fully explain these differences, as each territory has its own distinct vulnerabilities and road safety challenges. This analysis, based on BAAC data files from 2005 to 2018 for both Metropolitan France and the overseas departments and regions, examines key variables such as gender, age, type of road user, type of obstacle hit, type of trip, road category, traffic conditions, weather, and location of accidents. Logistic regression models were built for each region to investigate the risk factors associated with fatal road accidents, focusing on the probability of being killed versus injured. Due to insufficient data, Mayotte and the Overseas Communities (French Polynesia and New Caledonia) were not included in the models. The findings reveal that road safety is worse in the overseas territories compared to Metropolitan France, particularly for vulnerable road users such as pedestrians and motorized two-wheelers. These territories present an accident profile that sits between that of Metropolitan France and middle-income countries. A pressing need exists to standardize accident data collection between Metropolitan and Overseas France to allow for more detailed comparative analyses. Further epidemiological studies could help identify the specific road safety issues unique to each territory, particularly with regard to socio-economic factors such as social cohesion, which may influence road safety outcomes. Moreover, the lack of data on new modes of travel, such as electric scooters, and the absence of socio-economic details of accident victims complicate the evaluation of emerging risk factors. Additional research, including sociological and psychosocial studies, is essential for understanding road users' behavior and perceptions of road risk, which could also provide valuable insights into accident trends in peri-urban areas in France.

Keywords: multivariate logistic regression, overseas France, road safety, road traffic accident, territorial inequalities

Procedia PDF Downloads 11
707 Application of Forensic Entomology to Estimate the Post Mortem Interval

Authors: Meriem Taleb, Ghania Tail, Fatma Zohra Kara, Brahim Djedouani, T. Moussa

Abstract:

Forensic entomology has grown immensely as a discipline in the past thirty years. The main purpose of forensic entomology is to establish the post mortem interval or PMI. Three days after the death, insect evidence is often the most accurate and sometimes the only method of determining elapsed time since death. This work presents the estimation of the PMI in an experiment to test the reliability of the accumulated degree days (ADD) method and the application of this method in a real case. The study was conducted at the Laboratory of Entomology at the National Institute for Criminalistics and Criminology of the National Gendarmerie, Algeria. The domestic rabbit Oryctolagus cuniculus L. was selected as the animal model. On 08th July 2012, the animal was killed. Larvae were collected and raised to adulthood. Estimation of oviposition time was calculated by summing up average daily temperatures minus minimum development temperature (also specific to each species). When the sum is reached, it corresponds to the oviposition day. Weather data were obtained from the nearest meteorological station. After rearing was accomplished, three species emerged: Lucilia sericata, Chrysomya albiceps, and Sarcophaga africa. For Chrysomya albiceps species, a cumulation of 186°C is necessary. The emergence of adults occured on 22nd July 2012. A value of 193.4°C is reached on 9th August 2012. Lucilia sericata species require a cumulation of 207°C. The emergence of adults occurred on 23rd, July 2012. A value of 211.35°C is reached on 9th August 2012. We should also consider that oviposition may occur more than 12 hours after death. Thus, the obtained PMI is in agreement with the actual time of death. We illustrate the use of this method during the investigation of a case of a decaying human body found on 03rd March 2015 in Bechar, South West of Algerian desert. Maggots were collected and sent to the Laboratory of Entomology. Lucilia sericata adults were identified on 24th March 2015 after emergence. A sum of 211.6°C was reached on 1st March 2015 which corresponds to the estimated day of oviposition. Therefore, the estimated date of death is 1st March 2015 ± 24 hours. The estimated PMI by accumulated degree days (ADD) method seems to be very precise. Entomological evidence should always be used in homicide investigations when the time of death cannot be determined by other methods.

Keywords: forensic entomology, accumulated degree days, postmortem interval, diptera, Algeria

Procedia PDF Downloads 294
706 A Design Research Methodology for Light and Stretchable Electrical Thermal Warm-Up Sportswear to Enhance the Performance of Athletes against Harsh Environment

Authors: Chenxiao Yang, Li Li

Abstract:

In this decade, the sportswear market rapidly expanded while numerous sports brands are conducting fierce competitions to hold their market shares and trying to act as a leader in professional competition sports areas to set the trends. Thus, various advancing sports equipment is being deeply explored to improving athletes’ performance in fierce competitions. Although there is plenty protective equipment such as cuff, running legging, etc., on the market, there is still blank in the field of sportswear during prerace warm-up this important time gap, especially for those competitions host in cold environment. Because there is always time gaps between warm-up and race due to event logistics or unexpected weather factors. Athletes will be exposed to chilly condition for an unpredictable long period of time. As a consequence, the effects of warm-up will be negated, and the competition performance will be degraded. However, reviewing the current market, there is none effective sports equipment provided to help athletes against this harsh environment or the rare existing products are so blocky or heavy to restrict the actions. An ideal thermal-protective sportswear should be light, flexible, comfort and aesthetic at the same time. Therefore, this design research adopted the textile circular knitting methodology to integrate soft silver-coated conductive yarns (ab. SCCYs), elastic nylon yarn and polyester yarn to develop the proposed electrical, thermal sportswear, with the strengths aforementioned. Meanwhile, the relationship between heating performance, stretch load, and energy consumption were investigated. Further, a simulation model was established to ensure providing sufficient warm and flexibility at lower energy cost and with an optimized production, parameter determined. The proposed circular knitting technology and simulation model can be directly applied to instruct prototype developments to cater different target consumers’ needs and ensure prototypes’’ safety. On the other hand, high R&D investment and time consumption can be saved. Further, two prototypes: a kneecap and an elbow guard, were developed to facilitate the transformation of research technology into an industrial application and to give a hint on the blur future blueprint.

Keywords: cold environment, silver-coated conductive yarn, electrical thermal textile, stretchable

Procedia PDF Downloads 269
705 Cheiloscopy: A Study on Predominant Lip Print Patterns among the Gujarati Population

Authors: Pooja Ahuja, Tejal Bhutani, M. S. Dahiya

Abstract:

Cheiloscopy, the study of lip prints, is a tool in forensic investigation technique that deals with identification of individuals based on lips patterns. The objective of this study is to determine predominant lip print pattern found among the Gujarati population, to evaluate whether any sex difference exists and to study the permanence of the pattern over six months duration. The study comprised of 100 healthy individuals (50 males and 50 females), in the age group of 18 to 25 years of Gujarati population of the Gandhinagar region of the Gujarat state, India. By using Suzuki and Tsuchihashi classification, Lip prints were then divided into four quadrants and also classified on the basis of peripheral shape of the lips. Materials used to record the lip prints were dark brown colored lipstick, cellophane tape, and white bond paper. Lipstick was applied uniformly, and lip prints were taken on the glued portion of cellophane tape and then stuck on to a white bond paper. These lip prints were analyzed with magnifying lens and virtually with stereo microscope. On the analysis of the subject population, results showed Branched pattern Type II (29.57 percentage) to be most predominant in the Gujarati population. Branched pattern Type II (35.60 percentage) and long vertical Type I (28.28 percentage) were most prevalent in males and females respectively and large full lips were most predominantly present in both the sexes. The study concludes that lip prints in any form can be an effective tool for identification of an individual in a closed or open group forms.

Keywords: cheiloscopy, lip pattern, predomianant, Gujarati population

Procedia PDF Downloads 298
704 Structure and Tribological Properties of Moisture Insensitivity Si Containing Diamond-Like Carbon Film

Authors: Mingjiang Dai, Qian Shi, Fang Hu, Songsheng Lin, Huijun Hou, Chunbei Wei

Abstract:

A diamond-like carbon (DLC) is considered as a promising protective film since its high hardness and excellent tribological properties. However, DLC films are very sensitive to the environmental condition, its friction coefficient could dramatic change in high humidity, therefore, limited their further application in aerospace, the watch industry, and micro/nano-electromechanical systems. Therefore, most studies focus on the low friction coefficient of DLC films at a high humid environment. However, this is out of satisfied in practical application. An important thing was ignored is that the DLC coated components are usually used in the diversed environment, which means its friction coefficient may evidently change in different humid condition. As a result, the invalidation of DLC coated components or even sometimes disaster occurred. For example, DLC coated minisize gears were used in the watch industry, and the customer may frequently transform their locations with different weather and humidity even in one day. If friction coefficient is not stable in dry and high moisture conditions, the watch will be inaccurate. Thus, it is necessary to investigate the stable tribological behavior of DLC films in various environments. In this study, a-C:H:Si films were deposited by multi-function magnetron sputtering system, containing one ion source device and a pair of SiC dual mid-frequent targets and two direct current Ti/C targets. Hydrogenated carbon layers were manufactured by sputtering the graphite target in argon and methane gasses. The silicon was doped in DLC coatings by sputtering silicon carbide targets and the doping content were adjusted by mid-frequent sputtering current. The microstructure of the film was characterized by Raman spectrometry, X-ray photoelectron spectroscopy, and transmission electron microscopy while its friction behavior under different humidity conditions was studied using a ball-on-disc tribometer. The a-C:H films with Si content from 0 to 17at.% were obtained and the influence of Si content on the structure and tribological properties under the relative humidity of 50% and 85% were investigated. Results show that the a-C:H:Si film has typical diamond-like characteristics, in which Si mainly existed in the form of Si, SiC, and SiO2. As expected, the friction coefficient of a-C:H films can be effectively changed after Si doping, from 0.302 to 0.176 in RH 50%. The further test shows that the friction coefficient value of a-C:H:Si film in RH 85% is first increase and then decrease as a function of Si content. We found that the a-C:H:Si films with a Si content of 3.75 at.% show a stable friction coefficient of 0.13 in different humidity environment. It is suggestion that the sp3/sp2 ratio of a-C:H films with 3.75 at.% Si was higher than others, which tend to form the silica-gel-like sacrificial layers during friction tests. Therefore, the films deliver stable low friction coefficient under controlled RH value of 50 and 85%.

Keywords: diamond-like carbon, Si doping, moisture environment, table low friction coefficient

Procedia PDF Downloads 365
703 Investor Sentiment and Satisfaction in Automated Investment: A Sentimental Analysis of Robo-Advisor Platforms

Authors: Vertika Goswami, Gargi Sharma

Abstract:

The rapid evolution of fintech has led to the rise of robo-advisor platforms that utilize artificial intelligence (AI) and machine learning to offer personalized investment solutions efficiently and cost-effectively. This research paper conducts a comprehensive sentiment analysis of investor experiences with these platforms, employing natural language processing (NLP) and sentiment classification techniques. The study investigates investor perceptions, engagement, and satisfaction, identifying key drivers of positive sentiment such as clear communication, low fees, consistent returns, and robust security. Conversely, negative sentiment is linked to issues like inconsistent performance, hidden fees, poor customer support, and a lack of transparency. The analysis reveals that addressing these pain points—through improved transparency, enhanced customer service, and ongoing technological advancements—can significantly boost investor trust and satisfaction. This paper contributes valuable insights into the fields of behavioral finance and fintech innovation, offering actionable recommendations for stakeholders, practitioners, and policymakers. Future research should explore the long-term impact of these factors on investor loyalty, the role of emerging technologies, and the effects of ethical investment choices and regulatory compliance on investor sentiment.

Keywords: artificial intelligence in finance, automated investment, financial technology, investor satisfaction, investor sentiment, robo-advisors, sentimental analysis

Procedia PDF Downloads 18