Search results for: catchment characteristics model
20476 A Taxonomy of Routing Protocols in Wireless Sensor Networks
Authors: A. Kardi, R. Zagrouba, M. Alqahtani
Abstract:
The Internet of Everything (IoE) presents today a very attractive and motivating field of research. It is basically based on Wireless Sensor Networks (WSNs) in which the routing task is the major analysis topic. In fact, it directly affects the effectiveness and the lifetime of the network. This paper, developed from recent works and based on extensive researches, proposes a taxonomy of routing protocols in WSNs. Our main contribution is that we propose a classification model based on nine classes namely application type, delivery mode, initiator of communication, network architecture, path establishment (route discovery), network topology (structure), protocol operation, next hop selection and latency-awareness and energy-efficient routing protocols. In order to provide a total classification pattern to serve as reference for network designers, each class is subdivided into possible subclasses, presented, and discussed using different parameters such as purposes and characteristics.Keywords: routing, sensor, survey, wireless sensor networks, WSNs
Procedia PDF Downloads 18220475 Numerical Investigation of Flow and Heat Transfer Characteristics of a Natural Refrigerant within a Vortex Tube
Authors: Mirza Popovac
Abstract:
This paper investigates the application of the vortex tubes towards increasing the efficiency of high temperature heat pumps based on natural refrigerants, by recovering a part of the expansion work within the refrigerant cycle. To this purpose the 3D Navier-Stokes solver is used to perform a set of numerical simulations, investigating the vortex tube performance. Firstly, the fluid flow and heat transfer characteristics are analyzed for standard configurations of vortex tubes, and the obtained results are validated against the experimental and numerical data available in literature. Subsequently, different geometry specifications are analyzed, as well as the interplay between relevant heat pump operating conditions and the properties of natural refrigerants. Finally, the characteristic curve of performance will be derived for investigated vortex tubes specifications when used within high temperature heat pumps.Keywords: heat pump, vortex tube, CFD, natural refrigerant
Procedia PDF Downloads 14120474 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China
Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An
Abstract:
Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.Keywords: density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton
Procedia PDF Downloads 15120473 150 KVA Multifunction Laboratory Test Unit Based on Power-Frequency Converter
Authors: Bartosz Kedra, Robert Malkowski
Abstract:
This paper provides description and presentation of laboratory test unit built basing on 150 kVA power frequency converter and Simulink RealTime platform. Assumptions, based on criteria which load and generator types may be simulated using discussed device, are presented, as well as control algorithm structure. As laboratory setup contains transformer with thyristor controlled tap changer, a wider scope of setup capabilities is presented. Information about used communication interface, data maintenance, and storage solution as well as used Simulink real-time features is presented. List and description of all measurements are provided. Potential of laboratory setup modifications is evaluated. For purposes of Rapid Control Prototyping, a dedicated environment was used Simulink RealTime. Therefore, load model Functional Unit Controller is based on a PC computer with I/O cards and Simulink RealTime software. Simulink RealTime was used to create real-time applications directly from Simulink models. In the next step, applications were loaded on a target computer connected to physical devices that provided opportunity to perform Hardware in the Loop (HIL) tests, as well as the mentioned Rapid Control Prototyping process. With Simulink RealTime, Simulink models were extended with I/O cards driver blocks that made automatic generation of real-time applications and performing interactive or automated runs on a dedicated target computer equipped with a real-time kernel, multicore CPU, and I/O cards possible. Results of performed laboratory tests are presented. Different load configurations are described and experimental results are presented. This includes simulation of under frequency load shedding, frequency and voltage dependent characteristics of groups of load units, time characteristics of group of different load units in a chosen area and arbitrary active and reactive power regulation basing on defined schedule.Keywords: MATLAB, power converter, Simulink Real-Time, thyristor-controlled tap changer
Procedia PDF Downloads 32320472 A Comparison of Design and Off-Design Performances of a Centrifugal Compressor
Authors: Zeynep Aytaç, Nuri Yücel
Abstract:
Today, as the need for high efficiency and fuel-efficient engines have increased, centrifugal compressor designs are expected to be high-efficient and have high-pressure ratios than ever. The present study represents a design methodology of centrifugal compressor placed in a mini jet engine for the design and off-design points with the utilization of computational fluid dynamics (CFD) and compares the performance characteristics at the mentioned two points. Although the compressor is expected to provide the required specifications at the design point, it is known that it is important for the design to deliver the required parameters at the off-design point also as it will not operate at the design point always. It was observed that the obtained mass flow rate, pressure ratio, and efficiency values are within the limits of the design specifications for the design and off-design points. Despite having different design inputs for the mentioned two points, they reveal similar flow characteristics in the general frame.Keywords: centrifugal compressor, computational fluid dynamics, design point, off-design point
Procedia PDF Downloads 14420471 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State
Authors: Tomohiko Utsuki
Abstract:
Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control
Procedia PDF Downloads 15320470 Estimating Algae Concentration Based on Deep Learning from Satellite Observation in Korea
Authors: Heewon Jeong, Seongpyo Kim, Joon Ha Kim
Abstract:
Over the last few tens of years, the coastal regions of Korea have experienced red tide algal blooms, which are harmful and toxic to both humans and marine organisms due to their potential threat. It was accelerated owing to eutrophication by human activities, certain oceanic processes, and climate change. Previous studies have tried to monitoring and predicting the algae concentration of the ocean with the bio-optical algorithms applied to color images of the satellite. However, the accurate estimation of algal blooms remains problems to challenges because of the complexity of coastal waters. Therefore, this study suggests a new method to identify the concentration of red tide algal bloom from images of geostationary ocean color imager (GOCI) which are representing the water environment of the sea in Korea. The method employed GOCI images, which took the water leaving radiances centered at 443nm, 490nm and 660nm respectively, as well as observed weather data (i.e., humidity, temperature and atmospheric pressure) for the database to apply optical characteristics of algae and train deep learning algorithm. Convolution neural network (CNN) was used to extract the significant features from the images. And then artificial neural network (ANN) was used to estimate the concentration of algae from the extracted features. For training of the deep learning model, backpropagation learning strategy is developed. The established methods were tested and compared with the performances of GOCI data processing system (GDPS), which is based on standard image processing algorithms and optical algorithms. The model had better performance to estimate algae concentration than the GDPS which is impossible to estimate greater than 5mg/m³. Thus, deep learning model trained successfully to assess algae concentration in spite of the complexity of water environment. Furthermore, the results of this system and methodology can be used to improve the performances of remote sensing. Acknowledgement: This work was supported by the 'Climate Technology Development and Application' research project (#K07731) through a grant provided by GIST in 2017.Keywords: deep learning, algae concentration, remote sensing, satellite
Procedia PDF Downloads 18320469 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach
Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani
Abstract:
Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery
Procedia PDF Downloads 30720468 Synthesis and Characterization of Model Amines for Corrosion Applications
Authors: John Vergara, Giuseppe Palmese
Abstract:
Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.Keywords: building block, amine, synthesis, characterization
Procedia PDF Downloads 54020467 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 48120466 Automatic Detection of Sugarcane Diseases: A Computer Vision-Based Approach
Authors: Himanshu Sharma, Karthik Kumar, Harish Kumar
Abstract:
The major problem in crop cultivation is the occurrence of multiple crop diseases. During the growth stage, timely identification of crop diseases is paramount to ensure the high yield of crops, lower production costs, and minimize pesticide usage. In most cases, crop diseases produce observable characteristics and symptoms. The Surveyors usually diagnose crop diseases when they walk through the fields. However, surveyor inspections tend to be biased and error-prone due to the nature of the monotonous task and the subjectivity of individuals. In addition, visual inspection of each leaf or plant is costly, time-consuming, and labour-intensive. Furthermore, the plant pathologists and experts who can often identify the disease within the plant according to their symptoms in early stages are not readily available in remote regions. Therefore, this study specifically addressed early detection of leaf scald, red rot, and eyespot types of diseases within sugarcane plants. The study proposes a computer vision-based approach using a convolutional neural network (CNN) for automatic identification of crop diseases. To facilitate this, firstly, images of sugarcane diseases were taken from google without modifying the scene, background, or controlling the illumination to build the training dataset. Then, the testing dataset was developed based on the real-time collected images from the sugarcane field from India. Then, the image dataset is pre-processed for feature extraction and selection. Finally, the CNN-based Visual Geometry Group (VGG) model was deployed on the training and testing dataset to classify the images into diseased and healthy sugarcane plants and measure the model's performance using various parameters, i.e., accuracy, sensitivity, specificity, and F1-score. The promising result of the proposed model lays the groundwork for the automatic early detection of sugarcane disease. The proposed research directly sustains an increase in crop yield.Keywords: automatic classification, computer vision, convolutional neural network, image processing, sugarcane disease, visual geometry group
Procedia PDF Downloads 11620465 Copper Price Prediction Model for Various Economic Situations
Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin
Abstract:
Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.Keywords: copper prices, prediction model, neural network, time series forecasting
Procedia PDF Downloads 11320464 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition
Authors: Yalong Jiang, Zheru Chi
Abstract:
In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation
Procedia PDF Downloads 15320463 Numerical Simulation on Bacteria-Carrying Particles Transport and Deposition in an Open Surgical Wound
Authors: Xiuguo Zhao, He Li, Alireza Yazdani, Xiaoning Zheng, Xinxi Xu
Abstract:
Wound infected poses a serious threat to the surgery on the patient during the process of surgery. Understanding the bacteria-carrying particles (BCPs) transportation and deposition in the open surgical wound model play essential role in protecting wound against being infected. Therefore BCPs transportation and deposition in the surgical wound model were investigated using force-coupling method (FCM) based computational fluid dynamics. The BCPs deposition in the wound was strongly associated with BCPs diameter and concentration. The results showed that the rise on the BCPs deposition was increasing not only with the increase of BCPs diameters but also with the increase of the BCPs concentration. BCPs deposition morphology was impacted by the combination of size distribution, airflow patterns and model geometry. The deposition morphology exhibited the characteristic with BCPs deposition on the sidewall in wound model and no BCPs deposition on the bottom of the wound model mainly because the airflow movement in one direction from up to down and then side created by laminar system constructing airflow patterns and then made BCPs hard deposit in the bottom of the wound model due to wound geometry limit. It was also observed that inertial impact becomes a main mechanism of the BCPs deposition. This work may contribute to next study in BCPs deposition limit, as well as wound infected estimation in surgical-site infections.Keywords: BCPs deposition, computational fluid dynamics, force-coupling method (FCM), numerical simulation, open surgical wound model
Procedia PDF Downloads 28920462 Towards a Simulation Model to Ensure the Availability of Machines in Maintenance Activities
Authors: Maryam Gallab, Hafida Bouloiz, Youness Chater, Mohamed Tkiouat
Abstract:
The aim of this paper is to present a model based on multi-agent systems in order to manage the maintenance activities and to ensure the reliability and availability of machines just with the required resources (operators, tools). The interest of the simulation is to solve the complexity of the system and to find results without cost or wasting time. An implementation of the model is carried out on the AnyLogic platform to display the defined performance indicators.Keywords: maintenance, complexity, simulation, multi-agent systems, AnyLogic platform
Procedia PDF Downloads 30520461 Automata-Based String Analysis for Detecting Malware in Android Programs
Authors: Assad Maalouf, Lunjin Lu, James Lynott
Abstract:
We design and implement a precise model of string operations using finite state machine transformers and state transformers to approximate the values string variables can take throughout the execution of the program.We use our model to analyze Android program string variables. Our experimental results show that our string analysis is very efficient at detecting the contextual effect of string operations on the string variables. Our model proved to be very useful when it came to verifying statements about the string variables of the program.Keywords: abstract interpretation, android, static analysis, string analysis
Procedia PDF Downloads 17920460 Reconstruction of a Genome-Scale Metabolic Model to Simulate Uncoupled Growth of Zymomonas mobilis
Authors: Maryam Saeidi, Ehsan Motamedian, Seyed Abbas Shojaosadati
Abstract:
Zymomonas mobilis is known as an example of the uncoupled growth phenomenon. This microorganism also has a unique metabolism that degrades glucose by the Entner–Doudoroff (ED) pathway. In this paper, a genome-scale metabolic model including 434 genes, 757 reactions and 691 metabolites was reconstructed to simulate uncoupled growth and study its effect on flux distribution in the central metabolism. The model properly predicted that ATPase was activated in experimental growth yields of Z. mobilis. Flux distribution obtained from model indicates that the major carbon flux passed through ED pathway that resulted in the production of ethanol. Small amounts of carbon source were entered into pentose phosphate pathway and TCA cycle to produce biomass precursors. Predicted flux distribution was in good agreement with experimental data. The model results also indicated that Z. mobilis metabolism is able to produce biomass with maximum growth yield of 123.7 g (mol glucose)-1 if ATP synthase is coupled with growth and produces 82 mmol ATP gDCW-1h-1. Coupling the growth and energy reduced ethanol secretion and changed the flux distribution to produce biomass precursors.Keywords: genome-scale metabolic model, Zymomonas mobilis, uncoupled growth, flux distribution, ATP dissipation
Procedia PDF Downloads 48620459 Modeling and Performance Evaluation of an Urban Corridor under Mixed Traffic Flow Condition
Authors: Kavitha Madhu, Karthik K. Srinivasan, R. Sivanandan
Abstract:
Indian traffic can be considered as mixed and heterogeneous due to the presence of various types of vehicles that operate with weak lane discipline. Consequently, vehicles can position themselves anywhere in the traffic stream depending on availability of gaps. The choice of lateral positioning is an important component in representing and characterizing mixed traffic. The field data provides evidence that the trajectory of vehicles in Indian urban roads have significantly varying longitudinal and lateral components. Further, the notion of headway which is widely used for homogeneous traffic simulation is not well defined in conditions lacking lane discipline. From field data it is clear that following is not strict as in homogeneous and lane disciplined conditions and neighbouring vehicles ahead of a given vehicle and those adjacent to it could also influence the subject vehicles choice of position, speed and acceleration. Given these empirical features, the suitability of using headway distributions to characterize mixed traffic in Indian cities is questionable, and needs to be modified appropriately. To address these issues, this paper attempts to analyze the time gap distribution between consecutive vehicles (in a time-sense) crossing a section of roadway. More specifically, to characterize the complex interactions noted above, the influence of composition, manoeuvre types, and lateral placement characteristics on time gap distribution is quantified in this paper. The developed model is used for evaluating various performance measures such as link speed, midblock delay and intersection delay which further helps to characterise the vehicular fuel consumption and emission on urban roads of India. Identifying and analyzing exact interactions between various classes of vehicles in the traffic stream is essential for increasing the accuracy and realism of microscopic traffic flow modelling. In this regard, this study aims to develop and analyze time gap distribution models and quantify it by lead lag pair, manoeuvre type and lateral position characteristics in heterogeneous non-lane based traffic. Once the modelling scheme is developed, this can be used for estimating the vehicle kilometres travelled for the entire traffic system which helps to determine the vehicular fuel consumption and emission. The approach to this objective involves: data collection, statistical modelling and parameter estimation, simulation using calibrated time-gap distribution and its validation, empirical analysis of simulation result and associated traffic flow parameters, and application to analyze illustrative traffic policies. In particular, video graphic methods are used for data extraction from urban mid-block sections in Chennai, where the data comprises of vehicle type, vehicle position (both longitudinal and lateral), speed and time gap. Statistical tests are carried out to compare the simulated data with the actual data and the model performance is evaluated. The effect of integration of above mentioned factors in vehicle generation is studied by comparing the performance measures like density, speed, flow, capacity, area occupancy etc under various traffic conditions and policies. The implications of the quantified distributions and simulation model for estimating the PCU (Passenger Car Units), capacity and level of service of the system are also discussed.Keywords: lateral movement, mixed traffic condition, simulation modeling, vehicle following models
Procedia PDF Downloads 34220458 Developing Measurement Model of Interpersonal Skills of Youth
Authors: Mohd Yusri Ibrahim
Abstract:
Although it is known that interpersonal skills are essential for personal development, the debate however continues as to how to measure those skills, especially in youths. This study was conducted to develop a measurement model of interpersonal skills by suggesting three construct namely personal, skills and relationship; six function namely self, perception, listening, conversation, emotion and conflict management; and 30 behaviours as indicators. This cross-sectional survey by questionnaires was applied in east side of peninsula of Malaysia for 150 respondents, and analyzed by structural equation modelling (SEM) by AMOS. The suggested constructs, functions and indicators were consider accepted as measurement elements by observing on regression weight for standard loading, average variance extracted (AVE) for convergent validity, square root of AVE for discriminant validity, composite reliability (CR), and at least three fit indexes for model fitness. Finally, a measurement model of interpersonal skill for youth was successfully developed.Keywords: interpersonal communication, interpersonal skill, youth, communication skill
Procedia PDF Downloads 31420457 An Investigation of the Psychometric Properties of the Strong Brand Questionnaire in Sport
Authors: Mona Rezaei, Habib Honari, Mehrzad Hamidi, Fatemeh Kiani
Abstract:
Make strong brands has become a priority for many organizations in marketing. Brand is an important indicator of marketing status. Brand Strength is in kept customer, profit, brand development and gain competitive advantage and In fact it is a concept that was created from a consumer perspective. It is assumed that the creation of a strong brand is creating numerous marketing benefits. The purpose of this study was to evaluate the psychometric characteristics of the questionnaire the most strong sports brands in the consumer society. Questionnaire was conducted to a sample of 340 customers of sports brands. Psychometric parameters were determined by using appropriate statistical methods. The results of the factor analysis and Varimax rotation revealed five factors of strong brands. The results confirms that questionnaire structure have acceptable associated to the data and confirmed all indicators of the model. Reliability (859/0) was satisfactory. According to calculated psychometric indices, this questionnaire could be appropriate to assess the most strong sports brands.Keywords: reliability, strong brand, sport brands, psychometric
Procedia PDF Downloads 35420456 Detecting Overdispersion for Mortality AIDS in Zero-inflated Negative Binomial Death Rate (ZINBDR) Co-infection Patients in Kelantan
Authors: Mohd Asrul Affedi, Nyi Nyi Naing
Abstract:
Overdispersion is present in count data, and basically when a phenomenon happened, a Negative Binomial (NB) is commonly used to replace a standard Poisson model. Analysis of count data event, such as mortality cases basically Poisson regression model is appropriate. Hence, the model is not appropriate when existing a zero values. The zero-inflated negative binomial model is appropriate. In this article, we modelled the mortality cases as a dependent variable by age categorical. The objective of this study to determine existing overdispersion in mortality data of AIDS co-infection patients in Kelantan.Keywords: negative binomial death rate, overdispersion, zero-inflation negative binomial death rate, AIDS
Procedia PDF Downloads 46320455 Analysis of Gas Disturbance Characteristics in Lunar Sample Storage
Authors: Lv Shizeng, Han Xiao, Zhang Yi, Ding Wenjing
Abstract:
The lunar sample storage device is mainly used for the preparation of the lunar samples, observation, physical analysis and other work. The lunar samples and operating equipment are placed directly inside the storage device. The inside of the storage device is a high purity nitrogen environment to ensure that the sample is not contaminated by the Earth's environment. In order to ensure that the water and oxygen indicators in the storage device meet the sample requirements, a dynamic gas cycle is required between the storage device and the external purification equipment. However, the internal gas disturbance in the storage device can affect the operation of the sample. In this paper, the storage device model is established, and the tetrahedral mesh is established by Tetra/Mixed method. The influence of different inlet position and gas flow on the internal flow field disturbance is calculated, and the disturbed flow area should be avoided during the sampling operation.Keywords: lunar samples, gas disturbance, storage device, characteristic analysis
Procedia PDF Downloads 29520454 A Traceability Index for Food
Authors: Hari Pulapaka
Abstract:
This paper defines and develops the notion of a traceability index for food and may be used by any consumer (restaurant, distributor, average consumer etc.). The concept is then extended to a region's food system as a way to measure how well a regional food system utilizes its own bounty or at least, is connected to its food sources. With increasing emphases on the sustainability of aspects of regional and ultimately, the global food system, it is reasonable to accept that if we know how close (in relative terms) an end-user of a set of ingredients (as they traverse through the maze of supply chains) is from the sources, we may be better equipped to evaluate the quality of the set as measured by any number of qualitative and quantitative criteria. We propose a mathematical model which may be adapted to a number of contexts and sizes. Two hypothetical cases of different scope are presented which highlight how the model works as an evaluator of steps between an end-user and the source(s) of the ingredients they consume. The variables in the model are flexible enough to be adapted to other applications beyond food systems.Keywords: food, traceability, supply chain, mathematical model
Procedia PDF Downloads 27420453 A New Distribution and Application on the Lifetime Data
Authors: Gamze Ozel, Selen Cakmakyapan
Abstract:
We introduce a new model called the Marshall-Olkin Rayleigh distribution which extends the Rayleigh distribution using Marshall-Olkin transformation and has increasing and decreasing shapes for the hazard rate function. Various structural properties of the new distribution are derived including explicit expressions for the moments, generating and quantile function, some entropy measures, and order statistics are presented. The model parameters are estimated by the method of maximum likelihood and the observed information matrix is determined. The potentiality of the new model is illustrated by means of real life data set.Keywords: Marshall-Olkin distribution, Rayleigh distribution, estimation, maximum likelihood
Procedia PDF Downloads 50120452 Range Suitability Model for Livestock Grazing in Taleghan Rangelands
Authors: Hossein Arzani, Masoud Jafari Shalamzari, Z. Arzani
Abstract:
This paper follows FAO model of suitability analysis. Influential factors affecting extensive grazing were determined and converted into a model. Taleghan rangelands were examined for common types of grazing animals as an example. Advantages and limitations were elicited. All range ecosystems’ components affect range suitability but due to the time and money restrictions, the most important and feasible elements were investigated. From which three sub-models including water accessibility, forage production and erosion sensitivity were considered. Suitable areas in four levels of suitability were calculated using GIS. This suitability modeling approach was adopted due to its simplicity and the minimal time that is required for transforming and analyzing the data sets. Managers could be benefited from the model to devise the measures more wisely to cope with the limitations and enhance the rangelands health and condition.Keywords: range suitability, land-use, extensive grazing, modeling, land evaluation
Procedia PDF Downloads 34120451 Numerical Simulation of Ultraviolet Disinfection in a Water Reactor
Authors: H. Shokouhmand, H. Sobhani, B. Sajadi, M. Degheh
Abstract:
In recent years, experimental and numerical investigation of water UV reactors has increased significantly. The main drawback of experimental methods is confined and expensive survey of UV reactors features. In this study, a CFD model utilizing the eulerian-lagrangian framework is applied to analysis the disinfection performance of a closed conduit reactor which contains four UV lamps perpendicular to the flow. A discrete ordinates (DO) model was employed to evaluate the UV irradiance field. To investigate the importance of each of lamps on the inactivation performance, in addition to the reference model (with 4 bright lamps), several models with one or two bright lamps in various arrangements were considered. All results were reported in three inactivation kinetics. The results showed that the log inactivation of the two central bright lamps model was between 88-99 percent, close to the reference model results. Also, whatever the lamps are closer to the main flow region, they have more effect on microbial inactivation. The effect of some operational parameters such as water flow rate, inlet water temperature, and lamps power were also studied.Keywords: Eulerian-Lagrangian framework, inactivation kinetics, log inactivation, water UV reactor
Procedia PDF Downloads 25120450 Author Profiling: Prediction of Learners’ Gender on a MOOC Platform Based on Learners’ Comments
Authors: Tahani Aljohani, Jialin Yu, Alexandra. I. Cristea
Abstract:
The more an educational system knows about a learner, the more personalised interaction it can provide, which leads to better learning. However, asking a learner directly is potentially disruptive, and often ignored by learners. Especially in the booming realm of MOOC Massive Online Learning platforms, only a very low percentage of users disclose demographic information about themselves. Thus, in this paper, we aim to predict learners’ demographic characteristics, by proposing an approach using linguistically motivated Deep Learning Architectures for Learner Profiling, particularly targeting gender prediction on a FutureLearn MOOC platform. Additionally, we tackle here the difficult problem of predicting the gender of learners based on their comments only – which are often available across MOOCs. The most common current approaches to text classification use the Long Short-Term Memory (LSTM) model, considering sentences as sequences. However, human language also has structures. In this research, rather than considering sentences as plain sequences, we hypothesise that higher semantic - and syntactic level sentence processing based on linguistics will render a richer representation. We thus evaluate, the traditional LSTM versus other bleeding edge models, which take into account syntactic structure, such as tree-structured LSTM, Stack-augmented Parser-Interpreter Neural Network (SPINN) and the Structure-Aware Tag Augmented model (SATA). Additionally, we explore using different word-level encoding functions. We have implemented these methods on Our MOOC dataset, which is the most performant one comparing with a public dataset on sentiment analysis that is further used as a cross-examining for the models' results.Keywords: deep learning, data mining, gender predication, MOOCs
Procedia PDF Downloads 14820449 A Deterministic Approach for Solving the Hull and White Interest Rate Model with Jump Process
Authors: Hong-Ming Chen
Abstract:
This work considers the resolution of the Hull and White interest rate model with the jump process. A deterministic process is adopted to model the random behavior of interest rate variation as deterministic perturbations, which is depending on the time t. The Brownian motion and jumps uncertainty are denoted as the integral functions piecewise constant function w(t) and point function θ(t). It shows that the interest rate function and the yield function of the Hull and White interest rate model with jump process can be obtained by solving a nonlinear semi-infinite programming problem. A relaxed cutting plane algorithm is then proposed for solving the resulting optimization problem. The method is calibrated for the U.S. treasury securities at 3-month data and is used to analyze several effects on interest rate prices, including interest rate variability, and the negative correlation between stock returns and interest rates. The numerical results illustrate that our approach essentially generates the yield functions with minimal fitting errors and small oscillation.Keywords: optimization, interest rate model, jump process, deterministic
Procedia PDF Downloads 16120448 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification
Authors: Zhaoxin Luo, Michael Zhu
Abstract:
In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese
Procedia PDF Downloads 6820447 Development of a Numerical Model to Predict Wear in Grouted Connections for Offshore Wind Turbine Generators
Authors: Paul Dallyn, Ashraf El-Hamalawi, Alessandro Palmeri, Bob Knight
Abstract:
In order to better understand the long term implications of the grout wear failure mode in large-diameter plain-sided grouted connections, a numerical model has been developed and calibrated that can take advantage of existing operational plant data to predict the wear accumulation for the actual load conditions experienced over a given period, thus limiting the need for expensive monitoring systems. This model has been derived and calibrated based on site structural condition monitoring (SCM) data and supervisory control and data acquisition systems (SCADA) data for two operational wind turbine generator substructures afflicted with this challenge, along with experimentally derived wear rates.Keywords: grouted connection, numerical model, offshore structure, wear, wind energy
Procedia PDF Downloads 453