Search results for: adaptive computer games
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3768

Search results for: adaptive computer games

1548 Climate Change and Economic Performance in Selected Oil-Producing African Countries: A Trend Analysis Approach

Authors: Waheed O. Majekodunmi

Abstract:

Climate change is a real global phenomenon and an unquestionable threat to our quest for a healthy and livable planet. It is now regarded as potentially the most monumental environmental challenge people and the planet will be confronted with over the next centuries. Expectedly, climate change mitigation was one of the central themes of COP 28. Despite contributing the least to climate change, Africa is and remains the hardest hit by the negative consequences of climate change including poor growth performance. Currently, it is being hypothesized that the high level of vulnerability and exposure to climate-related disasters, low adaptive capacity against global warming and high mitigation costs of climate change across the continent could be linked to the recent abysmal economic performance of African countries, especially in oil-producing countries where greenhouse gas emissions, is potentially more prevalent. This paper examines the impact of climate change on the economic performance of selected oil-producing countries in Africa using evidence from Nigeria, Algeria and Angola. The objective of the study is to determine whether or not climate change influences the economic performance of oil-producing countries in Africa by examining the nexus between economic growth and climate-related variables. The study seeks to investigate the effect of climate change on the pace of economic growth in African oil-producing countries. To achieve the research objectives, this study utilizes a quantitative approach by using historical and current secondary data sets to determine the relationship between climate-related variables and economic growth variables in the selected countries. The study employed numbers, percentages, tables and trend graphs to explain the trends or common patterns between climate change, economic growth and determinants of economic growth: governance effectiveness, infrastructure, macroeconomic stability and regulatory efficiency. Results from the empirical analysis of data show that the trends of economic growth and climate-related variables in the selected oil-producing countries are in the opposite directions as the increasing share of renewable energy sources in total energy consumption and the reduction in greenhouse gas emissions per capita in the oil-producing countries did not translate to higher economic growth. Further findings show that annual surface temperatures in the selected countries do not share similar trends with the food imports ratio and GDP per capita annual growth rate suggesting that climate change does not impact significantly agricultural productivity and economic growth in oil-producing countries in Africa. Annual surface temperature was also found to not share a similar pattern with governance effectiveness, macroeconomic stability and regulatory efficiency reinforcing the claim that some economic growth variables are independent of climate change. The policy implication of this research is that oil-producing African countries need to focus more on improving the macroeconomic environment and streamlining governance and institutional processes to boost their economic performance before considering the adoption of climate change adaptation and mitigation strategies.

Keywords: climate change, climate vulnerability, economic growth, greenhouse gas emissions per capita, oil-producing countries, share of renewable energy in total energy consumption

Procedia PDF Downloads 57
1547 Control the Flow of Big Data

Authors: Shizra Waris, Saleem Akhtar

Abstract:

Big data is a research area receiving attention from academia and IT communities. In the digital world, the amounts of data produced and stored have within a short period of time. Consequently this fast increasing rate of data has created many challenges. In this paper, we use functionalism and structuralism paradigms to analyze the genesis of big data applications and its current trends. This paper presents a complete discussion on state-of-the-art big data technologies based on group and stream data processing. Moreover, strengths and weaknesses of these technologies are analyzed. This study also covers big data analytics techniques, processing methods, some reported case studies from different vendor, several open research challenges and the chances brought about by big data. The similarities and differences of these techniques and technologies based on important limitations are also investigated. Emerging technologies are suggested as a solution for big data problems.

Keywords: computer, it community, industry, big data

Procedia PDF Downloads 197
1546 Exploring Deep Neural Network Compression: An Overview

Authors: Ghorab Sara, Meziani Lila, Rubin Harvey Stuart

Abstract:

The rapid growth of deep learning has led to intricate and resource-intensive deep neural networks widely used in computer vision tasks. However, their complexity results in high computational demands and memory usage, hindering real-time application. To address this, research focuses on model compression techniques. The paper provides an overview of recent advancements in compressing neural networks and categorizes the various methods into four main approaches: network pruning, quantization, network decomposition, and knowledge distillation. This paper aims to provide a comprehensive outline of both the advantages and limitations of each method.

Keywords: model compression, deep neural network, pruning, knowledge distillation, quantization, low-rank decomposition

Procedia PDF Downloads 50
1545 Colored Image Classification Using Quantum Convolutional Neural Networks Approach

Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins

Abstract:

Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.

Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning

Procedia PDF Downloads 134
1544 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half

Authors: Said Fares, Mary Fares

Abstract:

It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.

Keywords: failure rate, interactive learning, student engagement, CS1

Procedia PDF Downloads 313
1543 A Case Report on Cognitive-Communication Intervention in Traumatic Brain Injury

Authors: Nikitha Francis, Anjana Hoode, Vinitha George, Jayashree S. Bhat

Abstract:

The interaction between cognition and language, referred as cognitive-communication, is very intricate, involving several mental processes such as perception, memory, attention, lexical retrieval, decision making, motor planning, self-monitoring and knowledge. Cognitive-communication disorders are difficulties in communicative competencies that result from underlying cognitive impairments of attention, memory, organization, information processing, problem solving, and executive functions. Traumatic brain injury (TBI) is an acquired, non - progressive condition, resulting in distinct deficits of cognitive communication abilities such as naming, word-finding, self-monitoring, auditory recognition, attention, perception and memory. Cognitive-communication intervention in TBI is individualized, in order to enhance the person’s ability to process and interpret information for better functioning in their family and community life. The present case report illustrates the cognitive-communicative behaviors and the intervention outcomes of an adult with TBI, who was brought to the Department of Audiology and Speech Language Pathology, with cognitive and communicative disturbances, consequent to road traffic accident. On a detailed assessment, she showed naming deficits along with perseverations and had severe difficulty in recalling the details of the accident, her house address, places she had visited earlier, names of people known to her, as well as the activities she did each day, leading to severe breakdowns in her communicative abilities. She had difficulty in initiating, maintaining and following a conversation. She also lacked orientation to time and place. On administration of the Manipal Manual of Cognitive Linguistic Abilities (MMCLA), she exhibited poor performance on tasks related to visual and auditory perception, short term memory, working memory and executive functions. She attended 20 sessions of cognitive-communication intervention which followed a domain-general, adaptive training paradigm, with tasks relevant to everyday cognitive-communication skills. Compensatory strategies such as maintaining a dairy with reminders of her daily routine, names of people, date, time and place was also recommended. MMCLA was re-administered and her performance in the tasks showed significant improvements. Occurrence of perseverations and word retrieval difficulties reduced. She developed interests to initiate her day-to-day activities at home independently, as well as involve herself in conversations with her family members. Though she lacked awareness about her deficits, she actively involved herself in all the therapy activities. Rehabilitation of moderate to severe head injury patients can be done effectively through a holistic cognitive retraining with a focus on different cognitive-linguistic domains. Selection of goals and activities should have relevance to the functional needs of each individual with TBI, as highlighted in the present case report.

Keywords: cognitive-communication, executive functions, memory, traumatic brain injury

Procedia PDF Downloads 354
1542 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization

Procedia PDF Downloads 387
1541 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy

Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi

Abstract:

Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.

Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing

Procedia PDF Downloads 156
1540 Through the Robot’s Eyes: A Comparison of Robot-Piloted, Virtual Reality, and Computer Based Exposure for Fear of Injections

Authors: Bonnie Clough, Tamara Ownsworth, Vladimir Estivill-Castro, Matt Stainer, Rene Hexel, Andrew Bulmer, Wendy Moyle, Allison Waters, David Neumann, Jayke Bennett

Abstract:

The success of global vaccination programs is reliant on the uptake of vaccines to achieve herd immunity. Yet, many individuals do not obtain vaccines or venipuncture procedures when needed. Whilst health education may be effective for those individuals who are hesitant due to safety or efficacy concerns, for many of these individuals, the primary concern relates to blood or injection fear or phobia (BII). BII is highly prevalent and associated with a range of negative health impacts, both at individual and population levels. Exposure therapy is an efficacious treatment for specific phobias, including BII, but has high patient dropout and low implementation by therapists. Whilst virtual reality approaches exposure therapy may be more acceptable, they have similarly low rates of implementation by therapists and are often difficult to tailor to an individual client’s needs. It was proposed that a piloted robot may be able to adequately facilitate fear induction and be an acceptable approach to exposure therapy. The current study examined fear induction responses, acceptability, and feasibility of a piloted robot for BII exposure. A Nao humanoid robot was programmed to connect with a virtual reality head-mounted display, enabling live streaming and exploration of real environments from a distance. Thirty adult participants with BII fear were randomly assigned to robot-pilot or virtual reality exposure conditions in a laboratory-based fear exposure task. All participants also completed a computer-based two-dimensional exposure task, with an order of conditions counterbalanced across participants. Measures included fear (heart rate variability, galvanic skin response, stress indices, and subjective units of distress), engagement with a feared stimulus (eye gaze: time to first fixation and a total number of fixations), acceptability, and perceived treatment credibility. Preliminary results indicate that fear responses can be adequately induced via a robot-piloted platform. Further results will be discussed, as will implications for the treatment of BII phobia and other fears. It is anticipated that piloted robots may provide a useful platform for facilitating exposure therapy, being more acceptable than in-vivo exposure and more flexible than virtual reality exposure.

Keywords: anxiety, digital mental health, exposure therapy, phobia, robot, virtual reality

Procedia PDF Downloads 81
1539 Applying AI and IoT to Enhance Eye Vision Assessment, Early Detection of Eye Diseases, and Personalised Vision Correction

Authors: Gasim Alandjani

Abstract:

This research paper investigates the use of artificial intelligence (AI) and the Internet of Things (IoT) to improve eye healthcare; it concentrates on eye vision assessment, early discovery of eye ailments, and individualised vision correction. The study offers a broad review of literature and methodology; it features vital findings and inferences for advancing patient results, boosting admittance to care, elevating resource apportionment, and directing future research and practice. The study concluded that the assimilation of AI and IoT advancements provides progressive answers to traditional hurdles in eye healthcare, guaranteeing more precise, comprehensive, and individualised interventions for patients globally. The study emphasizes the significance of sustained innovation and the application of AI and IoT-driven methodologies to improve eye healthcare and vision for forthcoming generations.

Keywords: AI, IoT, eye vision assessment, computer engineering

Procedia PDF Downloads 12
1538 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform

Authors: Shield B. Lin, Sameer Abdali

Abstract:

Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.

Keywords: control, counterweight, isolation, vibration

Procedia PDF Downloads 152
1537 Review of Literature: Using Technology to Help Language Learners at Improving Their Language Skills

Authors: Eyup Bayram Guzel, Osman Tunc

Abstract:

People have been fairly interested in what technology offers to them around a scope of human necessities and it has become a part of human life. In this study, experimental studies were reviewed for the purpose of how technology helps language learners improve their phonemic awareness, reading comprehension and vocabulary development skills. As a conclusion, experimental studies demonstrated that students showed significant improvements up to 70% in phonological awareness, while they demonstrated up to 76% of improvements in reading comprehension and up to 77% in vocabulary development. The use of computer-assisted technologies and its positive outcomes were encouraged to be used more widely in order to meet the diverse needs of students.

Keywords: technology, phonemic awareness, reading comprehension, vocabulary development

Procedia PDF Downloads 310
1536 Iranian English as Foreign Language Teachers' Psychological Well-Being across Gender: During the Pandemic

Authors: Fatemeh Asadi Farsad, Sima Modirkhameneh

Abstract:

The purpose of this study was to explore the pattern of Psychological Well-Being (PWB) of Iranian male and female EFL teachers during the pandemic. It was intended to see if such a drastic change in the context and mode of teaching affects teachers' PWB. Furthermore, the possible difference between the six elements of PWB of Iranian EFL male vs. female teachers during the pandemic was investigated. The other purpose was to find out the EFL teachers’ perceptions of any modifications, and factors leading to such modifications in their PWB during pandemic. For the purpose of this investigation, a total of 81 EFL teachers (59 female, 22 male) with an age range of 25 to 35 were conveniently sampled from different cities in Iran. Ryff’s PWB questionnaire was sent to participant teachers through online platforms to elicit data on their PWB. As for their perceptions on the possible modifications and the factors involved in PWB during pandemic, a set of semi-structured interviews were run among both sample groups. The findings revealed that male EFL teachers had the highest mean on personal growth, followed by purpose of life, and self-acceptance and the lowest mean on environmental mastery. With a slightly similar pattern, female EFL teachers had the highest mean on personal growth, followed by purpose in life, and positive relationship with others with the lowest mean on environmental mastery. However, no significant difference was observed between the male and female groups’ overall means on elements of PWB. Additionally, participants perceived that their anxiety level in online classes altered due to factors like (1) Computer literacy skills, (2) Lack of social communications and interactions with colleagues and students, (3) Online class management, (4) Overwhelming workloads, and (5) Time management. The study ends with further suggestions as regards effective online teaching preparation considering teachers PWB, especially at severe situations such as covid-19 pandemic. The findings offer to determine the reformations of educational policies concerning enhancing EFL teachers’ PWB through computer literacy courses and stress management courses. It is also suggested that to proactively support teachers’ mental health, it is necessary to provide them with advisors and psychologists if possible for free. Limitations: One limitation is the small number of participants (81), suggesting that future replications should include more participants for reliable findings. Another limitation is the gender imbalance, which future studies should address to yield better outcomes. Furthermore, Limited data gathering tools suggest using observations, diaries, and narratives for more insights in future studies. The study focused on one model of PWB, calling for further research on other models in the literature. Considering the wide effect of the COVID-19 pandemic, future studies should consider additional variables (e.g., teaching experience, age, income) to understand Iranian EFL teachers’ vulnerabilities and strengths better.

Keywords: online teaching, psychological well-being, female and male EFL teachers, pandemic

Procedia PDF Downloads 50
1535 Autobiographical Memory Functions and Perceived Control in Depressive Symptoms among Young Adults

Authors: Meenu S. Babu, K. Jayasankara Reddy

Abstract:

Depression is a serious mental health concern that leads to significant distress and dysfunction in an individual. Due to the high physical, psychological, social, and economic burden it causes, it is important to study various bio-psycho-social factors that influence the onset, course, duration, intensity of depressive symptoms. The study aims to explore relationship between autobiographical memory (AM) functions, perceived control over stressful events and depressive symptoms. AM functions and perceived control were both found to be protective factors for individuals against depression and were both modifiable to predict better behavioral and affective outcomes. An extensive review of literatur, with a systematic search on Google Scholar, JSTOR, Science Direct and Springer Journals database, was conducted for the purpose of this review paper. These were used for all the aforementioned databases. The time frame used for the search was 2010-2021. An additional search was conducted with no time bar to map the development of the theoretical concepts. The relevant studies with quantitative, qualitative, experimental, and quasi- experimental research designs were included for the review. Studies including a sample with a DSM- 5 or ICD-10 diagnosis of depressive disorders were excluded from the study to focus on the behavioral patterns in a non-clinical population. The synthesis of the findings that were obtained from the review indicates there is a significant relationship between cognitive variables of AM functions and perceived control and depressive symptoms. AM functions were found to be have significant effects on once sense of self, interpersonal relationships, decision making, self- continuity and were related to better emotion regulation and lower depressive symptoms. Not all the components of AM function were equally significant in their relationships with various depressive symptoms. While self and directive functions were more related to emotion regulation, anhedonia, motivation and hence mood and affect, the social function was related to perceived social support and social engagement. Perceived control was found to be another protective cognitive factor that provides individuals a sense of agency and control over one’s life outcomes which was found to be low in individuals with depression. This was also associated to the locus of control, competency beliefs, contingency beliefs and subjective well being in individuals and acted as protective factors against depressive symptoms. AM and perceived control over stressful events serve adaptive functions, hence it is imperative to study these variables more extensively. They can be imperative in planning and implementing therapeutic interventions to foster these cognitive protective factors to mitigate or alleviate depressive symptoms. Exploring AM as a determining factor in depressive symptoms along with perceived control over stress creates a bridge between biological and cognitive factors underlying depression and increases the scope of developing a more eclectic and effective treatment plan for individuals. As culture plays a crucial role in AM functions as well as certain aspects of control such as locus of control, it is necessary to study these variables keeping in mind the cultural context to tailor culture/community specific interventions for depression.

Keywords: autobiographical memories, autobiographical memory functions, perceived control, depressive symptoms, depression, young adults

Procedia PDF Downloads 107
1534 Database Management System for Orphanages to Help Track of Orphans

Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta

Abstract:

Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.

Keywords: database, orphans, programming, C⁺⁺

Procedia PDF Downloads 162
1533 On Dialogue Systems Based on Deep Learning

Authors: Yifan Fan, Xudong Luo, Pingping Lin

Abstract:

Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.

Keywords: dialogue management, response generation, deep learning, evaluation

Procedia PDF Downloads 172
1532 6D Posture Estimation of Road Vehicles from Color Images

Authors: Yoshimoto Kurihara, Tad Gonsalves

Abstract:

Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.

Keywords: 6D posture estimation, image recognition, deep learning, AlexNet

Procedia PDF Downloads 162
1531 Work Happiness for Personnel of Suan Sunandha Rajabhat University

Authors: Adisai Thovicha

Abstract:

This study is the survey research, designed to study the work happiness level of personnel at Suan Sunandha Rajabhat University. The sample group consisted of 329 personnel. The results were collected by stratified sampling, using work positions for each stage. The results were analyzed and calculated by computer program. Statistics used during analyzing were percentage, mean, and standard deviation. From the study, the work happiness level of personnel were in very high score range in both overall and specific category. The top category which received the most score was positive attitude, work satisfaction, life satisfaction, and negative attitude.

Keywords: work happiness, Suan Sunandha Rajabhat University, personnel, positive attitude

Procedia PDF Downloads 379
1530 The Effect of Extensive Mosquito Migration on Dengue Control as Revealed by Phylogeny of Dengue Vector Aedes aegypti

Authors: M. D. Nirmani, K. L. N. Perera, G. H. Galhena

Abstract:

Dengue has become one of the most important arbo-viral disease in all tropical and subtropical regions of the world. Aedes aegypti, is the principal vector of the virus, vary in both epidemiological and behavioral characteristics, which could be finely measured through DNA sequence comparison at their population level. Such knowledge in the population differences can assist in implementation of effective vector control strategies allowing to make estimates of the gene flow and adaptive genomic changes, which are important predictors of the spread of Wolbachia infection or insecticide resistance. As such, this study was undertaken to investigate the phylogenetic relationships of Ae. aegypti from Galle and Colombo, Sri Lanka, based on the ribosomal protein region which spans between two exons, in order to understand the geographical distribution of genetically distinct mosquito clades and its impact on mosquito control measures. A 320bp DNA region spanning from 681-930 bp, corresponding to the ribosomal protein, was sequenced in 62 Ae. aegypti larvae collected from Galle (N=30) and Colombo (N=32), Sri Lanka. The sequences were aligned using ClustalW and the haplotypes were determined with DnaSP 5.10. Phylogenetic relationships among haplotypes were constructed using the maximum likelihood method under Tamura 3 parameter model in MEGA 7.0.14 including three previously reported sequences of Australian (N=2) and Brazilian (N=1) Ae. aegypti. The bootstrap support was calculated using 1000 replicates and the tree was rooted using Aedes notoscriptus (GenBank accession No. KJ194101). Among all sequences, nineteen different haplotypes were found among which five haplotypes were shared between 80% of mosquitoes in the two populations. Seven haplotypes were unique to each of the population. Phylogenetic tree revealed two basal clades and a single derived clade. All observed haplotypes of the two Ae. aegypti populations were distributed in all the three clades, indicating a lack of genetic differentiation between populations. The Brazilian Ae. aegypti haplotype and one of the Australian haplotypes were grouped together with the Sri Lankan basal haplotype in the same basal clade, whereas the other Australian haplotype was found in the derived clade. Phylogram showed that Galle and Colombo Ae. aegypti populations are highly related to each other despite the large geographic distance (129 Km) indicating a substantial genetic similarity between them. This may have probably arisen from passive migration assisted by human travelling and trade through both land and water as the two areas are bordered by the sea. In addition, studied Sri Lankan mosquito populations were closely related to Australian and Brazilian samples. Probably this might have caused by shipping industry between the three countries as all of them are fully or partially enclosed by sea. For example, illegal fishing boats migrating to Australia by sea is perhaps a good mean of transportation of all life stages of mosquitoes from Sri Lanka. These findings indicate that extensive mosquito migrations occur between populations not only within the country, but also among other countries in the world which might be a main barrier to the successful vector control measures.

Keywords: Aedes aegypti, dengue control, extensive mosquito migration, haplotypes, phylogeny, ribosomal protein

Procedia PDF Downloads 192
1529 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea

Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng

Abstract:

During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.

Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea

Procedia PDF Downloads 176
1528 The Establishment of Primary Care Networks (England, UK) Throughout the COVID-19 Pandemic: A Qualitative Exploration of Workforce Perceptions

Authors: Jessica Raven Gates, Gemma Wilson-Menzfeld, Professor Alison Steven

Abstract:

In 2019, the Primary Care system in the UK National Health Service (NHS) was subject to reform and restructuring. Primary Care Networks (PCNs) were established, which aligned with a trend towards integrated care both within the NHS and internationally. The introduction of PCNs brought groups of GP practices in a locality together, to operate as a network, build on existing services and collaborate at a larger scale. PCNs were expected to bring a range of benefits to patients and address some of the workforce pressures in the NHS, through an expanded and collaborative workforce. The early establishment of PCNs was disrupted by the emerging COVID-19 pandemic. This study, set in the context of the pandemic, aimed to explore experiences of the PCN workforce, and their perceptions of the establishment of PCNs. Specific objectives focussed on examining factors perceived as enabling or hindering the success of a PCN, the impact on day-to-day work, the approach to implementing change, and the influence of the COVID-19 pandemic upon PCN development. This study is part of a three-phase PhD project that utilized qualitative approaches and was underpinned by social constructionist philosophy. Phase 1: a systematic narrative review explored the provision of preventative healthcare services in UK primary settings and examined facilitators and barriers to delivery as experienced by the workforce. Phase 2: informed by the findings of phase 1, semi-structured interviews were conducted with fifteen participants (PCN workforce). Phase 3: follow-up interviews were conducted with original participants to examine any changes to their experiences and perceptions of PCNs. Three main themes span across phases 2 and 3 and were generated through a Framework Analysis approach: 1) working together at scale, 2) network infrastructure, and 3) PCN leadership. Findings suggest that through efforts to work together at scale and collaborate as a network, participants have broadly accepted the concept of PCNs. However, the workforce has been hampered by system design and system complexity. Operating against such barriers has led to a negative psychological impact on some PCN leaders and others in the PCN workforce. While the pandemic undeniably increased pressure on healthcare systems around the world, it also acted as a disruptor, offering a glimpse into how collaboration in primary care can work well. Through the integration of findings from all phases, a new theoretical model has been developed, which conceptualises the findings from this Ph.D. study and demonstrates how the workforce has experienced change associated with the establishment of PCNs. The model includes a contextual component of the COVID-19 pandemic and has been informed by concepts from Complex Adaptive Systems theory. This model is the original contribution to knowledge of the PhD project, alongside recommendations for practice, policy and future research. This study is significant in the realm of health services research, and while the setting for this study is the UK NHS, the findings will be of interest to an international audience as the research provides insight into how the healthcare workforce may experience imposed policy and service changes.

Keywords: health services research, qualitative research, NHS workforce, primary care

Procedia PDF Downloads 62
1527 Buckling Analysis of 2D Frames Using the Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring.

Keywords: buckling, stability, frame, modified newmark method

Procedia PDF Downloads 423
1526 Gender Recognition with Deep Belief Networks

Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang

Abstract:

A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.

Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs

Procedia PDF Downloads 457
1525 Percolation Transition in an Agglomeration of Spherical Particles

Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin

Abstract:

Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.

Keywords: binary system, maximum cluster size, percolation, polydisperse

Procedia PDF Downloads 65
1524 Vision Based People Tracking System

Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti

Abstract:

In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.

Keywords: camshift algorithm, computer vision, Kalman filter, object tracking

Procedia PDF Downloads 452
1523 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights

Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy

Abstract:

The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.

Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems

Procedia PDF Downloads 79
1522 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane

Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal

Abstract:

An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.

Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer

Procedia PDF Downloads 459
1521 Perception Differences in Children Learning to Golf with Traditional versus Modified (Scaled) Equipment

Authors: Lindsey D. Sams, Dean R. Gorman, Cathy D. Lirgg, Steve W. Dittmore, Jack C. Kern

Abstract:

Golf is a lifetime sport that provides numerous physical and psychological benefits. The game has struggled with attrition and retention within minority groups and this has exposed the lack of a modified introduction to the game that is uniformly accessible and developmentally appropriate. Factors that have been related to sport participatory behaviors include perceived competence, enjoyment and intention. The purpose of this study was to examine self-reported perception differences in competence and enjoyment between learners using modified and traditional equipment as well as the potential effects these factors could have on intent for future participation. For this study, SNAG Golf was chosen to serve as the scaled equipment used by the modified equipment group. The participants in this study were 99 children (24 traditional equipment users/ 75 modified equipment users) located across the U.S. with ages ranging from 7 to 12 years (2nd-5th grade). Utilizing a convenience sampling method, data was obtained on a voluntary basis through surveys measuring children’s golf participation and self-perceptions concerning perceived competence, enjoyment and intention to continue participation. The scales used for perceived competence and enjoyment included Susan Harter’s Self-Perception Profile for Children (SPPC) along with the Physical Activity Enjoyment Scale (PACES). Analysis revealed no significant differences for enjoyment, perceived competence or intention between children learning with traditional golf equipment and modified golf equipment. This was true even though traditional equipment users reported significantly higher experience levels than that of modified users. Intention was regressed on the enjoyment and perceived competence variables. Congruent with current literature, enjoyment was a strong predictor of intention to continue participation, for both groups. Modified equipment users demonstrated significantly lower experience levels but reported similar levels of competence, enjoyment and intent to continue participation as reported by the more experienced, and potentially more skilled, traditional users. The ability to immediately generate these positive affects suggests the potential adoption of a more effective way to learn golf and a method that is conducive to participatory behaviors related to attrition and retention. These implications in turn, highlight an equipment candidate ideal for inception into physical education programs where new learners are introduced to various sports in safe and developmentally appropriate environments. A major goal of this study was to provide foundational research that instigates the further examination of golf’s introductory teaching methodologies, as there is a lack of its presence in current literature. Future research recommendations range from improvements in the current research design to expansive approaches related to the topic, such as progressive skill development, knowledge of the game’s tactical and strategic concepts, playing ability and teaching effectiveness when utilizing modified versus traditional equipment.

Keywords: adaptive sports, enjoyment, golf participation, modified equipment, perceived competence, SNAG golf

Procedia PDF Downloads 342
1520 Physics’s Practical Based on Android as a Motivator in Learning Physics

Authors: Yuni Rochmawati, Luluk Il Mukarromah

Abstract:

Android is a mobile operating system (OS) based on the linux kerrnel and currently developed by google. With a user interface based on direct manipulation, Android is designed primarily for touchscreen mobile deviced such as smartphone and tablet computer, with specialized user interface for television (Android TV), cars (Android Auto), and wrist watches (Android Wear). Now, almost all peoples using smartphone. Smartphone seems to be a must-have object, because smartphone has many benefits. In addition, of course smartphone have many benefits for education, like resume of lesson that form of e-book. However, this article is not about resume of lesson. This article is about practical based on android, exactly for physics. Therefore, we will explain our idea about physics’s practical based on android and for output, we wish many students will be like to studying physics and always remember about physics’s phenomenon by physics’s practical based on android.

Keywords: android, smartphone, physics, practical

Procedia PDF Downloads 248
1519 Comparing the Effect of Virtual Reality and Sound on Landscape Perception

Authors: Mark Lindquist

Abstract:

This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.

Keywords: landscape experience, perception, soundscape, virtual reality

Procedia PDF Downloads 173