Search results for: computer assisted instruction
1499 Colored Image Classification Using Quantum Convolutional Neural Networks Approach
Authors: Farina Riaz, Shahab Abdulla, Srinjoy Ganguly, Hajime Suzuki, Ravinesh C. Deo, Susan Hopkins
Abstract:
Recently, quantum machine learning has received significant attention. For various types of data, including text and images, numerous quantum machine learning (QML) models have been created and are being tested. Images are exceedingly complex data components that demand more processing power. Despite being mature, classical machine learning still has difficulties with big data applications. Furthermore, quantum technology has revolutionized how machine learning is thought of, by employing quantum features to address optimization issues. Since quantum hardware is currently extremely noisy, it is not practicable to run machine learning algorithms on it without risking the production of inaccurate results. To discover the advantages of quantum versus classical approaches, this research has concentrated on colored image data. Deep learning classification models are currently being created on Quantum platforms, but they are still in a very early stage. Black and white benchmark image datasets like MNIST and Fashion MINIST have been used in recent research. MNIST and CIFAR-10 were compared for binary classification, but the comparison showed that MNIST performed more accurately than colored CIFAR-10. This research will evaluate the performance of the QML algorithm on the colored benchmark dataset CIFAR-10 to advance QML's real-time applicability. However, deep learning classification models have not been developed to compare colored images like Quantum Convolutional Neural Network (QCNN) to determine how much it is better to classical. Only a few models, such as quantum variational circuits, take colored images. The methodology adopted in this research is a hybrid approach by using penny lane as a simulator. To process the 10 classes of CIFAR-10, the image data has been translated into grey scale and the 28 × 28-pixel image containing 10,000 test and 50,000 training images were used. The objective of this work is to determine how much the quantum approach can outperform a classical approach for a comprehensive dataset of color images. After pre-processing 50,000 images from a classical computer, the QCNN model adopted a hybrid method and encoded the images into a quantum simulator for feature extraction using quantum gate rotations. The measurements were carried out on the classical computer after the rotations were applied. According to the results, we note that the QCNN approach is ~12% more effective than the traditional classical CNN approaches and it is possible that applying data augmentation may increase the accuracy. This study has demonstrated that quantum machine and deep learning models can be relatively superior to the classical machine learning approaches in terms of their processing speed and accuracy when used to perform classification on colored classes.Keywords: CIFAR-10, quantum convolutional neural networks, quantum deep learning, quantum machine learning
Procedia PDF Downloads 1291498 A Redesigned Pedagogy in Introductory Programming Reduces Failure and Withdrawal Rates by Half
Authors: Said Fares, Mary Fares
Abstract:
It is well documented that introductory computer programming courses are difficult and that failure rates are high. The aim of this project was to reduce the high failure and withdrawal rates in learning to program. This paper presents a number of changes in module organization and instructional delivery system in teaching CS1. Daily out of class help sessions and tutoring services were applied, interactive lectures and laboratories, online resources, and timely feedback were introduced. Five years of data of 563 students in 21 sections was collected and analyzed. The primary results show that the failure and withdrawal rates were cut by more than half. Student surveys indicate a positive evaluation of the modified instructional approach, overall satisfaction with the course and consequently, higher success and retention rates.Keywords: failure rate, interactive learning, student engagement, CS1
Procedia PDF Downloads 3081497 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors
Authors: Anwar Jarndal
Abstract:
In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.Keywords: GaN HEMT, computer-aided design and modeling, neural networks, genetic optimization
Procedia PDF Downloads 3821496 Effect of Signal Acquisition Procedure on Imagined Speech Classification Accuracy
Authors: M.R Asghari Bejestani, Gh. R. Mohammad Khani, V.R. Nafisi
Abstract:
Imagined speech recognition is one of the most interesting approaches to BCI development and a lot of works have been done in this area. Many different experiments have been designed and hundreds of combinations of feature extraction methods and classifiers have been examined. Reported classification accuracies range from the chance level to more than 90%. Based on non-stationary nature of brain signals, we have introduced 3 classification modes according to time difference in inter and intra-class samples. The modes can explain the diversity of reported results and predict the range of expected classification accuracies from the brain signal accusation procedure. In this paper, a few samples are illustrated by inspecting results of some previous works.Keywords: brain computer interface, silent talk, imagined speech, classification, signal processing
Procedia PDF Downloads 1531495 Learning Recomposition after the Remote Period with Finalist Students of the Technical Course in the Environment of the Ifpa, Paragominas Campus, Pará State, Brazilian Amazon
Authors: Liz Carmem Silva-Pereira, Raffael Alencar Mesquita Rodrigues, Francisco Helton Mendes Barbosa, Emerson de Freitas Ferreira
Abstract:
Due to the Covid-19 pandemic declared in March 2020 by the World Health Organization, the way of social coexistence across the planet was affected, especially in educational processes, from the implementation of the remote modality as a teaching strategy. This teaching-learning modality caused a change in the routine and learning of basic education students, which resulted in serious consequences for the return to face-to-face teaching in 2021. 2022, at the Federal Institute of Education, Science and Technology of Pará (IFPA) – Campus Paragominas had their training process severely affected, having studied the initial half of their training in the remote modality, which compromised the carrying out of practical classes, technical visits and field classes, essential for the student formation on the environmental technician. With the objective of promoting the recomposition of these students' learning after returning to the face-to-face modality, an educational strategy was developed in the last period of the course. As teaching methodologies were used for research as an educational principle, the integrative project and the parallel recovery action applied jointly, aiming at recomposing the basic knowledge of the natural sciences, together with the technical knowledge of the environmental area applied to the course. The project assisted 58 finalist students of the environmental technical course. A research instrument was elaborated with parameters of evaluation of the environmental quality for study in 19 collection points, in the Uraim River urban hydrographic basin, in the Paragominas City – Pará – Brazilian Amazon. Students were separated into groups under the professors' and laboratory assistants’ orientation, and in the field, they observed and evaluated the places' environmental conditions and collected physical data and water samples, which were taken to the chemistry and biology laboratories at Campus Paragominas for further analysis. With the results obtained, each group prepared a technical report on the environmental conditions of each evaluated point. This work methodology enabled the practical application of theoretical knowledge received in various disciplines during the remote teaching modality, contemplating the integration of knowledge, people, skills, and abilities for the best technical training of finalist students. At the activity end, the satisfaction of the involved students in the project was evaluated, through a form, with the signing of the informed consent term, using the Likert scale as an evaluation parameter. The results obtained in the satisfaction survey were: on the use of research projects within the disciplines attended, 82% of satisfaction was obtained; regarding the revision of contents in the execution of the project, 84% of satisfaction was obtained; regarding the acquired field experience, 76.9% of satisfaction was obtained, regarding the laboratory experience, 86.2% of satisfaction was obtained, and regarding the use of this methodology as parallel recovery, 71.8% was obtained of satisfaction. In addition to the excellent performance of students in acquiring knowledge, it was possible to remedy the deficiencies caused by the absence of practical classes, technical visits, and field classes, which occurred during the execution of the remote teaching modality, fulfilling the desired educational recomposition.Keywords: integrative project, parallel recovery, research as an educational principle, teaching-learning
Procedia PDF Downloads 661494 Comparative Analysis of Learner-centred Education in Early Childhood Curriculum Policies in England and Hong Kong
Authors: Dongdong Bai
Abstract:
The curriculum is essential in determining the quality of early childhood education (ECE). Education policy is intricately linked to the effective execution of the preschool education curriculum. The learner-centred education (LCE) approach is a globally common educational concept. However, it is an approach that is applied variably in ECE policy-making and implementation across diverse cultural contexts. Notwithstanding its significance, limited study has investigated the ECE curriculum policies on the articulation and implementation of the LCE concept in England and Hong Kong’s non-profit-making kindergartens — two regions with intricate historical and cultural connections. Moreover, both regions have experienced significant transformations in ECE policy since 1997. This research employs a qualitative comparative approach, with discourse analysis of key policy documents and relevant literature as the primary methodology. The study develops a comparison framework grounded in Adamson and Morris' curriculum comparison theory, which evaluates curricula from the perspectives of purpose, focus, and manifestation. The paper is structured around three key elements: (1) educational objectives; (2) implementation guidance, including pedagogical strategies, learning content and assessment mechanism; and (3) influential cultural ideologies. Through this framework, the study explores the similarities and differences in the design and implementation of LCE within ECE policies in England and Hong Kong’s non-profit-making kindergartens, while examining the cultural factors that shape these policy variations. The findings indicate that both England and Hong Kong possess child-centered educational objectives focused on enhancing cognitive, skill-based, and physical development; however, Hong Kong's policies notably emphasize alleviating academic pressure in achieving these curriculum aims. England's recommendations advocate for play-based, and exploratory learning to augment children's cognitive development. Conversely, Hong Kong utilizes narrative techniques and indoor instruction to facilitate progressive education. Additionally, both areas encompass cognitive disciplines such as literacy and numeracy; however, England distinctly prioritizes citizenship education with an emphasis on cultural traits. In contrast, Hong Kong amalgamates Western educational ideas with an emphasis on traditional Chinese culture and values, encompassing the study of Chinese characters, etiquette, and moral education rooted in Confucian cultural ideologies. Ultimately, regarding assessment mechanisms, England has transitioned from government-led professional evaluation programs to a hybrid of market and governmental oversight. Conversely, Hong Kong's curriculum evaluation mechanism primarily consists of self-evaluation and public supervision, yet it is evident that the policy could benefit from greater receptiveness to public and expert input. The underlying cultural ideologies significantly influence these policy discrepancies. In England, ECE policies are guided by core concepts that viewing children as individuals, agents, and future citizens. In Hong Kong, the policies reflect Confucian traditions and cultural values, which shape their unique approach to ECE in Hong Kong societies. In conclusion, whereas both locations strive to advocate LCE for the comprehensive development of children, significant differences arise in curriculum focus and implementation policies, shaped by their respective cultural philosophies.Keywords: curriculum policy, cultural contexts, early childhood education, learner-centred education
Procedia PDF Downloads 161493 Through the Robot’s Eyes: A Comparison of Robot-Piloted, Virtual Reality, and Computer Based Exposure for Fear of Injections
Authors: Bonnie Clough, Tamara Ownsworth, Vladimir Estivill-Castro, Matt Stainer, Rene Hexel, Andrew Bulmer, Wendy Moyle, Allison Waters, David Neumann, Jayke Bennett
Abstract:
The success of global vaccination programs is reliant on the uptake of vaccines to achieve herd immunity. Yet, many individuals do not obtain vaccines or venipuncture procedures when needed. Whilst health education may be effective for those individuals who are hesitant due to safety or efficacy concerns, for many of these individuals, the primary concern relates to blood or injection fear or phobia (BII). BII is highly prevalent and associated with a range of negative health impacts, both at individual and population levels. Exposure therapy is an efficacious treatment for specific phobias, including BII, but has high patient dropout and low implementation by therapists. Whilst virtual reality approaches exposure therapy may be more acceptable, they have similarly low rates of implementation by therapists and are often difficult to tailor to an individual client’s needs. It was proposed that a piloted robot may be able to adequately facilitate fear induction and be an acceptable approach to exposure therapy. The current study examined fear induction responses, acceptability, and feasibility of a piloted robot for BII exposure. A Nao humanoid robot was programmed to connect with a virtual reality head-mounted display, enabling live streaming and exploration of real environments from a distance. Thirty adult participants with BII fear were randomly assigned to robot-pilot or virtual reality exposure conditions in a laboratory-based fear exposure task. All participants also completed a computer-based two-dimensional exposure task, with an order of conditions counterbalanced across participants. Measures included fear (heart rate variability, galvanic skin response, stress indices, and subjective units of distress), engagement with a feared stimulus (eye gaze: time to first fixation and a total number of fixations), acceptability, and perceived treatment credibility. Preliminary results indicate that fear responses can be adequately induced via a robot-piloted platform. Further results will be discussed, as will implications for the treatment of BII phobia and other fears. It is anticipated that piloted robots may provide a useful platform for facilitating exposure therapy, being more acceptable than in-vivo exposure and more flexible than virtual reality exposure.Keywords: anxiety, digital mental health, exposure therapy, phobia, robot, virtual reality
Procedia PDF Downloads 771492 Simulation of an Active Controlled Vibration Isolation System for Astronaut’s Exercise Platform
Authors: Shield B. Lin, Sameer Abdali
Abstract:
Computer simulations were performed using MATLAB/Simulink for a vibration isolation system for astronaut’s exercise platform. Simulation parameters initially were based on an on-going experiment in a laboratory at NASA Johnson Space Center. The authors expanded later simulations to include other parameters. A discrete proportional-integral-derivative controller with a low-pass filter commanding a linear actuator served as the active control unit to push and pull a counterweight in balancing the disturbance forces. A spring-damper device is used as an optional passive control unit. Simulation results indicated such design could achieve near complete vibration isolation with small displacements of the exercise platform.Keywords: control, counterweight, isolation, vibration
Procedia PDF Downloads 1491491 The Effects of Science, Technology, Engineering and Math Problem-Based Learning on Native Hawaiians and Other Underrepresented, Low-Income, Potential First-Generation High School Students
Authors: Nahid Nariman
Abstract:
The prosperity of any nation depends on its ability to use human potential, in particular, to offer an education that builds learners' competencies to become effective workforce participants and true citizens of the world. Ever since the Second World War, the United States has been a dominant player in the world politically, economically, socially, and culturally. The rapid rise of technological advancement and consumer technologies have made it clear that science, technology, engineering, and math (STEM) play a crucial role in today’s world economy. Exploring the top qualities demanded from new hires in the industry—i.e., problem-solving skills, teamwork, dependability, adaptability, technical and communication skills— sheds light on the kind of path that is needed for a successful educational system to effectively support STEM. The focus of 21st century education has been to build student competencies by preparing them to acquire and apply knowledge, to think critically and creatively, to competently use information, be able to work in teams, to demonstrate intellectual and moral values as well as cultural awareness, and to be able to communicate. Many educational reforms pinpoint various 'ideal' pathways toward STEM that educators, policy makers, and business leaders have identified for educating the workforce of tomorrow. This study will explore how problem-based learning (PBL), an instructional strategy developed in the medical field and adopted with many successful results in K-12 through higher education, is the proper approach to stimulate underrepresented high school students' interest in pursuing STEM careers. In the current study, the effect of a problem-based STEM model on students' attitudes and career interests was investigated using qualitative and quantitative methods. The participants were 71 low-income, native Hawaiian high school students who would be first-generation college students. They were attending a summer STEM camp developed as the result of a collaboration between the University of Hawaii and the Upward Bound Program. The project, funded by the National Science Foundation's Innovative Technology Experiences for Students and Teachers (ITEST) program, used PBL as an approach in challenging students to engage in solving hands-on, real-world problems in their communities. Pre-surveys were used before camp and post-surveys on the last day of the program to learn about the implementation of the PBL STEM model. A Career Interest Questionnaire provided a way to investigate students’ career interests. After the summer camp, a representative selection of students participated in focus group interviews to discuss their opinions about the PBL STEM camp. The findings revealed a significantly positive increase in students' attitudes towards STEM disciplines and STEM careers. The students' interview results also revealed that students identified PBL to be an effective form of instruction in their learning and in the development of their 21st-century skills. PBL was acknowledged for making the class more enjoyable and for raising students' interest in STEM careers, while also helping them develop teamwork and communication skills in addition to scientific knowledge. As a result, the integration of PBL and a STEM learning experience was shown to positively affect students’ interest in STEM careers.Keywords: problem-based learning, science education, STEM, underrepresented students
Procedia PDF Downloads 1241490 Iranian English as Foreign Language Teachers' Psychological Well-Being across Gender: During the Pandemic
Authors: Fatemeh Asadi Farsad, Sima Modirkhameneh
Abstract:
The purpose of this study was to explore the pattern of Psychological Well-Being (PWB) of Iranian male and female EFL teachers during the pandemic. It was intended to see if such a drastic change in the context and mode of teaching affects teachers' PWB. Furthermore, the possible difference between the six elements of PWB of Iranian EFL male vs. female teachers during the pandemic was investigated. The other purpose was to find out the EFL teachers’ perceptions of any modifications, and factors leading to such modifications in their PWB during pandemic. For the purpose of this investigation, a total of 81 EFL teachers (59 female, 22 male) with an age range of 25 to 35 were conveniently sampled from different cities in Iran. Ryff’s PWB questionnaire was sent to participant teachers through online platforms to elicit data on their PWB. As for their perceptions on the possible modifications and the factors involved in PWB during pandemic, a set of semi-structured interviews were run among both sample groups. The findings revealed that male EFL teachers had the highest mean on personal growth, followed by purpose of life, and self-acceptance and the lowest mean on environmental mastery. With a slightly similar pattern, female EFL teachers had the highest mean on personal growth, followed by purpose in life, and positive relationship with others with the lowest mean on environmental mastery. However, no significant difference was observed between the male and female groups’ overall means on elements of PWB. Additionally, participants perceived that their anxiety level in online classes altered due to factors like (1) Computer literacy skills, (2) Lack of social communications and interactions with colleagues and students, (3) Online class management, (4) Overwhelming workloads, and (5) Time management. The study ends with further suggestions as regards effective online teaching preparation considering teachers PWB, especially at severe situations such as covid-19 pandemic. The findings offer to determine the reformations of educational policies concerning enhancing EFL teachers’ PWB through computer literacy courses and stress management courses. It is also suggested that to proactively support teachers’ mental health, it is necessary to provide them with advisors and psychologists if possible for free. Limitations: One limitation is the small number of participants (81), suggesting that future replications should include more participants for reliable findings. Another limitation is the gender imbalance, which future studies should address to yield better outcomes. Furthermore, Limited data gathering tools suggest using observations, diaries, and narratives for more insights in future studies. The study focused on one model of PWB, calling for further research on other models in the literature. Considering the wide effect of the COVID-19 pandemic, future studies should consider additional variables (e.g., teaching experience, age, income) to understand Iranian EFL teachers’ vulnerabilities and strengths better.Keywords: online teaching, psychological well-being, female and male EFL teachers, pandemic
Procedia PDF Downloads 471489 Database Management System for Orphanages to Help Track of Orphans
Authors: Srivatsav Sanjay Sridhar, Asvitha Raja, Prathit Kalra, Soni Gupta
Abstract:
Database management is a system that keeps track of details about a person in an organisation. Not a lot of orphanages these days are shifting to a computer and program-based system, but unfortunately, most have only pen and paper-based records, which not only consumes space but it is also not eco-friendly. It comes as a hassle when one has to view a record of a person as they have to search through multiple records, and it will consume time. This program will organise all the data and can pull out any information about anyone whose data is entered. This is also a safe way of storage as physical data gets degraded over time or, worse, destroyed due to natural disasters. In this developing world, it is only smart enough to shift all data to an electronic-based storage system. The program comes with all features, including creating, inserting, searching, and deleting the data, as well as printing them.Keywords: database, orphans, programming, C⁺⁺
Procedia PDF Downloads 1561488 On Dialogue Systems Based on Deep Learning
Authors: Yifan Fan, Xudong Luo, Pingping Lin
Abstract:
Nowadays, dialogue systems increasingly become the way for humans to access many computer systems. So, humans can interact with computers in natural language. A dialogue system consists of three parts: understanding what humans say in natural language, managing dialogue, and generating responses in natural language. In this paper, we survey deep learning based methods for dialogue management, response generation and dialogue evaluation. Specifically, these methods are based on neural network, long short-term memory network, deep reinforcement learning, pre-training and generative adversarial network. We compare these methods and point out the further research directions.Keywords: dialogue management, response generation, deep learning, evaluation
Procedia PDF Downloads 1671487 6D Posture Estimation of Road Vehicles from Color Images
Authors: Yoshimoto Kurihara, Tad Gonsalves
Abstract:
Currently, in the field of object posture estimation, there is research on estimating the position and angle of an object by storing a 3D model of the object to be estimated in advance in a computer and matching it with the model. However, in this research, we have succeeded in creating a module that is much simpler, smaller in scale, and faster in operation. Our 6D pose estimation model consists of two different networks – a classification network and a regression network. From a single RGB image, the trained model estimates the class of the object in the image, the coordinates of the object, and its rotation angle in 3D space. In addition, we compared the estimation accuracy of each camera position, i.e., the angle from which the object was captured. The highest accuracy was recorded when the camera position was 75°, the accuracy of the classification was about 87.3%, and that of regression was about 98.9%.Keywords: 6D posture estimation, image recognition, deep learning, AlexNet
Procedia PDF Downloads 1551486 Work Happiness for Personnel of Suan Sunandha Rajabhat University
Authors: Adisai Thovicha
Abstract:
This study is the survey research, designed to study the work happiness level of personnel at Suan Sunandha Rajabhat University. The sample group consisted of 329 personnel. The results were collected by stratified sampling, using work positions for each stage. The results were analyzed and calculated by computer program. Statistics used during analyzing were percentage, mean, and standard deviation. From the study, the work happiness level of personnel were in very high score range in both overall and specific category. The top category which received the most score was positive attitude, work satisfaction, life satisfaction, and negative attitude.Keywords: work happiness, Suan Sunandha Rajabhat University, personnel, positive attitude
Procedia PDF Downloads 3751485 Modeling Search-And-Rescue Operations by Autonomous Mobile Robots at Sea
Authors: B. Kriheli, E. Levner, T. C. E. Cheng, C. T. Ng
Abstract:
During the last decades, research interest in planning, scheduling, and control of emergency response operations, especially people rescue and evacuation from the dangerous zone of marine accidents, has increased dramatically. Until the survivors (called ‘targets’) are found and saved, it may cause loss or damage whose extent depends on the location of the targets and the search duration. The problem is to efficiently search for and detect/rescue the targets as soon as possible with the help of intelligent mobile robots so as to maximize the number of saved people and/or minimize the search cost under restrictions on the amount of saved people within the allowable response time. We consider a special situation when the autonomous mobile robots (AMR), e.g., unmanned aerial vehicles and remote-controlled robo-ships have no operator on board as they are guided and completely controlled by on-board sensors and computer programs. We construct a mathematical model for the search process in an uncertain environment and provide a new fast algorithm for scheduling the activities of the autonomous robots during the search-and rescue missions after an accident at sea. We presume that in the unknown environments, the AMR’s search-and-rescue activity is subject to two types of error: (i) a 'false-negative' detection error where a target object is not discovered (‘overlooked') by the AMR’s sensors in spite that the AMR is in a close neighborhood of the latter and (ii) a 'false-positive' detection error, also known as ‘a false alarm’, in which a clean place or area is wrongly classified by the AMR’s sensors as a correct target. As the general resource-constrained discrete search problem is NP-hard, we restrict our study to finding local-optimal strategies. A specificity of the considered operational research problem in comparison with the traditional Kadane-De Groot-Stone search models is that in our model the probability of the successful search outcome depends not only on cost/time/probability parameters assigned to each individual location but, as well, on parameters characterizing the entire history of (unsuccessful) search before selecting any next location. We provide a fast approximation algorithm for finding the AMR route adopting a greedy search strategy in which, in each step, the on-board computer computes a current search effectiveness value for each location in the zone and sequentially searches for a location with the highest search effectiveness value. Extensive experiments with random and real-life data provide strong evidence in favor of the suggested operations research model and corresponding algorithm.Keywords: disaster management, intelligent robots, scheduling algorithm, search-and-rescue at sea
Procedia PDF Downloads 1711484 Buckling Analysis of 2D Frames Using the Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The main purpose of this paper is to present the Modified Newmark Method of buckling analysis frame considering the effect of the axial load. The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. In this method, stiffness matrix of the structure is considered to be constant. The most important advantage of such a method is that it obtains both upper and lower critical loads. The advanced of the present method is fast convergence, ability to use computer simulations, and ability to model structures with semi-rigid support conditions using linear and rotational spring.Keywords: buckling, stability, frame, modified newmark method
Procedia PDF Downloads 4171483 Gender Recognition with Deep Belief Networks
Authors: Xiaoqi Jia, Qing Zhu, Hao Zhang, Su Yang
Abstract:
A gender recognition system is able to tell the gender of the given person through a few of frontal facial images. An effective gender recognition approach enables to improve the performance of many other applications, including security monitoring, human-computer interaction, image or video retrieval and so on. In this paper, we present an effective method for gender classification task in frontal facial images based on deep belief networks (DBNs), which can pre-train model and improve accuracy a little bit. Our experiments have shown that the pre-training method with DBNs for gender classification task is feasible and achieves a little improvement of accuracy on FERET and CAS-PEAL-R1 facial datasets.Keywords: gender recognition, beep belief net-works, semi-supervised learning, greedy-layer wise RBMs
Procedia PDF Downloads 4531482 Percolation Transition in an Agglomeration of Spherical Particles
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.Keywords: binary system, maximum cluster size, percolation, polydisperse
Procedia PDF Downloads 611481 Vision Based People Tracking System
Authors: Boukerch Haroun, Luo Qing Sheng, Li Hua Shi, Boukraa Sebti
Abstract:
In this paper we present the design and the implementation of a target tracking system where the target is set to be a moving person in a video sequence. The system can be applied easily as a vision system for mobile robot. The system is composed of two major parts the first is the detection of the person in the video frame using the SVM learning machine based on the “HOG” descriptors. The second part is the tracking of a moving person it’s done by using a combination of the Kalman filter and a modified version of the Camshift tracking algorithm by adding the target motion feature to the color feature, the experimental results had shown that the new algorithm had overcame the traditional Camshift algorithm in robustness and in case of occlusion.Keywords: camshift algorithm, computer vision, Kalman filter, object tracking
Procedia PDF Downloads 4461480 Generating Individualized Wildfire Risk Assessments Utilizing Multispectral Imagery and Geospatial Artificial Intelligence
Authors: Gus Calderon, Richard McCreight, Tammy Schwartz
Abstract:
Forensic analysis of community wildfire destruction in California has shown that reducing or removing flammable vegetation in proximity to buildings and structures is one of the most important wildfire defenses available to homeowners. State laws specify the requirements for homeowners to create and maintain defensible space around all structures. Unfortunately, this decades-long effort had limited success due to noncompliance and minimal enforcement. As a result, vulnerable communities continue to experience escalating human and economic costs along the wildland-urban interface (WUI). Quantifying vegetative fuels at both the community and parcel scale requires detailed imaging from an aircraft with remote sensing technology to reduce uncertainty. FireWatch has been delivering high spatial resolution (5” ground sample distance) wildfire hazard maps annually to the community of Rancho Santa Fe, CA, since 2019. FireWatch uses a multispectral imaging system mounted onboard an aircraft to create georeferenced orthomosaics and spectral vegetation index maps. Using proprietary algorithms, the vegetation type, condition, and proximity to structures are determined for 1,851 properties in the community. Secondary data processing combines object-based classification of vegetative fuels, assisted by machine learning, to prioritize mitigation strategies within the community. The remote sensing data for the 10 sq. mi. community is divided into parcels and sent to all homeowners in the form of defensible space maps and reports. Follow-up aerial surveys are performed annually using repeat station imaging of fixed GPS locations to address changes in defensible space, vegetation fuel cover, and condition over time. These maps and reports have increased wildfire awareness and mitigation efforts from 40% to over 85% among homeowners in Rancho Santa Fe. To assist homeowners fighting increasing insurance premiums and non-renewals, FireWatch has partnered with Black Swan Analytics, LLC, to leverage the multispectral imagery and increase homeowners’ understanding of wildfire risk drivers. For this study, a subsample of 100 parcels was selected to gain a comprehensive understanding of wildfire risk and the elements which can be mitigated. Geospatial data from FireWatch’s defensible space maps was combined with Black Swan’s patented approach using 39 other risk characteristics into a 4score Report. The 4score Report helps property owners understand risk sources and potential mitigation opportunities by assessing four categories of risk: Fuel sources, ignition sources, susceptibility to loss, and hazards to fire protection efforts (FISH). This study has shown that susceptibility to loss is the category residents and property owners must focus their efforts. The 4score Report also provides a tool to measure the impact of homeowner actions on risk levels over time. Resiliency is the only solution to breaking the cycle of community wildfire destruction and it starts with high-quality data and education.Keywords: defensible space, geospatial data, multispectral imaging, Rancho Santa Fe, susceptibility to loss, wildfire risk.
Procedia PDF Downloads 1081479 A Comparative Evaluation of Cognitive Load Management: Case Study of Postgraduate Business Students
Authors: Kavita Goel, Donald Winchester
Abstract:
In a world of information overload and work complexities, academics often struggle to create an online instructional environment enabling efficient and effective student learning. Research has established that students’ learning styles are different, some learn faster when taught using audio and visual methods. Attributes like prior knowledge and mental effort affect their learning. ‘Cognitive load theory’, opines learners have limited processing capacity. Cognitive load depends on the learner’s prior knowledge, the complexity of content and tasks, and instructional environment. Hence, the proper allocation of cognitive resources is critical for students’ learning. Consequently, a lecturer needs to understand the limits and strengths of the human learning processes, various learning styles of students, and accommodate these requirements while designing online assessments. As acknowledged in the cognitive load theory literature, visual and auditory explanations of worked examples potentially lead to a reduction of cognitive load (effort) and increased facilitation of learning when compared to conventional sequential text problem solving. This will help learner to utilize both subcomponents of their working memory. Instructional design changes were introduced at the case site for the delivery of the postgraduate business subjects. To make effective use of auditory and visual modalities, video recorded lectures, and key concept webinars were delivered to students. Videos were prepared to free up student limited working memory from irrelevant mental effort as all elements in a visual screening can be viewed simultaneously, processed quickly, and facilitates greater psychological processing efficiency. Most case study students in the postgraduate programs are adults, working full-time at higher management levels, and studying part-time. Their learning style and needs are different from other tertiary students. The purpose of the audio and visual interventions was to lower the students cognitive load and provide an online environment supportive to their efficient learning. These changes were expected to impact the student’s learning experience, their academic performance and retention favourably. This paper posits that these changes to instruction design facilitates students to integrate new knowledge into their long-term memory. A mixed methods case study methodology was used in this investigation. Primary data were collected from interviews and survey(s) of students and academics. Secondary data were collected from the organisation’s databases and reports. Some evidence was found that the academic performance of students does improve when new instructional design changes are introduced although not statistically significant. However, the overall grade distribution of student’s academic performance has changed and skewed higher which shows deeper understanding of the content. It was identified from feedback received from students that recorded webinars served as better learning aids than material with text alone, especially with more complex content. The recorded webinars on the subject content and assessments provides flexibility to students to access this material any time from repositories, many times, and this enhances students learning style. Visual and audio information enters student’s working memory more effectively. Also as each assessment included the application of the concepts, conceptual knowledge interacted with the pre-existing schema in the long-term memory and lowered student’s cognitive load.Keywords: cognitive load theory, learning style, instructional environment, working memory
Procedia PDF Downloads 1451478 Artificial Law: Legal AI Systems and the Need to Satisfy Principles of Justice, Equality and the Protection of Human Rights
Authors: Begum Koru, Isik Aybay, Demet Celik Ulusoy
Abstract:
The discipline of law is quite complex and has its own terminology. Apart from written legal rules, there is also living law, which refers to legal practice. Basic legal rules aim at the happiness of individuals in social life and have different characteristics in different branches such as public or private law. On the other hand, law is a national phenomenon. The law of one nation and the legal system applied on the territory of another nation may be completely different. People who are experts in a particular field of law in one country may have insufficient expertise in the law of another country. Today, in addition to the local nature of law, international and even supranational law rules are applied in order to protect basic human values and ensure the protection of human rights around the world. Systems that offer algorithmic solutions to legal problems using artificial intelligence (AI) tools will perhaps serve to produce very meaningful results in terms of human rights. However, algorithms to be used should not be developed by only computer experts, but also need the contribution of people who are familiar with law, values, judicial decisions, and even the social and political culture of the society to which it will provide solutions. Otherwise, even if the algorithm works perfectly, it may not be compatible with the values of the society in which it is applied. The latest developments involving the use of AI techniques in legal systems indicate that artificial law will emerge as a new field in the discipline of law. More AI systems are already being applied in the field of law, with examples such as predicting judicial decisions, text summarization, decision support systems, and classification of documents. Algorithms for legal systems employing AI tools, especially in the field of prediction of judicial decisions and decision support systems, have the capacity to create automatic decisions instead of judges. When the judge is removed from this equation, artificial intelligence-made law created by an intelligent algorithm on its own emerges, whether the domain is national or international law. In this work, the aim is to make a general analysis of this new topic. Such an analysis needs both a literature survey and a perspective from computer experts' and lawyers' point of view. In some societies, the use of prediction or decision support systems may be useful to integrate international human rights safeguards. In this case, artificial law can serve to produce more comprehensive and human rights-protective results than written or living law. In non-democratic countries, it may even be thought that direct decisions and artificial intelligence-made law would be more protective instead of a decision "support" system. Since the values of law are directed towards "human happiness or well-being", it requires that the AI algorithms should always be capable of serving this purpose and based on the rule of law, the principle of justice and equality, and the protection of human rights.Keywords: AI and law, artificial law, protection of human rights, AI tools for legal systems
Procedia PDF Downloads 741477 Unsteady MHD Thin Film Flow of a Third-Grade Fluid with Heat Transfer and Slip Boundary Condition Down an Inclined Plane
Authors: Y. M. Aiyesimi, G. T. Okedayo, O. W. Lawal
Abstract:
An investigation is made for unsteady MHD thin film flow of a third grade fluid down an inclined plane with slip boundary condition. The non-linear partial differential equation governing the flow and heat transfer are evaluated numerically using computer software called Maple to obtain velocity and temperature profile. The effect of slip and other various physical parameter on both velocity and temperature profile obtained are studied through several graphs.Keywords: non-Newtonian fluid, MHD flow, third-grade fluid, Maple, slip boundary condition, heat transfer
Procedia PDF Downloads 4551476 Development of Evolutionary Algorithm by Combining Optimization and Imitation Approach for Machine Learning in Gaming
Authors: Rohit Mittal, Bright Keswani, Amit Mithal
Abstract:
This paper provides a sense about the application of computational intelligence techniques used to develop computer games, especially car racing. For the deep sense and knowledge of artificial intelligence, this paper is divided into various sections that is optimization, imitation, innovation and combining approach of optimization and imitation. This paper is mainly concerned with combining approach which tells different aspects of using fitness measures and supervised learning techniques used to imitate aspects of behavior. The main achievement of this paper is based on modelling player behaviour and evolving new game content such as racing tracks as single car racing on single track.Keywords: evolution algorithm, genetic, optimization, imitation, racing, innovation, gaming
Procedia PDF Downloads 6461475 Physics’s Practical Based on Android as a Motivator in Learning Physics
Authors: Yuni Rochmawati, Luluk Il Mukarromah
Abstract:
Android is a mobile operating system (OS) based on the linux kerrnel and currently developed by google. With a user interface based on direct manipulation, Android is designed primarily for touchscreen mobile deviced such as smartphone and tablet computer, with specialized user interface for television (Android TV), cars (Android Auto), and wrist watches (Android Wear). Now, almost all peoples using smartphone. Smartphone seems to be a must-have object, because smartphone has many benefits. In addition, of course smartphone have many benefits for education, like resume of lesson that form of e-book. However, this article is not about resume of lesson. This article is about practical based on android, exactly for physics. Therefore, we will explain our idea about physics’s practical based on android and for output, we wish many students will be like to studying physics and always remember about physics’s phenomenon by physics’s practical based on android.Keywords: android, smartphone, physics, practical
Procedia PDF Downloads 2421474 CT Images Based Dense Facial Soft Tissue Thickness Measurement by Open-source Tools in Chinese Population
Authors: Ye Xue, Zhenhua Deng
Abstract:
Objectives: Facial soft tissue thickness (FSTT) data could be obtained from CT scans by measuring the face-to-skull distances at sparsely distributed anatomical landmarks by manually located on face and skull. However, automated measurement using 3D facial and skull models by dense points using open-source software has become a viable option due to the development of computed assisted imaging technologies. By utilizing dense FSTT information, it becomes feasible to generate plausible automated facial approximations. Therefore, establishing a comprehensive and detailed, densely calculated FSTT database is crucial in enhancing the accuracy of facial approximation. Materials and methods: This study utilized head CT scans from 250 Chinese adults of Han ethnicity, with 170 participants originally born and residing in northern China and 80 participants in southern China. The age of the participants ranged from 14 to 82 years, and all samples were divided into five non-overlapping age groups. Additionally, samples were also divided into three categories based on BMI information. The 3D Slicer software was utilized to segment bone and soft tissue based on different Hounsfield Unit (HU) thresholds, and surface models of the face and skull were reconstructed for all samples from CT data. Following procedures were performed unsing MeshLab, including converting the face models into hollowed cropped surface models amd automatically measuring the Hausdorff Distance (referred to as FSTT) between the skull and face models. Hausdorff point clouds were colorized based on depth value and exported as PLY files. A histogram of the depth distributions could be view and subdivided into smaller increments. All PLY files were visualized of Hausdorff distance value of each vertex. Basic descriptive statistics (i.e., mean, maximum, minimum and standard deviation etc.) and distribution of FSTT were analysis considering the sex, age, BMI and birthplace. Statistical methods employed included Multiple Regression Analysis, ANOVA, principal component analysis (PCA). Results: The distribution of FSTT is mainly influenced by BMI and sex, as further supported by the results of the PCA analysis. Additionally, FSTT values exceeding 30mm were found to be more sensitive to sex. Birthplace-related differences were observed in regions such as the forehead, orbital, mandibular, and zygoma. Specifically, there are distribution variances in the depth range of 20-30mm, particularly in the mandibular region. Northern males exhibit thinner FSTT in the frontal region of the forehead compared to southern males, while females shows fewer distribution differences between the northern and southern, except for the zygoma region. The observed distribution variance in the orbital region could be attributed to differences in orbital size and shape. Discussion: This study provides a database of Chinese individuals distribution of FSTT and suggested opening source tool shows fine function for FSTT measurement. By incorporating birthplace as an influential factor in the distribution of FSTT, a greater level of detail can be achieved in facial approximation.Keywords: forensic anthropology, forensic imaging, cranial facial reconstruction, facial soft tissue thickness, CT, open-source tool
Procedia PDF Downloads 581473 Comparing the Effect of Virtual Reality and Sound on Landscape Perception
Authors: Mark Lindquist
Abstract:
This paper presents preliminary results of exploratory empirical research investigating the effect of viewing 3D landscape visualizations in virtual reality compared to a computer monitor, and how sound impacts perception. Five landscape types were paired with three sound conditions (no sound, generic sound, realistic sound). Perceived realism, preference, recreational value, and biodiversity were evaluated in a controlled laboratory environment. Results indicate that sound has a larger perceptual impact than display mode regardless of sound source across all perceptual measures. The results are considered to assess how sound can impact landscape preference and spatiotemporal understanding. The paper concludes with a discussion of the impact on designers, planners, and the public and targets future research endeavors in this area.Keywords: landscape experience, perception, soundscape, virtual reality
Procedia PDF Downloads 1691472 The Application of ICT in E-Assessment and E-Learning in Language Learning and Teaching
Authors: Seyyed Hassan Seyyedrezaei
Abstract:
The advent of computer and ICT thereafter has introduced many irrevocable changes in learning and teaching. There is substantially growing need for the use of IT and ICT in language learning and teaching. In other words, the integration of Information Technology (IT) into online teaching is of vital importance for education and assessment. Considering the fact that the image of education is undergone drastic changes by the advent of technology, education systems and teachers move beyond the walls of traditional classes and methods in order to join with other educational centers to revitalize education. Given the advent of distance learning, online courses and virtual universities, e-assessment has taken a prominent place in effective teaching and meeting the learners' educational needs. The purpose of this paper is twofold: first, scrutinizing e-learning, it discusses how and why e-assessment is becoming widely used by educationalists and administrators worldwide. As a second purpose, a couple of effective strategies for online assessment will be enumerated.Keywords: e-assessment, e learning, ICT, online assessment
Procedia PDF Downloads 5681471 Decomposition-Based Pricing Technique for Solving Large-Scale Mixed IP
Authors: M. Babul Hasan
Abstract:
Management sciences (MS), big group of companies and industries or government policies (GP) is affiliated with a huge number of decision ingredients and complicated restrictions. Every factor in MS, every product in Industries or decision in GP is not always bankable in practice. After formulating these models there arises large-scale mixed integer programming (MIP) problem. In this paper, we developed decomposition-based pricing procedure to filter the unnecessary decision ingredients from MIP where the variables in huge number will be abated and the complicacy of restrictions will be elementary. A real life numerical example has been illustrated to demonstrate the methods. We develop the computer techniques for these methods by using a mathematical programming language (AMPL).Keywords: Lagrangian relaxation, decomposition, sub-problem, master-problem, pricing, mixed IP, AMPL
Procedia PDF Downloads 5051470 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials
Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries
Abstract:
Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring
Procedia PDF Downloads 106