Search results for: energy based method
41902 Comparison of Bismuth-Based Nanoparticles as Radiosensitization Agents for Radiotherapy
Authors: Merfat Algethami, Anton Blencowe, Bryce Feltis, Stephen Best, Moshi Geso
Abstract:
Nano-materials with high atomic number atoms have been demonstrated to enhance the effective radiation dose and thus potentially could improve therapeutic efficacy in radiotherapy. The optimal nanoparticulate agents require high X-ray absorption coefficients, low toxicity, and should be cost effective. The focus of our research is the development of a nanoparticle therapeutic agent that can be used in radiotherapy to provide optimal enhancement of the radiation effects on the target. In this study, we used bismuth (Bi) nanoparticles coated with starch and bismuth sulphide nanoparticles (Bi2S3) coated with polyvinylpyrrolidone (PVP). These NPs are of low toxicity and are one of the least expensive heavy metal-based nanoparticles. The aims of this study were to synthesise Bi2S3 and Bi NPs, and examine their cytotoxicity to human lung adenocarcinoma epithelial cells (A549). The dose enhancing effects of NPs on A549 cells were examined at both KV and MV energies. The preliminary results revealed that bismuth based nanoparticles show increased radio-sensitisation of cells, displaying dose enhancement with KV X-ray energies and to a lesser degree for the MV energies. We also observed that Bi NPs generated a greater dose enhancement effect than Bi2S3 NPs in irradiated A549 cells. The maximum Dose Enhancement Factor (DEF) was obtained at lower energy KV range when cells treated with Bi NPs (1.5) compared to the DEF of 1.2 when cells treated with Bi2S3NPs. Less radiation dose enhancement was observed when using high energy MV beam with higher DEF value of Bi NPs treatment (1.26) as compared to 1.06 DEF value with Bi2S3 NPs. The greater dose enhancement was achieved at KV energy range, due the effect of the photoelectric effect which is the dominant process of interaction of X-ray. The cytotoxic effect of Bi NPs on enhancing the X-ray dose was higher due to the higher amount of elemental Bismuth present in Bi NPs compared to Bi2S3 NPs. The results suggest that Bismuth based NPs can be considered as valuable dose enhancing agents when used in clinical applications.Keywords: A549 lung cancer cells, Bi2S3 nanoparticles, dose enhancement effect, radio-sensitising agents
Procedia PDF Downloads 27141901 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 14041900 The Acquisition of Case in Biological Domain Based on Text Mining
Authors: Shen Jian, Hu Jie, Qi Jin, Liu Wei Jie, Chen Ji Yi, Peng Ying Hong
Abstract:
In order to settle the problem of acquiring case in biological related to design problems, a biometrics instance acquisition method based on text mining is presented. Through the construction of corpus text vector space and knowledge mining, the feature selection, similarity measure and case retrieval method of text in the field of biology are studied. First, we establish a vector space model of the corpus in the biological field and complete the preprocessing steps. Then, the corpus is retrieved by using the vector space model combined with the functional keywords to obtain the biological domain examples related to the design problems. Finally, we verify the validity of this method by taking the example of text.Keywords: text mining, vector space model, feature selection, biologically inspired design
Procedia PDF Downloads 26241899 Eco-Friendly Silicone/Graphene-Based Nanocomposites as Superhydrophobic Antifouling Coatings
Authors: Mohamed S. Selim, Nesreen A. Fatthallah, Shimaa A. Higazy, Hekmat R. Madian, Sherif A. El-Safty, Mohamed A. Shenashen
Abstract:
After the 2003 prohibition on employing TBT-based antifouling coatings, polysiloxane antifouling nano-coatings have gained in popularity as environmentally friendly and cost-effective replacements. A series of non-toxic polydimethylsiloxane nanocomposites filled with nanosheets of graphene oxide (GO) decorated with magnetite nanospheres (GO-Fe₃O₄ nanospheres) were developed and cured via a catalytic hydrosilation method. Various GO-Fe₃O₄ hybrid concentrations were mixed with the silicone resin via solution casting technique to evaluate the structure–property connection. To generate GO nanosheets, a modified Hummers method was applied. A simple co-precipitation method was used to make spherical magnetite particles under inert nitrogen. Hybrid GO-Fe₃O₄ composite fillers were developed by a simple ultrasonication method. Superhydrophobic PDMS/GO-Fe₃O₄ nanocomposite surface with a micro/nano-roughness, reduced surface-free energy (SFE), high fouling release (FR) efficiency was achieved. The physical, mechanical, and anticorrosive features of the virgin and GO-Fe₃O₄ filled nanocomposites were investigated. The synergistic effects of GO-Fe₃O4 hybrid's well-dispersion on the water-repellency and surface topological roughness of the PDMS/GO-Fe₃O₄ nanopaints were extensively studied. The addition of the GO-Fe₃O₄ hybrid fillers till 1 wt.% could increase the coating's water contact angle (158°±2°), minimize its SFE to 12.06 mN/m, develop outstanding micro/nano-roughness, and improve its bulk mechanical and anticorrosion properties. Several microorganisms were employed for examining the fouling-resistance of the coated specimens for 1 month. Silicone coatings filled with 1 wt.% GO-Fe₃O₄ nanofiller showed the least biodegradability% among all the tested microorganisms. Whereas GO-Fe₃O4 with 5 wt.% nanofiller possessed the highest biodegradability% potency by all the microorganisms. We successfully developed non-toxic and low cost nanostructured FR composite coating with high antifouling-resistance, reproducible superhydrophobic character, and enhanced service-time for maritime navigation.Keywords: silicone antifouling, environmentally friendly, nanocomposites, nanofillers, fouling repellency, hydrophobicity
Procedia PDF Downloads 11441898 Arabic Lexicon Learning to Analyze Sentiment in Microblogs
Authors: Mahmoud B. Rokaya
Abstract:
The study of opinion mining and sentiment analysis includes analysis of opinions, sentiments, evaluations, attitudes, and emotions. The rapid growth of social media, social networks, reviews, forum discussions, microblogs, and Twitter, leads to a parallel growth in the field of sentiment analysis. The field of sentiment analysis tries to develop effective tools to make it possible to capture the trends of people. There are two approaches in the field, lexicon-based and corpus-based methods. A lexicon-based method uses a sentiment lexicon which includes sentiment words and phrases with assigned numeric scores. These scores reveal if sentiment phrases are positive or negative, their intensity, and/or their emotional orientations. Creation of manual lexicons is hard. This brings the need for adaptive automated methods for generating a lexicon. The proposed method generates dynamic lexicons based on the corpus and then classifies text using these lexicons. In the proposed method, different approaches are combined to generate lexicons from text. The proposed method classifies the tweets into 5 classes instead of +ve or –ve classes. The sentiment classification problem is written as an optimization problem, finding optimum sentiment lexicons are the goal of the optimization process. The solution was produced based on mathematical programming approaches to find the best lexicon to classify texts. A genetic algorithm was written to find the optimal lexicon. Then, extraction of a meta-level feature was done based on the optimal lexicon. The experiments were conducted on several datasets. Results, in terms of accuracy, recall and F measure, outperformed the state-of-the-art methods proposed in the literature in some of the datasets. A better understanding of the Arabic language and culture of Arab Twitter users and sentiment orientation of words in different contexts can be achieved based on the sentiment lexicons proposed by the algorithm.Keywords: social media, Twitter sentiment, sentiment analysis, lexicon, genetic algorithm, evolutionary computation
Procedia PDF Downloads 18941897 Cupric Oxide Thin Films for Optoelectronic Application
Authors: Sanjay Kumar, Dinesh Pathak, Sudhir Saralch
Abstract:
Copper oxide is a semiconductor that has been studied for several reasons such as the natural abundance of starting material copper (Cu); the easiness of production by Cu oxidation; their non-toxic nature and the reasonably good electrical and optical properties. Copper oxide is well-known as cuprite oxide. The cuprite is p-type semiconductors having band gap energy of 1.21 to 1.51 eV. As a p-type semiconductor, conduction arises from the presence of holes in the valence band (VB) due to doping/annealing. CuO is attractive as a selective solar absorber since it has high solar absorbency and a low thermal emittance. CuO is very promising candidate for solar cell applications as it is a suitable material for photovoltaic energy conversion. It has been demonstrated that the dip technique can be used to deposit CuO films in a simple manner using metallic chlorides (CuCl₂.2H₂O) as a starting material. Copper oxide films are prepared using a methanolic solution of cupric chloride (CuCl₂.2H₂O) at three baking temperatures. We made three samples, after heating which converts to black colour. XRD data confirm that the films are of CuO phases at a particular temperature. The optical band gap of the CuO films calculated from optical absorption measurements is 1.90 eV which is quite comparable to the reported value. Dip technique is a very simple and low-cost method, which requires no sophisticated specialized setup. Coating of the substrate with a large surface area can be easily obtained by this technique compared to that in physical evaporation techniques and spray pyrolysis. Another advantage of the dip technique is that it is very easy to coat both sides of the substrate instead of only one and to deposit otherwise inaccessible surfaces. This method is well suited for applying coating on the inner and outer surfaces of tubes of various diameters and shapes. The main advantage of the dip coating method lies in the fact that it is possible to deposit a variety of layers having good homogeneity and mechanical and chemical stability with a very simple setup. In this paper, the CuO thin films preparation by dip coating method and their characterization will be presented.Keywords: absorber material, cupric oxide, dip coating, thin film
Procedia PDF Downloads 30941896 Soil Sensibility Characterization of Granular Soils Due to Suffusion
Authors: Abdul Rochim, Didier Marot, Luc Sibille
Abstract:
This paper studies the characterization of soil sensibility due to suffusion process by carrying out a series of one-dimensional downward seepage flow tests realized with an erodimeter. Tests were performed under controlled hydraulic gradient in sandy gravel soils. We propose the analysis based on energy induced by the seepage flow to characterize the hydraulic loading and the cumulative eroded dry mass to characterize the soil response. With this approach, the effect of hydraulic loading histories and initial fines contents to soil sensibility are presented. It is found that for given soils, erosion coefficients are different if tests are performed under different hydraulic loading histories. For given initial fines fraction contents, the sensibility may be grouped in the same classification. The lower fines content soils tend to require larger flow energy to the onset of erosion. These results demonstrate that this approach is effective to characterize suffusion sensibility for granular soils.Keywords: erodimeter, sandy gravel, suffusion, water seepage energy
Procedia PDF Downloads 44741895 New Fourth Order Explicit Group Method in the Solution of the Helmholtz Equation
Authors: Norhashidah Hj Mohd Ali, Teng Wai Ping
Abstract:
In this paper, the formulation of a new group explicit method with a fourth order accuracy is described in solving the two-dimensional Helmholtz equation. The formulation is based on the nine-point fourth-order compact finite difference approximation formula. The complexity analysis of the developed scheme is also presented. Several numerical experiments were conducted to test the feasibility of the developed scheme. Comparisons with other existing schemes will be reported and discussed. Preliminary results indicate that this method is a viable alternative high accuracy solver to the Helmholtz equation.Keywords: explicit group method, finite difference, Helmholtz equation, five-point formula, nine-point formula
Procedia PDF Downloads 50041894 Aero-Hydrodynamic Model for a Floating Offshore Wind Turbine
Authors: Beatrice Fenu, Francesco Niosi, Giovanni Bracco, Giuliana Mattiazzo
Abstract:
In recent years, Europe has seen a great development of renewable energy, in a perspective of reducing polluting emissions and transitioning to cleaner forms of energy, as established by the European Green New Deal. Wind energy has come to cover almost 15% of European electricity needs andis constantly growing. In particular, far-offshore wind turbines are attractive from the point of view of exploiting high-speed winds and high wind availability. Considering offshore wind turbine siting that combines the resources analysis, the bathymetry, environmental regulations, and maritime traffic and considering the waves influence in the stability of the platform, the hydrodynamic characteristics of the platform become fundamental for the evaluation of the performances of the turbine, especially for the pitch motion. Many platform's geometries have been studied and used in the last few years. Their concept is based upon different considerations as hydrostatic stability, material, cost and mooring system. A new method to reach a high-performances substructure for different kinds of wind turbines is proposed. The system that considers substructure, mooring, and wind turbine is implemented in Orcaflex, and the simulations are performed considering several sea states and wind speeds. An external dynamic library is implemented for the turbine control system. The study shows the comparison among different substructures and the new concepts developed. In order to validate the model, CFD simulations will be performed by mean of STAR CCM+, and a comparison between rigid and elastic body for what concerns blades and tower will be carried out. A global model will be built to predict the productivity of the floating turbine according to siting, resources, substructure, and mooring. The Levelized Cost of Electricity (LCOE) of the system is estimated, giving a complete overview about the advantages of floating offshore wind turbine plants. Different case studies will be presented.Keywords: aero-hydrodynamic model, computational fluid dynamics, floating offshore wind, siting, verification, and validation
Procedia PDF Downloads 21541893 Simulation and Thermal Evaluation of Containers Using PCM in Different Weather Conditions of Chile: Energy Savings in Lightweight Constructions
Authors: Paula Marín, Mohammad Saffari, Alvaro de Gracia, Luisa F. Cabeza, Svetlana Ushak
Abstract:
Climate control represents an important issue when referring to energy consumption of buildings and associated expenses, both in installation or operation periods. The climate control of a building relies on several factors. Among them, localization, orientation, architectural elements, sources of energy used, are considered. In order to study the thermal behaviour of a building set up, the present study proposes the use of energy simulation program Energy Plus. In recent years, energy simulation programs have become important tools for evaluation of thermal/energy performance of buildings and facilities. Besides, the need to find new forms of passive conditioning in buildings for energy saving is a critical component. The use of phase change materials (PCMs) for heat storage applications has grown in importance due to its high efficiency. Therefore, the climatic conditions of Northern Chile: high solar radiation and extreme temperature fluctuations ranging from -10°C to 30°C (Calama city), low index of cloudy days during the year are appropriate to take advantage of solar energy and use passive systems in buildings. Also, the extensive mining activities in northern Chile encourage the use of large numbers of containers to harbour workers during shifts. These containers are constructed with lightweight construction systems, requiring heating during night and cooling during day, increasing the HVAC electricity consumption. The use of PCM can improve thermal comfort and reduce the energy consumption. The objective of this study was to evaluate the thermal and energy performance of containers of 2.5×2.5×2.5 m3, located in four cities of Chile: Antofagasta, Calama, Santiago, and Concepción. Lightweight envelopes, typically used in these building prototypes, were evaluated considering a container without PCM inclusion as the reference building and another container with PCM-enhanced envelopes as a test case, both of which have a door and a window in the same wall, orientated in two directions: North and South. To see the thermal response of these containers in different seasons, the simulations were performed considering a period of one year. The results show that higher energy savings for the four cities studied are obtained when the distribution of door and window in the container is in the north direction because of higher solar radiation incidence. The comparison of HVAC consumption and energy savings in % for north direction of door and window are summarised. Simulation results show that in the city of Antofagasta 47% of heating energy could be saved and in the cities of Calama and Concepción the biggest savings in terms of cooling could be achieved since PCM reduces almost all the cooling demand. Currently, based on simulation results, four containers have been constructed and sized with the same structural characteristics carried out in simulations, that are, containers with/without PCM, with door and window in one wall. Two of these containers will be placed in Antofagasta and two containers in a copper mine near to Calama, all of them will be monitored for a period of one year. The simulation results will be validated with experimental measurements and will be reported in the future.Keywords: energy saving, lightweight construction, PCM, simulation
Procedia PDF Downloads 28641892 Investigation of Steel-Concrete Composite Bridges under Blasting Loads Based on Slope Reflection
Authors: Yuan Li, Yitao Han, Zhao Zhu
Abstract:
In this paper, the effect of blasting loads on steel-concrete composite bridges has been investigated considering the slope reflection effect. Reasonable values of girder size, plate thickness, stiffening rib, and other design parameters were selected according to design specifications. Modified RHT (Riedel-Hiermaier-Thoma) was used as constitutive relation in analyses. In order to simulate the slope reflection effect, the slope of the bridge was precisely built in the model. Different blasting conditions, including top, middle, and bottom explosions, were simulated. The multi-Euler domain method based on fully coupled Lagrange and Euler models was adopted for the structural analysis of the explosion process using commercial software AUTODYN. The obtained results showed that explosion overpressure was increased by 3006, 879, and 449kPa, corresponding to explosions occurring at the top, middle, and bottom of the slope, respectively. At the same time, due to energy accumulation and transmission dissipation caused by slope reflection, the corresponding yield lengths of steel beams were increased by 8, 0, and 5m, respectively.Keywords: steel-concrete composite bridge, explosion damage, slope reflection, blasting loads, RHT
Procedia PDF Downloads 9641891 Efficacy of Self-Assessment Metacognitive Strategy on Academic Performance Among Upper Basic Students in Ankpa, Kogi State, Nigeria
Authors: Daodu Joshua Rotimi
Abstract:
This study investigated the Efficacy of Self-Assessment Metacognitive Strategy on Academic performance in Energy Concepts among Upper Basic Science Students in Ankpa, Kogi State, Nigeria. The research design adopted for the study was a Quasi-experimental control group design which employed a pretest, posttest of the experimental and control groups. The population of the study consisted of one hundred and twenty-four (124) JSSII Students; sixty-five (65) for the experimental group and (59) for the control group. The instrument used for the study was the Energy Concept Performance Test (ECPT), with a reliability coefficient of 0.80. Two research questions were answered using descriptive statistics of mean and standard deviation, while two hypotheses were tested using a t-test at P≤0.05 level of significance. The findings of the study revealed that the use of the Self-Assessment Metacognitive Strategy has a positive effect on students’ performance in energy concepts among upper Basic Science Students leading to high academic performance; also, there is no significant difference in the mean Academic Performance scores between Male and Female students taught Energy Concept using Self-Assessment Metacognitive Strategy. Based on the research findings, recommendations were made, which include that Secondary school teachers should be encouraged the use Self-Assessment Metacognitive strategy so as to make the learning process attractive, interactive and enriching to the learners.Keywords: metacognition, self-assessment, performance, efficacy
Procedia PDF Downloads 12341890 An Efficient Tool for Mitigating Voltage Unbalance with Reactive Power Control of Distributed Grid-Connected Photovoltaic Systems
Authors: Malinwo Estone Ayikpa
Abstract:
With the rapid increase of grid-connected PV systems over the last decades, genuine challenges have arisen for engineers and professionals of energy field in the planning and operation of existing distribution networks with the integration of new generation sources. However, the conventional distribution network, in its design was not expected to receive other generation outside the main power supply. The tools generally used to analyze the networks become inefficient and cannot take into account all the constraints related to the operation of grid-connected PV systems. Some of these constraints are voltage control difficulty, reverse power flow, and especially voltage unbalance which could be due to the poor distribution of single-phase PV systems in the network. In order to analyze the impact of the connection of small and large number of PV systems to the distribution networks, this paper presents an efficient optimization tool that minimizes voltage unbalance in three-phase distribution networks with active and reactive power injections from the allocation of single-phase and three-phase PV plants. Reactive power can be generated or absorbed using the available capacity and the adjustable power factor of the inverter. Good reduction of voltage unbalance can be achieved by reactive power control of the PV systems. The presented tool is based on the three-phase current injection method and the PV systems are modeled via an equivalent circuit. The primal-dual interior point method is used to obtain the optimal operating points for the systems.Keywords: Photovoltaic system, Primal-dual interior point method, Three-phase optimal power flow, Voltage unbalance
Procedia PDF Downloads 33241889 Nutritional Value Determination of Different Varieties of Oats and Barley Using Near-Infrared Spectroscopy Method for the Horses Nutrition
Authors: V. Viliene, V. Sasyte, A. Raceviciute-Stupeliene, R. Gruzauskas
Abstract:
In horse nutrition, the most suitable cereal for their rations composition could be defined as oats and barley. Oats have high nutritive value because it provides more protein, fiber, iron and zinc than other whole grains, has good taste, and an activity of stimulating metabolic changes in the body. Another cereal – barley is very similar to oats as a feed except for some characteristics that affect how it is used; however, barley is lower in fiber than oats and is classified as a "heavy" feed. The value of oats and barley grain, first of all is dependent on its composition. Near-infrared spectroscopy (NIRS) has long been considered and used as a significant method in component and quality analysis and as an emerging technology for authenticity applications for cereal quality control. This paper presents the chemical and amino acid composition of different varieties of barley and oats, also digestible energy of different cereals for horses. Ten different spring barley (n = 5) and oats (n = 5) varieties, grown in one location in Lithuania, were assayed for their chemical composition (dry matter, crude protein, crude fat, crude ash, crude fiber, starch) and amino acids content, digestible amino acids and amino acids digestibility. Also, the grains digestible energy for horses was calculated. The oats and barley samples reflectance spectra were measured by means of NIRS using Foss-Tecator DS2500 equipment. The chemical components: fat, crude protein, starch and fiber differed statistically (P<0.05) between the oats and barley varieties. The highest total amino acid content between oats was determined in variety Flamingsprofi (4.56 g/kg) and the lowest – variety Circle (3.57 g/kg), and between barley - respectively in varieties Publican (3.50 g/kg) and Sebastian (3.11 g/kg). The different varieties of oats digestible amino acid content varied from 3.11 g/kg to 4.07 g/kg; barley different varieties varied from 2.59 g/kg to 2.94 g/kg. The average amino acids digestibility of oats varied from 74.4% (Liz) to 95.6% (Fen) and in barley - from 75.8 % (Tre) to 89.6% (Fen). The amount of digestible energy in the analyzed varieties of oats and barley was an average compound 13.74 MJ/kg DM and 14.85 MJ/kg DM, respectively. An analysis of the results showed that different varieties of oats compared with barley are preferable for horse nutrition according to the crude fat, crude fiber, ash and separate amino acids content, but the analyzed barley varieties dominated the higher amounts of crude protein, the digestible Liz amount and higher DE content, and thus, could be recommended for making feed formulation for horses combining oats and barley, taking into account the chemical composition of using cereal varieties.Keywords: barley, digestive energy, horses, nutritional value, oats
Procedia PDF Downloads 20541888 Modelling and Simulation of Natural Gas-Fired Power Plant Integrated to a CO2 Capture Plant
Authors: Ebuwa Osagie, Chet Biliyok, Yeung Hoi
Abstract:
Regeneration energy requirement and ways to reduce it is the main aim of most CO2 capture researches currently being performed and thus, post-combustion carbon capture (PCC) option is identified to be the most suitable for the natural gas-fired power plants. From current research and development (R&D) activities worldwide, two main areas are being examined in order to reduce the regeneration energy requirement of amine-based PCC, namely: (a) development of new solvents with better overall performance than 30wt% monoethanolamine (MEA) aqueous solution, which is considered as the base-line solvent for solvent-based PCC, (b) Integration of the PCC Plant to the power plant. In scaling-up a PCC pilot plant to the size required for a commercial-scale natural gas-fired power plant, process modelling and simulation is very essential. In this work, an integrated process made up of a 482MWe natural gas-fired power plant, an MEA-based PCC plant which is developed and validated has been modelled and simulated. The PCC plant has four absorber columns and a single stripper column, the modelling and simulation was performed with Aspen Plus® V8.4. The gas turbine, the heat recovery steam generator and the steam cycle were modelled based on a 2010 US DOE report, while the MEA-based PCC plant was modelled as a rate-based process. The scaling of the amine plant was performed using a rate based calculation in preference to the equilibrium based approach for 90% CO2 capture. The power plant was integrated to the PCC plant in three ways: (i) flue gas stream from the power plant which is divided equally into four stream and each stream is fed into one of the four absorbers in the PCC plant. (ii) Steam draw-off from the IP/LP cross-over pipe in the steam cycle of the power plant used to regenerate solvent in the reboiler. (iii) Condensate returns from the reboiler to the power plant. The integration of a PCC plant to the NGCC plant resulted in a reduction of the power plant output by 73.56 MWe and the net efficiency of the integrated system is reduced by 7.3 % point efficiency. A secondary aim of this study is the parametric studies which have been performed to assess the impacts of natural gas on the overall performance of the integrated process and this is achieved through investigation of the capture efficiencies.Keywords: natural gas-fired, power plant, MEA, CO2 capture, modelling, simulation
Procedia PDF Downloads 44641887 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation
Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari
Abstract:
Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite
Procedia PDF Downloads 3941886 Wind Power Potential in Selected Algerian Sahara Regions
Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz
Abstract:
The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours
Procedia PDF Downloads 49541885 The Importance of Zenithal Lighting Systems for Natural Light Gains and for Local Energy Generation in Brazil
Authors: Ana Paula Esteves, Diego S. Caetano, Louise L. B. Lomardo
Abstract:
This paper presents an approach on the advantages of using adequate coverage in the zenithal lighting typology in various areas of architectural production, while at the same time to encourage to the design concerns inherent in this choice of roofing in Brazil. Understanding that sustainability needs to cover several aspects, a roofing system such as zenithal lighting system can contribute to the provision of better quality natural light for the interior of the building, which is related to the good health and welfare; it will also be able to contribute for the sustainable aspects and environmental needs, when it allows the generation of energy in semitransparent or opacity photovoltaic solutions and economize the artificial lightning. When the energy balance in the building is positive, that is, when the building generates more energy than it consumes, it may fit into the Net Zero Energy Building concept. The zenithal lighting systems could be an important ally in Brazil, when solved the burden of heat gains, participate in the set of pro-efficiency actions in search of "zero energy buildings". The paper presents comparative three cases of buildings that have used this feature in search of better environmental performance, both in light comfort and sustainability as a whole. Two of these buildings are examples in Europe: the Notley Green School in the UK and the Isofóton factory in Spain. The third building with these principles of shed´s roof is located in Brazil: the Ipel´s factory in São Paulo.Keywords: natural lighting, net zero energy building, sheds, semi-transparent photovoltaics
Procedia PDF Downloads 19441884 Integration of Hybrid PV-Wind in Three Phase Grid System Using Fuzzy MPPT without Battery Storage for Remote Area
Authors: Thohaku Abdul Hadi, Hadyan Perdana Putra, Nugroho Wicaksono, Adhika Prajna Nandiwardhana, Onang Surya Nugroho, Heri Suryoatmojo, Soedibjo
Abstract:
Access to electricity is now a basic requirement of mankind. Unfortunately, there are still many places around the world which have no access to electricity, such as small islands, where there could potentially be a factory, a plantation, a residential area, or resorts. Many of these places might have substantial potential for energy generation such us Photovoltaic (PV) and Wind turbine (WT), which can be used to generate electricity independently for themselves. Solar energy and wind power are renewable energy sources which are mostly found in nature and also kinds of alternative energy that are still developing in a rapid speed to help and meet the demand of electricity. PV and Wind has a characteristic of power depend on solar irradiation and wind speed based on geographical these areas. This paper presented a control methodology of hybrid small scale PV/Wind energy system that use a fuzzy logic controller (FLC) to extract the maximum power point tracking (MPPT) in different solar irradiation and wind speed. This paper discusses simulation and analysis of the generation process of hybrid resources in MPP and power conditioning unit (PCU) of Photovoltaic (PV) and Wind Turbine (WT) that is connected to the three-phase low voltage electricity grid system (380V) without battery storage. The capacity of the sources used is 2.2 kWp PV and 2.5 kW PMSG (Permanent Magnet Synchronous Generator) -WT power rating. The Modeling of hybrid PV/Wind, as well as integrated power electronics components in grid connected system, are simulated using MATLAB/Simulink.Keywords: fuzzy MPPT, grid connected inverter, photovoltaic (PV), PMSG wind turbine
Procedia PDF Downloads 35541883 Optimization of a Hybrid PV-Diesel Mini grid System: A Case Study of Vimtim-Mubi, Nigeria
Authors: Julius Agaka Yusufu
Abstract:
This study undertakes the development of an optimal PV-diesel hybrid power system tailored to the specific energy landscape of Vimtim Mubi, Nigeria, utilizing real-world wind speed, solar radiation, and diesel cost data. Employing HOMER simulation, the research meticulously assesses the technical and financial viability of this hybrid configuration. Additionally, a rigorous performance comparison is conducted between the PV-diesel system and the conventional grid-connected alternative, offering crucial insights into the potential advantages and economic feasibility of adopting hybrid renewable energy solutions in regions grappling with energy access and reliability challenges, with implications for sustainable electrification efforts in similar communities worldwide.Keywords: Vimtim-Nigeria, homer, renewable energy, PV-diesel hybrid system.
Procedia PDF Downloads 7241882 Review of K0-Factors and Related Nuclear Data of the Selected Radionuclides for Use in K0-NAA
Authors: Manh-Dung Ho, Van-Giap Pham, Van-Doanh Ho, Quang-Thien Tran, Tuan-Anh Tran
Abstract:
The k0-factors and related nuclear data, i.e. the Q0-factors and effective resonance energies (Ēr) of the selected radionuclides which are used in the k0-based neutron activation analysis (k0-NAA), were critically reviewed to be integrated in the “k0-DALAT” software. The k0- and Q0-factors of some short-lived radionuclides: 46mSc, 110Ag, 116m2In, 165mDy, and 183mW, were experimentally determined at the Dalat research reactor. The other radionuclides selected are: 20F, 36S, 49Ca, 60mCo, 60Co, 75Se, 77mSe, 86mRb, 115Cd, 115mIn, 131Ba, 134mCs, 134Cs, 153Gd, 153Sm, 159Gd, 170Tm, 177mYb, 192Ir, 197mHg, 239U and 239Np. The reviewed data as compared with the literature data were biased within 5.6-7.3% in which the experimental re-determined factors were within 6.1 and 7.3%. The NIST standard reference materials: Oyster Tissue (1566b), Montana II Soil (2711a) and Coal Fly Ash (1633b) were used to validate the new reviewed data showing that the new data gave an improved k0-NAA using the “k0-DALAT” software with a factor of 4.5-6.8% for the investigated radionuclides.Keywords: neutron activation analysis, k0-based method, k0 factor, Q0 factor, effective resonance energy
Procedia PDF Downloads 12641881 Microgrid: An Alternative of Electricity Supply to an Island in Thailand
Authors: Pawitchaya Srijaiwong, Surin Khomfoi
Abstract:
There are several solutions to supply electricity to an island in Thailand such as diesel generation, submarine power cable, and renewable energy power generation. However, each alternative has its own limitation like fuel and pollution of diesel generation, submarine power cable length resulting in loss of cable and cost of investment, and potential of renewable energy in the local area. This paper shows microgrid system which is a new alternative for power supply to an island. It integrates local power plant from renewable energy, energy storage system, and microgrid controller. The suitable renewable energy power generation on an island is selected from geographic location and potential evaluation. Thus, photovoltaic system and hydro power plant are taken into account. The capacity of energy storage system is also estimated by transient stability study in order to supply electricity demand sufficiently under normal condition. Microgrid controller plays an important role in conducting, communicating and operating for both sources and loads on an island so that its functions are discussed in this study. The conceptual design of microgrid operation is investigated in order to analyze the reliability and power quality. The result of this study shows that microgrid is able to operate in parallel with the main grid and in case of islanding. It is applicable for electricity supply to an island and a remote area. The advantages of operating microgrid on an island include the technical aspect like improving reliability and quality of power system and social aspects like outage cost saving and CO₂ reduction.Keywords: energy storage, islanding, microgrid, renewable energy
Procedia PDF Downloads 32841880 Energy Management System and Interactive Functions of Smart Plug for Smart Home
Authors: Win Thandar Soe, Innocent Mpawenimana, Mathieu Di Fazio, Cécile Belleudy, Aung Ze Ya
Abstract:
Intelligent electronic equipment and automation network is the brain of high-tech energy management systems in critical role of smart homes dominance. Smart home is a technology integration for greater comfort, autonomy, reduced cost, and energy saving as well. These services can be provided to home owners for managing their home appliances locally or remotely and consequently allow them to automate intelligently and responsibly their consumption by individual or collective control systems. In this study, three smart plugs are described and one of them tested on typical household appliances. This article proposes to collect the data from the wireless technology and to extract some smart data for energy management system. This smart data is to quantify for three kinds of load: intermittent load, phantom load and continuous load. Phantom load is a waste power that is one of unnoticed power of each appliance while connected or disconnected to the main. Intermittent load and continuous load take in to consideration the power and using time of home appliances. By analysing the classification of loads, this smart data will be provided to reduce the communication of wireless sensor network for energy management system.Keywords: energy management, load profile, smart plug, wireless sensor network
Procedia PDF Downloads 27341879 Key Parameters Analysis of the Stirring Systems in the Optmization Procedures
Abstract:
The inclusion of stirring systems in the calculation and optimization procedures has been undergone a significant lack of attention, what it can reflect in the results because such systems provide an additional energy to the process, besides promote a better distribution of mass and energy. This is meaningful for the reactive systems, particularly for the Continuous Stirred Tank Reactor (CSTR), for which the key variables and parameters, as well as the operating conditions of stirring systems, can play a pivotal role and it has been showed in the literature that neglect these factors can lead to sub-optimal results. It is also well known that the sole use of the First Law of Thermodynamics as an optimization tool cannot yield satisfactory results, since the joint use of the First and Second Laws condensed into a procedure so-called entropy generation minimization (EGM) has shown itself able to drive the system towards better results. Therefore, the main objective of this paper is to determine the effects of key parameters of the stirring system in the optimization procedures by means of EGM applied to the reactive systems. Such considerations have been possible by dimensional analysis according to Rayleigh and Buckingham's method, which takes into account the physical and geometric parameters and the variables of the reactive system. For the simulation purpose based on the production of propylene glycol, the results have shown a significant increase in the conversion rate from 36% (not-optimized system) to 95% (optimized system) with a consequent reduction of by-products. In addition, it has been possible to establish the influence of the work of the stirrer in the optimization procedure, in which can be described as a function of the fluid viscosity and consequently of the temperature. The conclusions to be drawn also indicate that the use of the entropic analysis as optimization tool has been proved to be simple, easy to apply and requiring low computational effort.Keywords: stirring systems, entropy, reactive system, optimization
Procedia PDF Downloads 24641878 Node Optimization in Wireless Sensor Network: An Energy Approach
Authors: Y. B. Kirankumar, J. D. Mallapur
Abstract:
Wireless Sensor Network (WSN) is an emerging technology, which has great invention for various low cost applications both for mass public as well as for defence. The wireless sensor communication technology allows random participation of sensor nodes with particular applications to take part in the network, which results in most of the uncovered simulation area, where fewer nodes are located at far distances. The drawback of such network would be that the additional energy is spent by the nodes located in a pattern of dense location, using more number of nodes for a smaller distance of communication adversely in a region with less number of nodes and additional energy is again spent by the source node in order to transmit a packet to neighbours, thereby transmitting the packet to reach the destination. The proposed work is intended to develop Energy Efficient Node Placement Algorithm (EENPA) in order to place the sensor node efficiently in simulated area, where all the nodes are equally located on a radial path to cover maximum area at equidistance. The total energy consumed by each node compared to random placement of nodes is less by having equal burden on fewer nodes of far location, having distributed the nodes in whole of the simulation area. Calculating the network lifetime also proves to be efficient as compared to random placement of nodes, hence increasing the network lifetime, too. Simulation is been carried out in a qualnet simulator, results are obtained on par with random placement of nodes with EENP algorithm.Keywords: energy, WSN, wireless sensor network, energy approach
Procedia PDF Downloads 31241877 Preliminary Experience in Multiple Green Health Hospital Construction
Authors: Ming-Jyh Chen, Wen-Ming Huang, Yi-Chu Liu, Li-Hui Yang
Abstract:
Introduction: Social responsibility is the key to sustainable organizational development. Under the ground Green Health Hospital Declaration signed by our superintendent, we have launched comprehensive energy conservation management in medical services, the community, and the staff’s life. To execute environment-friendly promotion with robust strategies, we build up a low-carbon medical system and community with smart green public construction promotion as well as intensifying energy conservation education and communication. Purpose/Methods: With the support of the board and the superintendent, we construct an energy management team, commencing with an environment-friendly system, management, education, and ISO 50001 energy management system; we have ameliorated energy performance and energy efficiency and continuing. Results: In the year 2021, we have achieved multiple goals. The energy management system efficiently controls diesel, natural gas, and electricity usage. About 5% of the consumption is saved when compared to the numbers from 2018 and 2021. Our company develops intelligent services and promotes various paperless electronic operations to provide people with a vibrant and environmentally friendly lifestyle. The goal is to save 68.6% on printing and photocopying by reducing 35.15 million sheets of paper yearly. We strengthen the concept of environmental protection classification among colleagues. In the past two years, the amount of resource recycling has reached more than 650 tons, and the resource recycling rate has reached 70%. The annual growth rate of waste recycling is about 28 metric tons. Conclusions: To build a green medical system with “high efficacy, high value, low carbon, low reliance,” energy stewardship, economic prosperity, and social responsibility are our principles when it comes to formulation of energy conservation management strategies, converting limited sources to efficient usage, developing clean energy, and continuing with sustainable energy.Keywords: energy efficiency, environmental education, green hospital, sustainable development
Procedia PDF Downloads 7941876 Performance Analysis of Solar Assisted Air Condition Using Carbon Dioxide as Refrigerant
Authors: Olusola Bamisile, Ferdinard Dika, Mustafa Dagbasi, Serkan Abbasoglu
Abstract:
The aim of this study was to model an air conditioning system that brings about effective cooling and reduce fossil fuel consumption with solar energy as an alternative source of energy. The objective of the study is to design a system with high COP, low usage of electricity and to integrate solar energy into AC systems. A hybrid solar assisted air conditioning system is designed to produce 30kW cooling capacity and R744 (CO₂) is used as a refrigerant. The effect of discharge pressure on the performance of the system is studied. The subcool temperature, evaporating temperature (5°C) and suction gas return temperature (12°C) are kept constant for the four different discharge pressures considered. The cooling gas temperature is set at 25°C, and the discharge pressure includes 80, 85, 90 and 95 bars. Copeland Scroll software is used for the simulation. A pressure-enthalpy graph is also used to deduce each enthalpy point while numerical methods were used in making other calculations. From the result of the study, it is observed that a higher COP is achieved with the use of solar assisted systems. As much as 46% of electricity requirements will be save using solar input at compressor stage.Keywords: air conditioning, solar energy, performance, energy saving
Procedia PDF Downloads 14641875 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method
Authors: Mai M. Khalaf, Hany M. Abd El-Lateef
Abstract:
A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG
Procedia PDF Downloads 42941874 Classification of Cosmological Wormhole Solutions in the Framework of General Relativity
Authors: Usamah Al-Ali
Abstract:
We explore the effect of expanding space on the exoticity of the matter supporting a traversable Lorentzian wormhole of zero radial tide whose line element is given by ds2 = dt^2 − a^2(t)[ dr^2/(1 − kr2 −b(r)/r)+ r2dΩ^2 in the context of General Relativity. This task is achieved by deriving the Einstein field equations for anisotropic matter field corresponding to the considered cosmological wormhole metric and performing a classification of their solutions on the basis of a variable equations of state (EoS) of the form p = ω(r)ρ. Explicit forms of the shape function b(r) and the scale factor a(t) arising in the classification are utilized to construct the corresponding energy-momentum tensor where the energy conditions for each case is investigated. While the violation of energy conditions is inevitable in case of static wormholes, the classification we performed leads to interesting solutions in which this violation is either reduced or eliminated.Keywords: general relativity, Einstein field equations, energy conditions, cosmological wormhole
Procedia PDF Downloads 6341873 A Task Scheduling Algorithm in Cloud Computing
Authors: Ali Bagherinia
Abstract:
Efficient task scheduling method can meet users' requirements, and improve the resource utilization, then increase the overall performance of the cloud computing environment. Cloud computing has new features, such as flexibility, virtualization and etc., in this paper we propose a two levels task scheduling method based on load balancing in cloud computing. This task scheduling method meet user's requirements and get high resource utilization, that simulation results in CloudSim simulator prove this.Keywords: cloud computing, task scheduling, virtualization, SLA
Procedia PDF Downloads 401