Search results for: motor intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2485

Search results for: motor intelligence

355 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns

Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman

Abstract:

Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.

Keywords: artificial intelligence, ANN, drainage water, nitrate pollution

Procedia PDF Downloads 310
354 The Significant of Effective Leadership on Management Growth and Survival: A Case Study of Bunato Limited Company, Ring Road Ibadan

Authors: A. S. Adegoke, O. N. Popoola

Abstract:

The central purpose of management in any organization is that of coordinating the efforts of people towards the achievement of its goal. Effective and productive management is the function of leadership. Leadership plays a critical role in helping groups, organizations and societies to achieve their goals. Factors considered to make leadership to be effective are intelligence, social maturity, inner motivation and achievement drives and lastly, human relations attitudes. The factors affecting leadership style and effectiveness were examined. Also, the study examined which of the various leadership style best befits an organization and discussed the ways in which the style was determined. In order to meet the objectives of this study, different types of methods of data gathering were carried out. The methods include data from primary and secondary sources. The primary sources include personal interview, personal observation, and questionnaire while data from secondary sources were derived from various books, journal write up and other documentary records. Data were collected from respondents through questionnaire, and the field research carried out through oral interview to test each of the related hypotheses. From the data analysed it was determined that 45% strongly agreed that leadership traits are inborn not acquired and 28.3% agreed that leadership traits are inborn, while 11.7% and 10% strongly disagreed and disagreed respectively and 5% were undecided. 48.4% strongly agreed, and 43.3% agreed that environmental factors determined the appropriate style of leadership to be employed while 3.3% strongly disagreed, 1.7% disagreed and 3.3% were undecided. From the study, no single style of leadership is appropriate in any situation instead of concentrating on single leadership style; leader can vary approaches depending on forces in the leaders, characteristic of the subordinates, situational forces of the organization, lastly the expectations and behaviour of superior.

Keywords: hypothesis, leadership, management, organization

Procedia PDF Downloads 144
353 Policy Initiatives That Increase Mass-Market Participation of Fuel Cell Electric Vehicles

Authors: Usman Asif, Klaus Schmidt

Abstract:

In recent years, the development of alternate fuel vehicles has helped to reduce carbon emissions worldwide. As the number of vehicles will continue to increase in the future, the energy demand will also increase. Therefore, we must consider automotive technologies that are efficient and less harmful to the environment in the long run. Battery Electric Vehicles (BEVs) have gained popularity in recent years because of their lower maintenance, lower fuel costs, and lower carbon emissions. Nevertheless, BEVs show several disadvantages, such as slow charging times and lower range than traditional combustion-powered vehicles. These factors keep many people from switching to BEVs. The authors of this research believe that these limitations can be overcome by using fuel cell technology. Fuel cell technology converts chemical energy into electrical energy from hydrogen power and therefore serves as fuel to power the motor and thus replacing heavy lithium batteries that are expensive and hard to recycle. Also, in contrast to battery-powered electric vehicle technology, Fuel Cell Electric Vehicles (FCEVs) offer higher ranges and lower fuel-up times and therefore are more competitive with electric vehicles. However, FCEVs have not gained the same popularity as electric vehicles due to stringent legal frameworks, underdeveloped infrastructure, high fuel transport, and storage costs plus the expense of fuel cell technology itself. This research will focus on the legal frameworks for hydrogen-powered vehicles, and how a change in these policies may affect and improve hydrogen fueling infrastructure and lower hydrogen transport and storage costs. These policies may also facilitate reductions in fuel cell technology costs. In order to attain a better framework, a number of countries have developed conceptual roadmaps. These roadmaps have set out a series of objectives to increase the access of FCEVs to their respective markets. This research will specifically focus on policies in Japan, Europe, and the USA in their attempt to shape the automotive industry of the future. The researchers also suggest additional policies that may help to accelerate the advancement of FCEVs to mass-markets. The approach was to provide a solid literature review using resources from around the globe. After a subsequent analysis and synthesis of this review, the authors concluded that in spite of existing legal challenges that have hindered the advancement of fuel-cell technology in the automobile industry in the past, new initiatives that enhance and advance the very same technology in the future are underway.

Keywords: fuel cell electric vehicles, fuel cell technology, legal frameworks, policies and regulations

Procedia PDF Downloads 117
352 Adaptation of Smart City Concept in Africa: Localization, Relevance and Bottleneck

Authors: Adeleye Johnson Adelagunayeja

Abstract:

The concept of making cities, communities, and neighborhoods smart, intelligent, and responsive is relatively new to Africa and its urban renewal agencies. Efforts must be made by relevant agencies to begin a holistic review of the implementation of infrastructural facilities and urban renewal methodologies that will revolve around the appreciation and application of artificial intelligence. The propagation of the ideals and benefits of the smart city concept are key factors that can encourage governments of African nations, the African Union, and other regional organizations in Africa to embrace the ideology. The ability of this smart city concept to curb insecurities – armed robbery, assassination, terrorism, and civil disorder – is one major reason, amongst others, why African governments must speedily embrace this contemporary developmental concept whose time has come! The seamlessness to access information and virtually cross-pollinate ideas with people living in already established smart cities, when combined with the great efficiency that the emergence of smart cities brings with it, are other reasons why Africa must come up with action plans that can enable the existing cities to metamorphose into smart cities. Innovations will be required to enable Africa to develop a smart city concept that will be compatible with the basic patterns of livelihood because the essence of the smart city evolution is to make life better for people to co-exist, to be productive and to enjoy standard infrastructural facilities. This research paper enumerates the multifaceted adaptive factors that have the potentials of making the adoption of smartcity concept in Africa seamless. It also proffers solutions to potential bottlenecks capable of undermining the execution of the smart city concept in Africa.

Keywords: smartcity compactibility innovation Africa government evolution, Africa as global village member, evolution in Africa, ways to make Africa adopt smartcity, localizing smartcity concept in Africa, bottleneck to smartcity developmet in Africa

Procedia PDF Downloads 85
351 Automatic Lexicon Generation for Domain Specific Dataset for Mining Public Opinion on China Pakistan Economic Corridor

Authors: Tayyaba Azim, Bibi Amina

Abstract:

The increase in the popularity of opinion mining with the rapid growth in the availability of social networks has attracted a lot of opportunities for research in the various domains of Sentiment Analysis and Natural Language Processing (NLP) using Artificial Intelligence approaches. The latest trend allows the public to actively use the internet for analyzing an individual’s opinion and explore the effectiveness of published facts. The main theme of this research is to account the public opinion on the most crucial and extensively discussed development projects, China Pakistan Economic Corridor (CPEC), considered as a game changer due to its promise of bringing economic prosperity to the region. So far, to the best of our knowledge, the theme of CPEC has not been analyzed for sentiment determination through the ML approach. This research aims to demonstrate the use of ML approaches to spontaneously analyze the public sentiment on Twitter tweets particularly about CPEC. Support Vector Machine SVM is used for classification task classifying tweets into positive, negative and neutral classes. Word2vec and TF-IDF features are used with the SVM model, a comparison of the trained model on manually labelled tweets and automatically generated lexicon is performed. The contributions of this work are: Development of a sentiment analysis system for public tweets on CPEC subject, construction of an automatic generation of the lexicon of public tweets on CPEC, different themes are identified among tweets and sentiments are assigned to each theme. It is worth noting that the applications of web mining that empower e-democracy by improving political transparency and public participation in decision making via social media have not been explored and practised in Pakistan region on CPEC yet.

Keywords: machine learning, natural language processing, sentiment analysis, support vector machine, Word2vec

Procedia PDF Downloads 148
350 Social Networks in a Communication Strategy of a Large Company

Authors: Kherbache Mehdi

Abstract:

Within the framework of the validation of the Master in business administration marketing and sales in INSIM institute international in management Blida, we get the opportunity to do a professional internship in Sonelgaz Enterprise and a thesis. The thesis deals with the integration of social networking in the communication strategy of a company. The problematic is: How communicate with social network can be a solution for companies? The challenges stressed by this thesis were to suggest limits and recommendations to Sonelgaz Enterprise concerning social networks. The whole social networks represent more than a billion people as a potential target for the companies. Thanks to research and a qualitative approach, we have identified tree valid hypothesis. The first hypothesis allows confirming that using social networks cannot be ignored by any company in its communication strategy. However, the second hypothesis demonstrates that it’s necessary to prepare a strategy that integrates social networks in the communication plan of the company. The risk of this strategy is very limited because failure on social networks is not a restraint for the enterprise, social networking is not expensive and, a bad image which could result from it is not as important in the long-term. Furthermore, the return on investment is difficult to evaluate. Finally, the last hypothesis shows that firms establish a new relation between consumers and brands thanks to the proximity allowed by social networks. After the validation of the hypothesis, we suggested some recommendations to Sonelgaz Enterprise regarding the communication through social networks. Firstly, the company must use the interactivity of social network in order to have fruitful exchanges with the community. We also recommended having a strategy to treat negative comments. The company must also suggest delivering resources to the community thanks to a community manager, in order to have a good relation with the community. Furthermore, we advised using social networks to do business intelligence. Sonelgaz Enterprise can have some creative and interactive contents with some amazing applications on Facebook for example. Finally, we recommended to the company to be not intrusive with “fans” or “followers” and to be open to all the platforms: Twitter, Facebook, Linked-In for example.

Keywords: social network, buzz, communication, consumer, return on investment, internet users, web 2.0, Facebook, Twitter, interaction

Procedia PDF Downloads 422
349 Environmental Aspects of Alternative Fuel Use for Transport with Special Focus on Compressed Natural Gas (CNG)

Authors: Szymon Kuczynski, Krystian Liszka, Mariusz Laciak, Andrii Oliinyk, Adam Szurlej

Abstract:

The history of gaseous fuel use in the motive power of vehicles dates back to the second half of the nineteenth century, and thus the beginnings of the automotive industry. The engines were powered by coal gas and became the prototype for internal combustion engines built so far. It can thus be considered that this construction gave rise to the automotive industry. As the socio-economic development advances, so does the number of motor vehicles. Although, due to technological progress in recent decades, the emissions generated by internal combustion engines of cars have been reduced, a sharp increase in the number of cars and the rapidly growing traffic are an important source of air pollution and a major cause of acoustic threat, in particular in large urban agglomerations. One of the solutions, in terms of reducing exhaust emissions and improving air quality, is a more extensive use of alternative fuels: CNG, LNG, electricity and hydrogen. In the case of electricity use for transport, it should be noted that the environmental outcome depends on the structure of electricity generation. The paper shows selected regulations affecting the use of alternative fuels for transport (including Directive 2014/94/EU) and its dynamics between 2000 and 2015 in Poland and selected EU countries. The paper also gives a focus on the impact of alternative fuels on the environment by comparing the volume of individual emissions (compared to the emissions from conventional fuels: petrol and diesel oil). Bearing in mind that the extent of various alternative fuel use is determined in first place by economic conditions, the article describes the price relationships between alternative and conventional fuels in Poland and selected EU countries. It is pointed out that although Poland has a wealth of experience in using methane alternative fuels for transport, one of the main barriers to their development in Poland is the extensive use of LPG. In addition, a poorly developed network of CNG stations in Poland, which does not allow easy transport, especially in the northern part of the country, is a serious problem to a further development of CNG use as fuel for transport. An interesting solution to this problem seems to be the use of home CNG filling stations: Home Refuelling Appliance (HRA, refuelling time 8-10 hours) and Home Refuelling Station (HRS, refuelling time 8-10 minutes). The team is working on HRA and HRS technologies. The article also highlights the impact of alternative fuel use on energy security by reducing reliance on imports of crude oil and petroleum products.

Keywords: alternative fuels, CNG (Compressed Natural Gas), CNG stations, LNG (Liquefied Natural Gas), NGVs (Natural Gas Vehicles), pollutant emissions

Procedia PDF Downloads 227
348 Mental Accounting Theory Development Review and Application

Authors: Kang-Hsien Li

Abstract:

Along with global industries in using technology to enhance the application, make the study drawn more close to the people’s behavior and produce data analysis, extended out from the mental accounting of prospect theory, this paper provides the marketing and financial applications in the field of exploration and discussions with the future. For the foreseeable future, the payment behavior depends on the form of currency, which affects a variety of product types on the marketing of marketing strategy to provide diverse payment methods to enhance the overall sales performance. This not only affects people's consumption also affects people's investments. Credit card, PayPal, Apple pay, Bitcoin and any other with advances in technology and other emerging payment instruments, began to affect people for the value and the concept of money. Such as the planning of national social welfare policies, monetary and financial regulators and regulators. The expansion can be expected to discuss marketing and finance-related mental problems at the same time, recent studies reflect two different ideas, the first idea is that individuals affected by situational frames, not broad impact at the event level, affected by the people basically mental, second idea is that when an individual event affects a broader range, and majority of people will choose the same at the time that the rational choice. That are applied to practical application of marketing, at the same time provide an explanation in the financial market under the anomalies, due to the financial markets has varied investment products and different market participants, that also highlights these two points. It would provide in-depth description of humanity's mental. Certainly, about discuss mental accounting aspects, while artificial intelligence application development, although people would be able to reduce prejudice decisions, that will also lead to more discussion on the economic and marketing strategy.

Keywords: mental accounting, behavior economics, consumer behaviors, decision-making

Procedia PDF Downloads 451
347 The Effect of Second Language Listening Proficiency on Cognitive Control among Young Adult Bilinguals

Authors: Zhilong Xie, Jinwen Huang, Guofang Zeng

Abstract:

The existing body of research on bilingualism has consistently linked the use of multiple languages to enhanced cognitive control. Numerous studies have demonstrated that bilingual individuals exhibit advantages in non-linguistic tasks demanding cognitive control. However, recent investigations have challenged these findings, leading to a debate regarding the extent and nature of bilingual advantages. The adaptive control hypothesis posits that variations in bilingual experiences hold the key to resolving these controversies. This study aims to contribute to this discussion by exploring the impact of second language (L2) listening experience on cognitive control among young Chinese-English bilinguals. By examining this specific aspect of bilingualism, the study offers a perspective on the origins of bilingual advantages. This study employed a range of cognitive tasks, including the Flanker task, Wisconsin Card Sorting Test (WCST), Operation Span Task (OSPAN), and a second language listening comprehension test. After controlling for potential confounding variables such as intelligence, socioeconomic status, and overall language proficiency, independent sample t-test analysis revealed significant differences in performance between groups with high and low L2 listening proficiency in the Flanker task and OSPAN. However, no significant differences emerged between the two groups in the WCST. These findings suggest that L2 listening proficiency has a significant impact on inhibitory control and working memory but not on conflict monitoring or mental set shifting. These specific findings provide a more nuanced understanding of the origins of bilingual advantages within a specific bilingual context, highlighting the importance of considering the nature of bilingual experience when exploring cognitive benefits.

Keywords: bilingual advantage, inhibitory control, L2 listening, working memory

Procedia PDF Downloads 10
346 Performance of Non-Deterministic Structural Optimization Algorithms Applied to a Steel Truss Structure

Authors: Ersilio Tushaj

Abstract:

The efficient solution that satisfies the optimal condition is an important issue in the structural engineering design problem. The new codes of structural design consist in design methodology that looks after the exploitation of the total resources of the construction material. In recent years some non-deterministic or meta-heuristic structural optimization algorithms have been developed widely in the research community. These methods search the optimum condition starting from the simulation of a natural phenomenon, such as survival of the fittest, the immune system, swarm intelligence or the cooling process of molten metal through annealing. Among these techniques the most known are: the genetic algorithms, simulated annealing, evolution strategies, particle swarm optimization, tabu search, ant colony optimization, harmony search and big bang crunch optimization. In this study, five of these algorithms are applied for the optimum weight design of a steel truss structure with variable geometry but fixed topology. The design process selects optimum distances and size sections from a set of commercial steel profiles. In the formulation of the design problem are considered deflection limitations, buckling and allowable stress constraints. The approach is repeated starting from different initial populations. The design problem topology is taken from an existing steel structure. The optimization process helps the engineer to achieve good final solutions, avoiding the repetitive evaluation of alternative designs in a time consuming process. The algorithms used for the application, the results of the optimal solutions, the number of iterations and the minimal weight designs, will be reported in the paper. Based on these results, it would be estimated, the amount of the steel that could be saved by applying structural analysis combined with non-deterministic optimization methods.

Keywords: structural optimization, non-deterministic methods, truss structures, steel truss

Procedia PDF Downloads 230
345 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 59
344 Revolutionizing Autonomous Trucking Logistics with Customer Relationship Management Cloud

Authors: Sharda Kumari, Saiman Shetty

Abstract:

Autonomous trucking is just one of the numerous significant shifts impacting fleet management services. The Society of Automotive Engineers (SAE) has defined six levels of vehicle automation that have been adopted internationally, including by the United States Department of Transportation. On public highways in the United States, organizations are testing driverless vehicles with at least Level 4 automation which indicates that a human is present in the vehicle and can disable automation, which is usually done while the trucks are not engaged in highway driving. However, completely driverless vehicles are presently being tested in the state of California. While autonomous trucking can increase safety, decrease trucking costs, provide solutions to trucker shortages, and improve efficiencies, logistics, too, requires advancements to keep up with trucking innovations. Given that artificial intelligence, machine learning, and automated procedures enable people to do their duties in other sectors with fewer resources, CRM (Customer Relationship Management) can be applied to the autonomous trucking business to provide the same level of efficiency. In a society witnessing significant digital disruptions, fleet management is likewise being transformed by technology. Utilizing strategic alliances to enhance core services is an effective technique for capitalizing on innovations and delivering enhanced services. Utilizing analytics on CRM systems improves cost control of fuel strategy, fleet maintenance, driver behavior, route planning, road safety compliance, and capacity utilization. Integration of autonomous trucks with automated fleet management, yard/terminal management, and customer service is possible, thus having significant power to redraw the lines between the public and private spheres in autonomous trucking logistics.

Keywords: autonomous vehicles, customer relationship management, customer experience, autonomous trucking, digital transformation

Procedia PDF Downloads 108
343 AI-Assisted Business Chinese Writing: Comparing the Textual Performances Between Independent Writing and Collaborative Writing

Authors: Stephanie Liu Lu

Abstract:

With the proliferation of artificial intelligence tools in the field of education, it is crucial to explore their impact on language learning outcomes. This paper examines the use of AI tools, such as ChatGPT, in practical writing within business Chinese teaching to investigate how AI can enhance practical writing skills and teaching effectiveness. The study involved third and fourth-year university students majoring in accounting and finance from a university in Hong Kong within the context of a business correspondence writing class. Students were randomly assigned to a control group, who completed business letter writing independently, and an experimental group, who completed the writing with the assistance of AI. In the latter, the AI-assisted business letters were initially drafted by the students issuing commands and interacting with the AI tool, followed by the students' revisions of the draft. The paper assesses the performance of both groups in terms of grammatical expression, communicative effect, and situational awareness. Additionally, the study collected dialogue texts from interactions between students and the AI tool to explore factors that affect text generation and the potential impact of AI on enhancing students' communicative and identity awareness. By collecting and comparing textual performances, it was found that students assisted by AI showed better situational awareness, as well as more skilled organization and grammar. However, the research also revealed that AI-generated articles frequently lacked a proper balance of identity and writing purpose due to limitations in students' communicative awareness and expression during the instruction and interaction process. Furthermore, the revision of drafts also tested the students' linguistic foundation, logical thinking abilities, and practical workplace experience. Therefore, integrating AI tools and related teaching into the curriculum is key to the future of business Chinese teaching.

Keywords: AI-assistance, business Chinese, textual analysis, language education

Procedia PDF Downloads 57
342 The Impact of Social Emotional Learning and Conflict Resolution Skills

Authors: Paula Smith

Abstract:

During adolescence, many students engage in maladaptive behaviors that may reflect a lack of knowledge in social-emotional skills. Oftentimes these behaviors lead to conflicts and school-related disciplinary actions. Therefore, conflict resolution skills are vital for academic and social success. Conflict resolution is one component of a social-emotional learning (SEL) pedagogy that can effectively reduce discipline referrals and build students' social-emotional capacity. This action research study utilized a researcher-developed virtual SEL curriculum to provide instruction to eight adolescent students in an urban school in New York City with the goal of fostering their emotional intelligence (EI), reducing aggressive behaviors, and supporting instruction beyond the core academic content areas. Adolescent development, EI, and SEL frameworks were used to formulate this curriculum. Using a qualitative approach, this study inquired into how effectively participants responded to SEL instruction offered in virtual, Zoom-based workshops. Data included recorded workshop sessions, researcher field notes, and Zoom transcripts. Descriptive analysis involved manual coding/re-coding of transcripts to understand participants’ lived experience with conflict and the ideas presented in the workshops. Findings highlighted several themes and cultural norms that provided insight into adolescents' lived experiences and helped explain their past ideas about conflict. Findings also revealed participants' perspectives about the importance of SEL skills. This study illustrates one example of how evidence-based SEL programs might offer adolescents an opportunity to share their lived experiences. Programs such as this also address both individual and group needs, enabling practitioners to help students develop practical conflict resolution skills.

Keywords: social, emotional, learning, conflict, resolution

Procedia PDF Downloads 15
341 The Effect of Artificial Intelligence on Electric Machines and Welding

Authors: Mina Malak Zakaria Henin

Abstract:

The finite detail evaluation of magnetic fields in electromagnetic devices shows that the machine cores revel in extraordinary flux patterns consisting of alternating and rotating fields. The rotating fields are generated in different configurations variety, among circular and elliptical, with distinctive ratios between the fundamental and minor axes of the flux locus. Experimental measurements on electrical metal uncovered one-of-a-kind flux patterns that divulge distinctive magnetic losses in the samples below the test. Therefore, electric machines require unique interest throughout the core loss calculation technique to bear in mind the flux styles. In this look, a circular rotational unmarried sheet tester is employed to measure the middle losses in the electric-powered metallic pattern of M36G29. The sample becomes exposed to alternating fields, circular areas, and elliptical fields with axis ratios of zero.2, zero. Four, 0.6 and 0.8. The measured statistics changed into applied on 6-4 switched reluctance motors at 3 distinctive frequencies of interest to the industry 60 Hz, 400 Hz, and 1 kHz. The effects reveal an excessive margin of error, which can arise at some point in the loss calculations if the flux pattern difficulty is overlooked. The mistake in exceptional components of the gadget associated with considering the flux styles may be around 50%, 10%, and a couple of at 60Hz, 400Hz, and 1 kHz, respectively. The future paintings will focus on the optimization of gadget geometrical shape, which has a primary effect on the flux sample on the way to decrease the magnetic losses in system cores.

Keywords: converters, electric machines, MEA (more electric aircraft), PES (power electronics systems) synchronous machine, vector control Multi-machine/ Multi-inverter, matrix inverter, Railway tractionalternating core losses, finite element analysis, rotational core losses

Procedia PDF Downloads 28
340 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
339 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 146
338 Leveraging on Application of Customer Relationship Management Strategy as Business Driving Force: A Case Study of Major Industries

Authors: Odunayo S. Faluse, Roger Telfer

Abstract:

Customer relationship management is a business strategy that is centred on the idea that ‘Customer is the driving force of any business’ i.e. Customer is placed in a central position in any business. However, this belief coupled with the advancement in information technology in the past twenty years has experienced a change. In any form of business today it can be concluded that customers are the modern dictators to whom the industry always adjusts its business operations due to the increase in availability of information, intense market competition and ever growing negotiating ideas of customers in the process of buying and selling. The most vital role of any organization is to satisfy or meet customer’s needs and demands, which eventually determines customer’s long-term value to the industry. Therefore, this paper analyses and describes the application of customer relationship management operational strategies in some of the major industries in business. Both developed and up-coming companies nowadays value the quality of customer services and client’s loyalty, they also recognize the customers that are not very sensitive when it comes to changes in price and thereby realize that attracting new customers is more tasking and expensive than retaining the existing customers. However, research shows that several factors have recently amounts to the sudden rise in the execution of CRM strategies in the marketplace, such as a diverted attention of some organization towards integrating ideas in retaining existing customers rather than attracting new one, gathering data about customers through the use of internal database system and acquiring of external syndicate data, also exponential increase in technological intelligence. Apparently, with this development in business operations, CRM research in Academia remain nascent; hence this paper gives detailed critical analysis of the recent advancement in the use of CRM and key research opportunities for future development in using the implementation of CRM as a determinant factor for successful business optimization.

Keywords: agriculture, banking, business strategies, CRM, education, healthcare

Procedia PDF Downloads 223
337 Orbit Determination from Two Position Vectors Using Finite Difference Method

Authors: Akhilesh Kumar, Sathyanarayan G., Nirmala S.

Abstract:

An unusual approach is developed to determine the orbit of satellites/space objects. The determination of orbits is considered a boundary value problem and has been solved using the finite difference method (FDM). Only positions of the satellites/space objects are known at two end times taken as boundary conditions. The technique of finite difference has been used to calculate the orbit between end times. In this approach, the governing equation is defined as the satellite's equation of motion with a perturbed acceleration. Using the finite difference method, the governing equations and boundary conditions are discretized. The resulting system of algebraic equations is solved using Tri Diagonal Matrix Algorithm (TDMA) until convergence is achieved. This methodology test and evaluation has been done using all GPS satellite orbits from National Geospatial-Intelligence Agency (NGA) precise product for Doy 125, 2023. Towards this, two hours of twelve sets have been taken into consideration. Only positions at the end times of each twelve sets are considered boundary conditions. This algorithm is applied to all GPS satellites. Results achieved using FDM compared with the results of NGA precise orbits. The maximum RSS error for the position is 0.48 [m] and the velocity is 0.43 [mm/sec]. Also, the present algorithm is applied on the IRNSS satellites for Doy 220, 2023. The maximum RSS error for the position is 0.49 [m], and for velocity is 0.28 [mm/sec]. Next, a simulation has been done for a Highly Elliptical orbit for DOY 63, 2023, for the duration of 6 hours. The RSS of difference in position is 0.92 [m] and velocity is 1.58 [mm/sec] for the orbital speed of more than 5km/sec. Whereas the RSS of difference in position is 0.13 [m] and velocity is 0.12 [mm/sec] for the orbital speed less than 5km/sec. Results show that the newly created method is reliable and accurate. Further applications of the developed methodology include missile and spacecraft targeting, orbit design (mission planning), space rendezvous and interception, space debris correlation, and navigation solutions.

Keywords: finite difference method, grid generation, NavIC system, orbit perturbation

Procedia PDF Downloads 84
336 Upcoming Fight Simulation with Smart Shadow

Authors: Ramiz Kuliev, Fuad Kuliev-Smirnov

Abstract:

The 'Shadow Sparring' training exercise is widely used in the training of boxers and martial artists. The main disadvantage of the usual shadow sparring is that the trainer cannot fully control such training and evaluate its results. During the competition, the athlete, preparing for the upcoming fight, imagines the Shadow (upcoming opponent) in accordance with his own imagination. A ‘Smart-Shadow Sparring’ (SSS) is an innovative version of the ‘Shadow Sparring’. During SSS, the fighter will see the Shadow (virtual opponent that moves, defends, and punches) and understand when he misses the punches from the Shadow. The task of a real athlete is to spar with a virtual one, move around, punch in the direction of unprotected areas of the Shadow and dodge his punches. Moves and punches of Shadow are set up before each training. The system will give the coach full information about virtual sparring: (i) how many and what type of punches has the fighter landed, (ii) accuracy of these punches, (iii) how many and what type of virtual punches (punches of Smart-Shadow) has the fighter missed, etc. SSS will be recorded as animated fighting of two fighters and will help the coach to analyze past training. SSS can be configured to fit the physical and technical characteristics of the next real opponent (size, techniques, speed, missed and landed punches, etc.). This will allow to simulate and rehearse the upcoming fight and improve readiness for the next opponent. For amateur fighters, SSS will be reconfigured several times during a tournament, when the real opponent becomes known. SSS can be used in three versions: (1) Digital Shadow: the athlete will see a Shadow on a monitor (2) VR-Shadow: the athlete will see a Shadow in a VR-glasses (3) Smart Shadow: a Shadow will be controlled by artificial intelligence. These technologies are based on the ‘semi-real simulation’ method. The technology allows coaches to train athletes remotely. Simulation of different opponents will help the athletes better prepare for competition. Repeat rehearsals of the upcoming fight will help improve results. SSS can improve results in Boxing, Taekwondo, Karate, and Fencing. 41 sets of medals will be awarded in these sports at the 2020 Olympic Games.

Keywords: boxing, combat sports, fight simulation, shadow sparring

Procedia PDF Downloads 132
335 Composition, Velocity, and Mass of Projectiles Generated from a Chain Shot Event

Authors: Eric Shannon, Mark J. McGuire, John P. Parmigiani

Abstract:

A hazard associated with the use of timber harvesters is chain shot. Harvester saw chain is subjected to large dynamic mechanical stresses which can cause it to fracture. The resulting open loop of saw chain can fracture a second time and create a projectile consisting of several saw-chain links referred to as a chain shot. Its high kinetic energy enables it to penetrate operator enclosures and be a significant hazard. Accurate data on projectile composition, mass, and speed are needed for the design of both operator enclosures resistant to projectile penetration and for saw chain resistant to fracture. The work presented here contributes to providing this data through the use of a test machine designed and built at Oregon State University. The machine’s enclosure is a standard shipping container. To safely contain any anticipated chain shot, the container was lined with both 9.5 mm AR500 steel plates and 50 mm high-density polyethylene (HDPE). During normal operation, projectiles are captured virtually undamaged in the HDPE enabling subsequent analysis. Standard harvester components are used for bar mounting and chain tensioning. Standard guide bars and saw chains are used. An electric motor with flywheel drives the system. Testing procedures follow ISO Standard 11837. Chain speed at break was approximately 45.5 m/s. Data was collected using both a 75 cm solid bar (Oregon 752HSFB149) and 90 cm solid bar (Oregon 902HSFB149). Saw chains used were 89 Drive Link .404”-18HX loops made from factory spools. Standard 16-tooth sprockets were used. Projectile speed was measured using both a high-speed camera and a chronograph. Both rotational and translational kinetic energy are calculated. For this study 50 chain shot events were executed. Results showed that projectiles consisted of a variety combinations of drive links, tie straps, and cutter links. Most common (occurring in 60% of the events) was a drive-link / tie-strap / drive-link combination having a mass of approximately 10.33 g. Projectile mass varied from a minimum of 2.99 g corresponding to a drive link only to a maximum of 18.91 g corresponding to a drive-link / tie-strap / drive-link / cutter-link / drive-link combination. Projectile translational speed was measured to be approximately 270 m/s and rotational speed of approximately 14000 r/s. The calculated translational and rotational kinetic energy magnitudes each average over 600 J. This study provides useful information for both timber harvester manufacturers and saw chain manufacturers to design products that reduce the hazards associated with timber harvesting.

Keywords: chain shot, timber harvesters, safety, testing

Procedia PDF Downloads 146
334 A Rare Entity: Case Report on Anaesthetic Management in Robinow Syndrome

Authors: Vidhi Chandra, Arshpreet Singh Grewal

Abstract:

A five-year-old male child born from non-consanguineous marriage, who presented with complaints of growth retardation and no appreciable increase in the penile size since birth and he was posted for de-gloving of penis with dissection of corpora under anaesthesia. After thorough preoperative evaluation it was revealed that patient had peculiar facial dysmorphism that of Robinow Syndrome, high arched palate, Mallampati grade III, mesomelic limbs, scoliotic spine and short stature. All routine investigation were within normal limit, electrocardiography (ECG) and 2D-Echocardiography (ECHO) were normal. In antero-posterior roentgenogram chest showed butterfly and hemivertebrae at multiple levels. The patient was considered to be ASA II. On the day of surgery after ensuring fasting of 6 hours, patient was taken in operation theatre, all standard ASA monitoring was done with ECG, non-invasive blood pressure, peripheral oxygen saturation (SpO2) and body temperature. The patient was pre-oxygenated with 100% oxygen with anatomical face mask. General anaesthesia was induced with Sevoflurane 1-8%, and airway was secured with an appropriate size supraglottic airway and anaesthesia was maintained with nitrous oxide and oxygen in 1:1 ratio along with sevoflurane 2%. An ultrasound guided caudal block was given owing to the skeletal deformities making it difficult even under USG guidance. Post operatively patient was given supportive care with proper hydration, antibiotics, anti-inflammatory and analgesics. He was discharged the next day and followed up weekly for a month. DISCUSSION Robinow syndrome is genetically inherited as autosomal dominant, autosomal recessive or heterogenous disorder involving tyrosine kinase ROR2 gene located on chromosome 9. It has low incidence with no preponderance for any gender. Though intelligence is normal but developmental delay and mental retardation occurs in 20%cases

Keywords: Robinow Syndrome, dwarfism, paediatric, anaesthesia

Procedia PDF Downloads 105
333 Quality of Service Based Routing Algorithm for Real Time Applications in MANETs Using Ant Colony and Fuzzy Logic

Authors: Farahnaz Karami

Abstract:

Routing is an important, challenging task in mobile ad hoc networks due to node mobility, lack of central control, unstable links, and limited resources. An ant colony has been found to be an attractive technique for routing in Mobile Ad Hoc Networks (MANETs). However, existing swarm intelligence based routing protocols find an optimal path by considering only one or two route selection metrics without considering correlations among such parameters making them unsuitable lonely for routing real time applications. Fuzzy logic combines multiple route selection parameters containing uncertain information or imprecise data in nature, but does not have multipath routing property naturally in order to provide load balancing. The objective of this paper is to design a routing algorithm using fuzzy logic and ant colony that can solve some of routing problems in mobile ad hoc networks, such as nodes energy consumption optimization to increase network lifetime, link failures rate reduction to increase packet delivery reliability and providing load balancing to optimize available bandwidth. In proposed algorithm, the path information will be given to fuzzy inference system by ants. Based on the available path information and considering the parameters required for quality of service (QoS), the fuzzy cost of each path is calculated and the optimal paths will be selected. NS2.35 simulation tools are used for simulation and the results are compared and evaluated with the newest QoS based algorithms in MANETs according to packet delivery ratio, end-to-end delay and routing overhead ratio criterions. The simulation results show significant improvement in the performance of these networks in terms of decreasing end-to-end delay, and routing overhead ratio, and also increasing packet delivery ratio.

Keywords: mobile ad hoc networks, routing, quality of service, ant colony, fuzzy logic

Procedia PDF Downloads 64
332 Improving Chest X-Ray Disease Detection with Enhanced Data Augmentation Using Novel Approach of Diverse Conditional Wasserstein Generative Adversarial Networks

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Daniyal Haider, Xiaodong Yang

Abstract:

Chest X-rays are instrumental in the detection and monitoring of a wide array of diseases, including viral infections such as COVID-19, tuberculosis, pneumonia, lung cancer, and various cardiac and pulmonary conditions. To enhance the accuracy of diagnosis, artificial intelligence (AI) algorithms, particularly deep learning models like Convolutional Neural Networks (CNNs), are employed. However, these deep learning models demand a substantial and varied dataset to attain optimal precision. Generative Adversarial Networks (GANs) can be employed to create new data, thereby supplementing the existing dataset and enhancing the accuracy of deep learning models. Nevertheless, GANs have their limitations, such as issues related to stability, convergence, and the ability to distinguish between authentic and fabricated data. In order to overcome these challenges and advance the detection and classification of CXR normal and abnormal images, this study introduces a distinctive technique known as DCWGAN (Diverse Conditional Wasserstein GAN) for generating synthetic chest X-ray (CXR) images. The study evaluates the effectiveness of this Idiosyncratic DCWGAN technique using the ResNet50 model and compares its results with those obtained using the traditional GAN approach. The findings reveal that the ResNet50 model trained on the DCWGAN-generated dataset outperformed the model trained on the classic GAN-generated dataset. Specifically, the ResNet50 model utilizing DCWGAN synthetic images achieved impressive performance metrics with an accuracy of 0.961, precision of 0.955, recall of 0.970, and F1-Measure of 0.963. These results indicate the promising potential for the early detection of diseases in CXR images using this Inimitable approach.

Keywords: CNN, classification, deep learning, GAN, Resnet50

Procedia PDF Downloads 88
331 Bridge Healthcare Access Gap with Artifical Intelligence

Authors: Moshmi Sangavarapu

Abstract:

The US healthcare industry has undergone tremendous digital transformation in recent years, but critical care access to lower-income ethnicities is still in its nascency. This population has historically showcased substantial hesitation to seek any medical assistance. While the lack of sufficient financial resources plays a critical role, the existing cultural and knowledge barriers also contribute significantly to widening the access gap. It is imperative to break these barriers to ensure timely access to therapeutic procedures that can save important lives! Based on ongoing research, healthcare access barriers can be best addressed by tapping the untapped potential of caregiver communities first. They play a critical role in patients’ diagnoses, building healthcare knowledge and instilling confidence in required therapeutic procedures. Recent technological advancements have opened many avenues by developing smart ways of reaching the large caregiver community. A digitized go-to-market strategy featuring connected media coupled with smart IoT devices and geo-location targeting can be collectively leveraged to reach this key audience group. AI/ML algorithms can be thoroughly trained to identify relevant data signals from users' location and browsing behavior and determine useful marketing touchpoints. The web behavior can be further assimilated with natural language processing to identify contextually relevant interest topics and decipher potential caregivers on digital avenues to serve that brand message. In conclusion, grasping the true health access journey of any lower-income ethnic group is important to design beneficial touchpoints that can alleviate patients’ concerns and allow them to break their own access barriers and opt for timely and quality healthcare.

Keywords: healthcare access, market access, diversity barriers, patient journey

Procedia PDF Downloads 54
330 Understanding Evidence Dispersal Caused by the Effects of Using Unmanned Aerial Vehicles in Active Indoor Crime Scenes

Authors: Elizabeth Parrott, Harry Pointon, Frederic Bezombes, Heather Panter

Abstract:

Unmanned aerial vehicles (UAV’s) are making a profound effect within policing, forensic and fire service procedures worldwide. These intelligent devices have already proven useful in photographing and recording large-scale outdoor and indoor sites using orthomosaic and three-dimensional (3D) modelling techniques, for the purpose of capturing and recording sites during and post-incident. UAV’s are becoming an established tool as they are extending the reach of the photographer and offering new perspectives without the expense and restrictions of deploying full-scale aircraft. 3D reconstruction quality is directly linked to the resolution of captured images; therefore, close proximity flights are required for more detailed models. As technology advances deployment of UAVs in confined spaces is becoming more common. With this in mind, this study investigates the effects of UAV operation within active crimes scenes with regard to the dispersal of particulate evidence. To date, there has been little consideration given to the potential effects of using UAV’s within active crime scenes aside from a legislation point of view. Although potentially the technology can reduce the likelihood of contamination by replacing some of the roles of investigating practitioners. There is the risk of evidence dispersal caused by the effect of the strong airflow beneath the UAV, from the downwash of the propellers. The initial results of this study are therefore presented to determine the height of least effect at which to fly, and the commercial propeller type to choose to generate the smallest amount of disturbance from the dataset tested. In this study, a range of commercially available 4-inch propellers were chosen as a starting point due to the common availability and their small size makes them well suited for operation within confined spaces. To perform the testing, a rig was configured to support a single motor and propeller powered with a standalone mains power supply and controlled via a microcontroller. This was to mimic a complete throttle cycle and control the device to ensure repeatability. By removing the variances of battery packs and complex UAV structures to allow for a more robust setup. Therefore, the only changing factors were the propeller and operating height. The results were calculated via computer vision analysis of the recorded dispersal of the sample particles placed below the arm-mounted propeller. The aim of this initial study is to give practitioners an insight into the technology to use when operating within confined spaces as well as recognizing some of the issues caused by UAV’s within active crime scenes.

Keywords: dispersal, evidence, propeller, UAV

Procedia PDF Downloads 163
329 Integrating Artificial Intelligence (AI) into Education-Stakeholder Engagement and ICT Practices for Complex Systems: A Governance Framework for Addressing Counseling Gaps in Higher Education

Authors: Chinyere Ori Elom, Ikechukwu Ogeze Ukeje, Chukwudum Collins Umoke

Abstract:

This paper aims to stimulate scholarly interest in AI, ICT and the existing (complex) systems trajectory- theory, practice, and aspirations within the African continent and to shed fresh light on the shortcomings of the higher education sector (HEs) through the prism of AI-driven Solutions for enhancing Guidance and Counseling and sound governance framework (SGF) in higher education modeling. It further seeks to investigate existing prospects yet to be realized in Nigerian universities by probing innovation neglect in the localities, exploring practices in the global ICT spaces neglected by Nigeria universities’ governance regimes (UGRs), and suggesting area applicability, sustainability and solution modeling in response to peculiar ‘wicked ICT-driven problems’ and or issues facing the continent as well as other universities in emerging societies. This study will adopt a mixed-method approach to collect both qualitative and quantitative data. This paper argues that it will command great relevance in the local and global university system by developing ICT relevance sustainability policy initiatives (SPIs) powered by a multi-stakeholder engagement governance model (MSEGm) that is sufficiently dynamic, eclectic and innovative to surmount complex and constantly rising challenges of the modern-developing world. Hence, it will consider diverse actors both as producers and users alike as victims and beneficiaries of common concerns in the ICT world; thereby providing pathways on how AI’s integration into education governance can significantly reduce counseling gaps, ensuring more students are attended to especially when human counselors are unavailable.

Keywords: AI-counseling solution, stakeholder engagement, university governance, higher education

Procedia PDF Downloads 17
328 A Reflective Investigation on the Course Design and Coaching Strategy for Creating a Trans-Disciplinary Leaning Environment

Authors: Min-Feng Hsieh

Abstract:

Nowadays, we are facing a highly competitive environment in which the situation for survival has come even more critical than ever before. The challenge we will be confronted with is no longer can be dealt with the single system of knowledge. The abilities we urgently need to acquire is something that can lead us to cross over the boundaries between different disciplines and take us to a neutral ground that gathers and integrates powers and intelligence that surrounds us. This paper aims at discussing how a trans-disciplinary design course organized by the College of Design at Chaoyang University can react to this modern challenge. By orchestrating an experimental course format and by developing a series of coaching strategies, a trans-disciplinary learning environment has been created and practiced in which students selected from five different departments, including Architecture, Interior Design, Visual Design, Industrial Design, Landscape and Urban Design, are encouraged to think outside their familiar knowledge pool and to learn with/from each other. In the course of implementing this program, a parallel research has been conducted alongside by adopting the theory and principles of Action Research which is a research methodology that can provide the course organizer emergent, responsive, action-oriented, participative and critically reflective insights for the immediate changes and amendments in order to improve the effect of teaching and learning experience. In the conclusion, how the learning and teaching experience of this trans-disciplinary design studio can offer us some observation that can help us reflect upon the constraints and division caused by the subject base curriculum will be pointed out. A series of concepts for course design and teaching strategies developed and implemented in this trans-disciplinary course are to be introduced as a way to promote learners’ self-motivated, collaborative, cross-disciplinary and student-centered learning skills. The outcome of this experimental course can exemplify an alternative approach that we could adopt in pursuing a remedy for dealing with the problematic issues of the current educational practice.

Keywords: course design, coaching strategy, subject base curriculum, trans-disciplinary

Procedia PDF Downloads 203
327 The Implications of Technological Advancements on the Constitutional Principles of Contract Law

Authors: Laura Çami (Vorpsi), Xhon Skënderi

Abstract:

In today's rapidly evolving technological landscape, the traditional principles of contract law are facing significant challenges. The emergence of new technologies, such as electronic signatures, smart contracts, and online dispute resolution mechanisms, is transforming the way contracts are formed, interpreted, and enforced. This paper examines the implications of these technological advancements on the constitutional principles of contract law. One of the fundamental principles of contract law is freedom of contract, which ensures that parties have the autonomy to negotiate and enter into contracts as they see fit. However, the use of technology in the contracting process has the potential to disrupt this principle. For example, online platforms and marketplaces often offer standard-form contracts, which may not reflect the specific needs or interests of individual parties. This raises questions about the equality of bargaining power between parties and the extent to which parties are truly free to negotiate the terms of their contracts. Another important principle of contract law is the requirement of consideration, which requires that each party receives something of value in exchange for their promise. The use of digital assets, such as cryptocurrencies, has created new challenges in determining what constitutes valuable consideration in a contract. Due to the ambiguity in this area, disagreements about the legality and enforceability of such contracts may arise. Furthermore, the use of technology in dispute resolution mechanisms, such as online arbitration and mediation, may raise concerns about due process and access to justice. The use of algorithms and artificial intelligence to determine the outcome of disputes may also raise questions about the impartiality and fairness of the process. Finally, it should be noted that there are many different and complex effects of technical improvements on the fundamental constitutional foundations of contract law. As technology continues to evolve, it will be important for policymakers and legal practitioners to consider the potential impacts on contract law and to ensure that the principles of fairness, equality, and access to justice are preserved in the contracting process.

Keywords: technological advancements, constitutional principles, contract law, smart contracts, online dispute resolution, freedom of contract

Procedia PDF Downloads 150
326 Multi Biomertric Personal Identification System Based On Hybird Intellegence Method

Authors: Laheeb M. Ibrahim, Ibrahim A. Salih

Abstract:

Biometrics is a technology that has been widely used in many official and commercial identification applications. The increased concerns in security during recent years (especially during the last decades) have essentially resulted in more attention being given to biometric-based verification techniques. Here, a novel fusion approach of palmprint, dental traits has been suggested. These traits which are authentication techniques have been employed in a range of biometric applications that can identify any postmortem PM person and antemortem AM. Besides improving the accuracy, the fusion of biometrics has several advantages such as increasing, deterring spoofing activities and reducing enrolment failure. In this paper, a first unimodel biometric system has been made by using (palmprint and dental) traits, for each one classification applying an artificial neural network and a hybrid technique that combines swarm intelligence and neural network together, then attempt has been made to combine palmprint and dental biometrics. Principally, the fusion of palmprint and dental biometrics and their potential application has been explored as biometric identifiers. To address this issue, investigations have been carried out about the relative performance of several statistical data fusion techniques for integrating the information in both unimodal and multimodal biometrics. Also the results of the multimodal approach have been compared with each one of these two traits authentication approaches. This paper studies the features and decision fusion levels in multimodal biometrics. To determine the accuracy of GAR to parallel system decision-fusion including (AND, OR, Majority fating) has been used. The backpropagation method has been used for classification and has come out with result (92%, 99%, 97%) respectively for GAR, while the GAR) for this algorithm using hybrid technique for classification (95%, 99%, 98%) respectively. To determine the accuracy of the multibiometric system for feature level fusion has been used, while the same preceding methods have been used for classification. The results have been (98%, 99%) respectively while to determine the GAR of feature level different methods have been used and have come out with (98%).

Keywords: back propagation neural network BP ANN, multibiometric system, parallel system decision-fusion, practical swarm intelligent PSO

Procedia PDF Downloads 533