Search results for: gradient boosting machine
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3666

Search results for: gradient boosting machine

1536 Advanced Fuzzy Control for a Doubly Fed Induction Generator in Wind Energy Conversion Systems

Authors: Santhosh Kumat T., Priya E.

Abstract:

The control of a doubly fed induction generator by fuzzy is described. The active and reactive power can be controlled by rotor and grid side converters with fuzzy controller. The main objective is to maintain constant voltage and frequency at the output of the generator. However the Line Side Converter (LSC) can be controlled to supply up to 50% of the required reactive current. When the crowbar is not activated the DFIG can supply reactive power from the rotor side through the machine as well as through the LSC.

Keywords: Doubly Fed Induction Generator (DFIG), Rotor Side Converter (RSC), Grid Side Converter (GSC), Wind Energy Conversion Systems (WECS)

Procedia PDF Downloads 586
1535 Investigation on Machine Tools Energy Consumptions

Authors: Shiva Abdoli, Daniel T.Semere

Abstract:

Several researches have been conducted to study consumption of energy in cutting process. Most of these researches are focusing to measure the consumption and propose consumption reduction methods. In this work, the relation between the cutting parameters and the consumption is investigated in order to establish a generalized energy consumption model that can be used for process and production planning in real production lines. Using the generalized model, the process planning will be carried out by taking into account the energy as a function of the selected process parameters. Similarly, the generalized model can be used in production planning to select the right operational parameters like batch sizes, routing, buffer size, etc. in a production line. The description and derivation of the model as well as a case study are given in this paper to illustrate the applicability and validity of the model.

Keywords: process parameters, cutting process, energy efficiency, Material Removal Rate (MRR)

Procedia PDF Downloads 495
1534 Curvelet Features with Mouth and Face Edge Ratios for Facial Expression Identification

Authors: S. Kherchaoui, A. Houacine

Abstract:

This paper presents a facial expression recognition system. It performs identification and classification of the seven basic expressions; happy, surprise, fear, disgust, sadness, anger, and neutral states. It consists of three main parts. The first one is the detection of a face and the corresponding facial features to extract the most expressive portion of the face, followed by a normalization of the region of interest. Then calculus of curvelet coefficients is performed with dimensionality reduction through principal component analysis. The resulting coefficients are combined with two ratios; mouth ratio and face edge ratio to constitute the whole feature vector. The third step is the classification of the emotional state using the SVM method in the feature space.

Keywords: facial expression identification, curvelet coefficient, support vector machine (SVM), recognition system

Procedia PDF Downloads 231
1533 Contribution to the Evaluation of Uncertainties of Measurement to the Data Processing Sequences of a Cmm

Authors: Hassina Gheribi, Salim Boukebbab

Abstract:

The measurement of the parts manufactured on CMM (coordinate measuring machine) is based on the association of a surface of perfect geometry to the group of dots palpated via a mathematical calculation of the distances between the palpated points and itself surfaces. Surfaces not being never perfect, they are measured by a number of points higher than the minimal number necessary to define them mathematically. However, the central problems of three-dimensional metrology are the estimate of, the orientation parameters, location and intrinsic of this surface. Including the numerical uncertainties attached to these parameters help the metrologist to make decisions to be able to declare the conformity of the part to specifications fixed on the design drawing. During this paper, we will present a data-processing model in Visual Basic-6 which makes it possible automatically to determine the whole of these parameters, and their uncertainties.

Keywords: coordinate measuring machines (CMM), associated surface, uncertainties of measurement, acquisition and modeling

Procedia PDF Downloads 324
1532 Experimental Study of Various Sandwich Composites

Authors: R. Naveen, E. Vanitha, S. Gayathri

Abstract:

The use of Sandwich composite materials in aerospace and civil infrastructure application has been increasing especially due to their enormously low weight that leads to a reduction in the total weight and fuel consumption, high flexural and transverse shear stiffness, and corrosion resistance. The essential properties of sandwich materials vary according to the application area of the structure. The objectives of this study are to identify the mechanical behaviour and failure mechanisms of sandwich structures made of bamboo, V- board and metal (Aluminium as face sheet and Foam as Core material). The three-point bending test and UTM (Universal testing machine) experimental tests are done for three specimens for each type of sandwich composites. From the experiment results of three sandwich composites, bamboo shows high Young’s modulus of elasticity and low density.

Keywords: bamboo sandwich composite, metal sandwich composite, sandwich composite, v-board sandwich composite

Procedia PDF Downloads 255
1531 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 187
1530 Investigating the Viability of Ultra-Low Parameter Count Networks for Real-Time Football Detection

Authors: Tim Farrelly

Abstract:

In recent years, AI-powered object detection systems have opened the doors for innovative new applications and products, especially those operating in the real world or ‘on edge’ – namely, in sport. This paper investigates the viability of an ultra-low parameter convolutional neural network specially designed for the detection of footballs on ‘on the edge’ devices. The main contribution of this paper is the exploration of integrating new design features (depth-wise separable convolutional blocks and squeezed and excitation modules) into an ultra-low parameter network and demonstrating subsequent improvements in performance. The results show that tracking the ball from Full HD images with negligibly high accu-racy is possible in real-time.

Keywords: deep learning, object detection, machine vision applications, sport, network design

Procedia PDF Downloads 143
1529 Tall Building Transit-Oriented Development (TB-TOD) and Energy Efficiency in Suburbia: Case Studies, Sydney, Toronto, and Washington D.C.

Authors: Narjes Abbasabadi

Abstract:

As the world continues to urbanize and suburbanize, where suburbanization associated with mass sprawl has been the dominant form of this expansion, sustainable development challenges will be more concerned. Sprawling, characterized by low density and automobile dependency, presents significant environmental issues regarding energy consumption and Co2 emissions. This paper examines the vertical expansion of suburbs integrated into mass transit nodes as a planning strategy for boosting density, intensification of land use, conversion of single family homes to multifamily dwellings or mixed use buildings and development of viable alternative transportation choices. It analyzes the spatial patterns of tall building transit-oriented development (TB-TOD) of suburban regions in Sydney (Australia), Toronto (Canada), and Washington D.C. (United States). The main objectives of this research seek to understand the effect of the new morphology of suburban tall, the physical dimensions of individual buildings and their arrangement at a larger scale with energy efficiency. This study aims to answer these questions: 1) why and how can the potential phenomenon of vertical expansion or high-rise development be integrated into suburb settings? 2) How can this phenomenon contribute to an overall denser development of suburbs? 3) Which spatial pattern or typologies/ sub-typologies of the TB-TOD model do have the greatest energy efficiency? It addresses these questions by focusing on 1) energy, heat energy demand (excluding cooling and lighting) related to design issues at two levels: macro, urban scale and micro, individual buildings—physical dimension, height, morphology, spatial pattern of tall buildings and their relationship with each other and transport infrastructure; 2) Examining TB-TOD to provide more evidence of how the model works regarding ridership. The findings of the research show that the TB-TOD model can be identified as the most appropriate spatial patterns of tall buildings in suburban settings. And among the TB-TOD typologies/ sub-typologies, compact tall building blocks can be the most energy efficient one. This model is associated with much lower energy demands in buildings at the neighborhood level as well as lower transport needs in an urban scale while detached suburban high rise or low rise suburban housing will have the lowest energy efficiency. The research methodology is based on quantitative study through applying the available literature and static data as well as mapping and visual documentations of urban regions such as Google Earth, Microsoft Bing Bird View and Streetview. It will examine each suburb within each city through the satellite imagery and explore the typologies/ sub-typologies which are morphologically distinct. The study quantifies heat energy efficiency of different spatial patterns through simulation via GIS software.

Keywords: energy efficiency, spatial pattern, suburb, tall building transit-oriented development (TB-TOD)

Procedia PDF Downloads 259
1528 Comparison of Agree Method and Shortest Path Method for Determining the Flow Direction in Basin Morphometric Analysis: Case Study of Lower Tapi Basin, Western India

Authors: Jaypalsinh Parmar, Pintu Nakrani, Bhaumik Shah

Abstract:

Digital Elevation Model (DEM) is elevation data of the virtual grid on the ground. DEM can be used in application in GIS such as hydrological modelling, flood forecasting, morphometrical analysis and surveying etc.. For morphometrical analysis the stream flow network plays a very important role. DEM lacks accuracy and cannot match field data as it should for accurate results of morphometrical analysis. The present study focuses on comparing the Agree method and the conventional Shortest path method for finding out morphometric parameters in the flat region of the Lower Tapi Basin which is located in the western India. For the present study, open source SRTM (Shuttle Radar Topography Mission with 1 arc resolution) and toposheets issued by Survey of India (SOI) were used to determine the morphometric linear aspect such as stream order, number of stream, stream length, bifurcation ratio, mean stream length, mean bifurcation ratio, stream length ratio, length of overland flow, constant of channel maintenance and aerial aspect such as drainage density, stream frequency, drainage texture, form factor, circularity ratio, elongation ratio, shape factor and relief aspect such as relief ratio, gradient ratio and basin relief for 53 catchments of Lower Tapi Basin. Stream network was digitized from the available toposheets. Agree DEM was created by using the SRTM and stream network from the toposheets. The results obtained were used to demonstrate a comparison between the two methods in the flat areas.

Keywords: agree method, morphometric analysis, lower Tapi basin, shortest path method

Procedia PDF Downloads 237
1527 Motor Gear Fault Diagnosis by Measurement of Current, Noise and Vibration on AC Machine

Authors: Sun-Ki Hong, Ki-Seok Kim, Yong-Ho Jo

Abstract:

Lots of motors have been being used in industry. Therefore many researchers have studied about the failure diagnosis of motors. In this paper, the effect of measuring environment for diagnosis of gear fault connected to a motor shaft is studied. The fault diagnosis is executed through the comparison of normal gear and abnormal gear. The measured FFT data are compared with the normal data and analyzed for q-axis current, noise and vibration. For bad and good environment, the diagnosis results are compared. From these, it is shown that the bad measuring environment may not be able to detect exactly the motor gear fault. Therefore it is emphasized that the measuring environment should be carefully prepared.

Keywords: motor fault, diagnosis, FFT, vibration, noise, q-axis current, measuring environment

Procedia PDF Downloads 555
1526 A Quantitative Structure-Adsorption Study on Novel and Emerging Adsorbent Materials

Authors: Marc Sader, Michiel Stock, Bernard De Baets

Abstract:

Considering a large amount of adsorption data of adsorbate gases on adsorbent materials in literature, it is interesting to predict such adsorption data without experimentation. A quantitative structure-activity relationship (QSAR) is developed to correlate molecular characteristics of gases and existing knowledge of materials with their respective adsorption properties. The application of Random Forest, a machine learning method, on a set of adsorption isotherms at a wide range of partial pressures and concentrations is studied. The predicted adsorption isotherms are fitted to several adsorption equations to estimate the adsorption properties. To impute the adsorption properties of desired gases on desired materials, leave-one-out cross-validation is employed. Extensive experimental results for a range of settings are reported.

Keywords: adsorption, predictive modeling, QSAR, random forest

Procedia PDF Downloads 225
1525 Predictive Pathogen Biology: Genome-Based Prediction of Pathogenic Potential and Countermeasures Targets

Authors: Debjit Ray

Abstract:

Horizontal gene transfer (HGT) and recombination leads to the emergence of bacterial antibiotic resistance and pathogenic traits. HGT events can be identified by comparing a large number of fully sequenced genomes across a species or genus, define the phylogenetic range of HGT, and find potential sources of new resistance genes. In-depth comparative phylogenomics can also identify subtle genome or plasmid structural changes or mutations associated with phenotypic changes. Comparative phylogenomics requires that accurately sequenced, complete and properly annotated genomes of the organism. Assembling closed genomes requires additional mate-pair reads or “long read” sequencing data to accompany short-read paired-end data. To bring down the cost and time required of producing assembled genomes and annotating genome features that inform drug resistance and pathogenicity, we are analyzing the performance for genome assembly of data from the Illumina NextSeq, which has faster throughput than the Illumina HiSeq (~1-2 days versus ~1 week), and shorter reads (150bp paired-end versus 300bp paired end) but higher capacity (150-400M reads per run versus ~5-15M) compared to the Illumina MiSeq. Bioinformatics improvements are also needed to make rapid, routine production of complete genomes a reality. Modern assemblers such as SPAdes 3.6.0 running on a standard Linux blade are capable in a few hours of converting mixes of reads from different library preps into high-quality assemblies with only a few gaps. Remaining breaks in scaffolds are generally due to repeats (e.g., rRNA genes) are addressed by our software for gap closure techniques, that avoid custom PCR or targeted sequencing. Our goal is to improve the understanding of emergence of pathogenesis using sequencing, comparative genomics, and machine learning analysis of ~1000 pathogen genomes. Machine learning algorithms will be used to digest the diverse features (change in virulence genes, recombination, horizontal gene transfer, patient diagnostics). Temporal data and evolutionary models can thus determine whether the origin of a particular isolate is likely to have been from the environment (could it have evolved from previous isolates). It can be useful for comparing differences in virulence along or across the tree. More intriguing, it can test whether there is a direction to virulence strength. This would open new avenues in the prediction of uncharacterized clinical bugs and multidrug resistance evolution and pathogen emergence.

Keywords: genomics, pathogens, genome assembly, superbugs

Procedia PDF Downloads 196
1524 Evaluating Classification with Efficacy Metrics

Authors: Guofan Shao, Lina Tang, Hao Zhang

Abstract:

The values of image classification accuracy are affected by class size distributions and classification schemes, making it difficult to compare the performance of classification algorithms across different remote sensing data sources and classification systems. Based on the term efficacy from medicine and pharmacology, we have developed the metrics of image classification efficacy at the map and class levels. The novelty of this approach is that a baseline classification is involved in computing image classification efficacies so that the effects of class statistics are reduced. Furthermore, the image classification efficacies are interpretable and comparable, and thus, strengthen the assessment of image data classification methods. We use real-world and hypothetical examples to explain the use of image classification efficacies. The metrics of image classification efficacy meet the critical need to rectify the strategy for the assessment of image classification performance as image classification methods are becoming more diversified.

Keywords: accuracy assessment, efficacy, image classification, machine learning, uncertainty

Procedia PDF Downloads 207
1523 Efficient Passenger Counting in Public Transport Based on Machine Learning

Authors: Chonlakorn Wiboonsiriruk, Ekachai Phaisangittisagul, Chadchai Srisurangkul, Itsuo Kumazawa

Abstract:

Public transportation is a crucial aspect of passenger transportation, with buses playing a vital role in the transportation service. Passenger counting is an essential tool for organizing and managing transportation services. However, manual counting is a tedious and time-consuming task, which is why computer vision algorithms are being utilized to make the process more efficient. In this study, different object detection algorithms combined with passenger tracking are investigated to compare passenger counting performance. The system employs the EfficientDet algorithm, which has demonstrated superior performance in terms of speed and accuracy. Our results show that the proposed system can accurately count passengers in varying conditions with an accuracy of 94%.

Keywords: computer vision, object detection, passenger counting, public transportation

Procedia PDF Downloads 149
1522 Ethical, Legal and Societal Aspects of Unmanned Aircraft in Defence

Authors: Henning Lahmann, Benjamyn I. Scott, Bart Custers

Abstract:

Suboptimal adoption of AI in defence organisations carries risks for the protection of the freedom, safety, and security of society. Despite the vast opportunities that defence AI-technology presents, there are also a variety of ethical, legal, and societal concerns. To ensure the successful use of AI technology by the military, ethical, legal, and societal aspects (ELSA) need to be considered, and their concerns continuously addressed at all levels. This includes ELSA considerations during the design, manufacturing and maintenance of AI-based systems, as well as its utilisation via appropriate military doctrine and training. This raises the question how defence organisations can remain strategically competitive and at the edge of military innovation, while respecting the values of its citizens. This paper will explain the set-up and share preliminary results of a 4-year research project commissioned by the National Research Council in the Netherlands on the ethical, legal, and societal aspects of AI in defence. The project plans to develop a future-proof, independent, and consultative ecosystem for the responsible use of AI in the defence domain. In order to achieve this, the lab shall devise a context-dependent methodology that focuses on the ‘analysis’, ‘design’ and ‘evaluation’ of ELSA of AI-based applications within the military context, which include inter alia unmanned aircraft. This is bolstered as the Lab also recognises and complements the existing methods in regards to human-machine teaming, explainable algorithms, and value-sensitive design. Such methods will be modified for the military context and applied to pertinent case-studies. These case-studies include, among others, the application of autonomous robots (incl. semi- autonomous) and AI-based methods against cognitive warfare. As the perception of the application of AI in the military context, by both society and defence personnel, is important, the Lab will study how these perceptions evolve and vary in different contexts. Furthermore, the Lab will monitor – as they may influence people’s perception – developments in the global technological, military and societal spheres. Although the emphasis of the research project is on different forms of AI in defence, it focuses on several case studies. One of these case studies is on unmanned aircraft, which will also be the focus of the paper. Hence, ethical, legal, and societal aspects of unmanned aircraft in the defence domain will be discussed in detail, including but not limited to privacy issues. Typical other issues concern security (for people, objects, data or other aircraft), privacy (sensitive data, hindrance, annoyance, data collection, function creep), chilling effects, PlayStation mentality, and PTSD.

Keywords: autonomous weapon systems, unmanned aircraft, human-machine teaming, meaningful human control, value-sensitive design

Procedia PDF Downloads 91
1521 Design and Implementation of a Wearable Artificial Kidney Prototype for Home Dialysis

Authors: R. A. Qawasma, F. M. Haddad, H. O. Salhab

Abstract:

Hemodialysis is a life-preserving treatment for a number of patients with kidney failure. The standard procedure of hemodialysis is three times a week during the hemodialysis procedure, the patient usually suffering from many inconvenient, exhausting feeling and effect on the heart and cardiovascular system are the most common signs. This paper provides a solution to reduce the previous problems by designing a wearable artificial kidney (WAK) taking in consideration a minimization the size of the dialysis machine. The WAK system consists of two circuits: blood circuit and dialysate circuit. The blood from the patient is filtered in the dialyzer before returning back to the patient. Several parameters using an advanced microcontroller and array of sensors. WAK equipped with visible and audible alarm system to aware the patients if there is any problem.

Keywords: artificial kidney, home dialysis, renal failure, wearable kidney

Procedia PDF Downloads 233
1520 Texture-Based Image Forensics from Video Frame

Authors: Li Zhou, Yanmei Fang

Abstract:

With current technology, images and videos can be obtained more easily than ever. It is so easy to manipulate these digital multimedia information when obtained, and that the content or source of the image and video could be easily tampered. In this paper, we propose to identify the image and video frame by the texture-based approach, e.g. Markov Transition Probability (MTP), which is in space domain, DCT domain and DWT domain, respectively. In the experiment, image and video frame database is constructed, and is used to train and test the classifier Support Vector Machine (SVM). Experiment results show that the texture-based approach has good performance. In order to verify the experiment result, and testify the universality and robustness of algorithm, we build a random testing dataset, the random testing result is in keeping with above experiment.

Keywords: multimedia forensics, video frame, LBP, MTP, SVM

Procedia PDF Downloads 424
1519 A Molding Surface Auto-inspection System

Authors: Ssu-Han Chen, Der-Baau Perng

Abstract:

Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.

Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation

Procedia PDF Downloads 430
1518 Multimodal Employee Attendance Management System

Authors: Khaled Mohammed

Abstract:

This paper presents novel face recognition and identification approaches for the real-time attendance management problem in large companies/factories and government institutions. The proposed uses the Minimum Ratio (MR) approach for employee identification. Capturing the authentic face variability from a sequence of video frames has been considered for the recognition of faces and resulted in system robustness against the variability of facial features. Experimental results indicated an improvement in the performance of the proposed system compared to the Previous approaches at a rate between 2% to 5%. In addition, it decreased the time two times if compared with the Previous techniques, such as Extreme Learning Machine (ELM) & Multi-Scale Structural Similarity index (MS-SSIM). Finally, it achieved an accuracy of 99%.

Keywords: attendance management system, face detection and recognition, live face recognition, minimum ratio

Procedia PDF Downloads 154
1517 Integrating Wearable Devices in Real-Time Computer Applications of Petrochemical Systems

Authors: Paul B Stone, Subhashini Ganapathy, Mary E. Fendley, Layla Akilan

Abstract:

As notifications become more common through mobile devices, it is important to understand the impact of wearable devices on the improved user experience of man-machine interfaces. This study examined the use of a wearable device for a real-time system using a computer-simulated petrochemical system. The key research question was to determine how using the information provided by the wearable device can improve human performance through measures of situational awareness and decision making. Results indicate that there was a reduction in response time when using the watch, and there was no difference in situational awareness. Perception of using the watch was positive, with 83% of users finding value in using the watch and receiving haptic feedback.

Keywords: computer applications, haptic feedback, petrochemical systems, situational awareness, wearable technology

Procedia PDF Downloads 199
1516 Evaluating Performance of an Anomaly Detection Module with Artificial Neural Network Implementation

Authors: Edward Guillén, Jhordany Rodriguez, Rafael Páez

Abstract:

Anomaly detection techniques have been focused on two main components: data extraction and selection and the second one is the analysis performed over the obtained data. The goal of this paper is to analyze the influence that each of these components has over the system performance by evaluating detection over network scenarios with different setups. The independent variables are as follows: the number of system inputs, the way the inputs are codified and the complexity of the analysis techniques. For the analysis, some approaches of artificial neural networks are implemented with different number of layers. The obtained results show the influence that each of these variables has in the system performance.

Keywords: network intrusion detection, machine learning, artificial neural network, anomaly detection module

Procedia PDF Downloads 340
1515 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 90
1514 A Multi-Agent Urban Traffic Simulator for Generating Autonomous Driving Training Data

Authors: Florin Leon

Abstract:

This paper describes a simulator of traffic scenarios tailored to facilitate autonomous driving model training for urban environments. With the rising prominence of self-driving vehicles, the need for diverse datasets is very important. The proposed simulator provides a flexible framework that allows the generation of custom scenarios needed for the validation and enhancement of trajectory prediction algorithms. Its controlled yet dynamic environment addresses the challenges associated with real-world data acquisition and ensures adaptability to diverse driving scenarios. By providing an adaptable solution for scenario creation and algorithm testing, this tool proves to be a valuable resource for advancing autonomous driving technology that aims to ensure safe and efficient self-driving vehicles.

Keywords: autonomous driving, car simulator, machine learning, model training, urban simulation environment

Procedia PDF Downloads 57
1513 Planning for Location and Distribution of Regional Facilities Using Central Place Theory and Location-Allocation Model

Authors: Danjuma Bawa

Abstract:

This paper aimed at exploring the capabilities of Location-Allocation model in complementing the strides of the existing physical planning models in the location and distribution of facilities for regional consumption. The paper was designed to provide a blueprint to the Nigerian government and other donor agencies especially the Fertilizer Distribution Initiative (FDI) by the federal government for the revitalization of the terrorism ravaged regions. Theoretical underpinnings of central place theory related to spatial distribution, interrelationships, and threshold prerequisites were reviewed. The study showcased how Location-Allocation Model (L-AM) alongside Central Place Theory (CPT) was applied in Geographic Information System (GIS) environment to; map and analyze the spatial distribution of settlements; exploit their physical and economic interrelationships, and to explore their hierarchical and opportunistic influences. The study was purely spatial qualitative research which largely used secondary data such as; spatial location and distribution of settlements, population figures of settlements, network of roads linking them and other landform features. These were sourced from government ministries and open source consortium. GIS was used as a tool for processing and analyzing such spatial features within the dictum of CPT and L-AM to produce a comprehensive spatial digital plan for equitable and judicious location and distribution of fertilizer deports in the study area in an optimal way. Population threshold was used as yardstick for selecting suitable settlements that could stand as service centers to other hinterlands; this was accomplished using the query syntax in ArcMapTM. ArcGISTM’ network analyst was used in conducting location-allocation analysis for apportioning of groups of settlements around such service centers within a given threshold distance. Most of the techniques and models ever used by utility planners have been centered on straight distance to settlements using Euclidean distances. Such models neglect impedance cutoffs and the routing capabilities of networks. CPT and L-AM take into consideration both the influential characteristics of settlements and their routing connectivity. The study was undertaken in two terrorism ravaged Local Government Areas of Adamawa state. Four (4) existing depots in the study area were identified. 20 more depots in 20 villages were proposed using suitability analysis. Out of the 300 settlements mapped in the study area about 280 of such settlements where optimally grouped and allocated to the selected service centers respectfully within 2km impedance cutoff. This study complements the giant strides by the federal government of Nigeria by providing a blueprint for ensuring proper distribution of these public goods in the spirit of bringing succor to these terrorism ravaged populace. This will ardently at the same time help in boosting agricultural activities thereby lowering food shortage and raising per capita income as espoused by the government.

Keywords: central place theory, GIS, location-allocation, network analysis, urban and regional planning, welfare economics

Procedia PDF Downloads 146
1512 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 140
1511 Physiological Response of Water-Restricted Xhosa Goats Supplemented with Vitamin C

Authors: O.F. Akinmoladun, F.N. Fon, C.T. Mpendulo, O. Okoh

Abstract:

The sustainability of livestock production is under threat as a result of water scarcity, fluctuating precipitation, and high environmental temperature. These combined stressors have impacted negatively on general animal production and welfare, necessitating a very reliable and cost-effective management practices, especially in arid and water-limited regions of the world. Instead of the above, this study was designed to investigate the growth performance and physiological response of water-restricted Xhosa ear-lobe goats fed diets supplemented with single or multiple vitamin C (VC) during summer. The total forty-eight goats used for the experiment were balanced for body weight and randomly assigned to the seven treatment groups (seven goats/treatment): GI (W100%); GII (W70%); GIII (W50%); GIV (W70%+3g/day VC); GV ((W50% +3g/day VC); GVI (W70%+3g/d VC+extra 5g on every eight-day); GVII (W50%+3g/d VC+extra 5g on every eight-day). The design was a complete randomized design and VC was administered per os. At the end of the 75-day feeding trial, GIII (W50%) animals were the most affected (P<0.05) and the effect was more pronounced in their body condition scores (BCs). Weight loss and depression in feed intake due to water restriction (P<0.05) were attenuated by VC treated groups (GIV-GVII). Changes in body thermal gradient (BTG) and rectal temperature (RcT) were similar (P>0.05) across the various experimental groups. The attenuation effect of VC was significant in responses to respiratory rate (RR) and cortisol. Supplementation of VC (either single or multiple) did not significantly (P>0.05) improve water restriction effect on body condition scores (BCs) and FAMACHA©. The current study found out that Xhosa ear lobe goats can adapt to the prevailing bioclimatic changes and limited water intake. However, supplementation of vitamin C can be beneficial at modulating these stressful stimuli. Continuous consistencies in the outcome of vitamin C on water-stressed animals can help validate recommendations especially to farmers in the arid and water-limited regions across the globe.

Keywords: vitamin C, Xhosa ear-lobe, thermotolerance, water stress

Procedia PDF Downloads 128
1510 Reusing of HSS Hacksaw Blades as Rough Machining Tool

Authors: Raja V., Chokkalingam B.

Abstract:

For rough cutting, in many industries and educational institutions using carbon steels or HSS single point cutting tools in center lathe machine. In power hacksaw blades, only the cutter teeth region used to parting off the given material. The portions other than the teeth can be used as a single point cutting tool for rough turning and facing on soft materials. The hardness and Tensile strength of this used Power hacksaw blade is almost same as conventional cutting tools. In this paper, the effect of power hacksaw blades over conventional tool has been compared. Thickness of the blade (1.6 mm) is very small compared to its length and width. Hence, a special tool holding device is designed to hold the tool.

Keywords: hardness, high speed steels, power hacksaw blade, tensile strength

Procedia PDF Downloads 455
1509 Synthesis of (S)-Naproxen Based Amide Bond Forming Chiral Reagent and Application for Liquid Chromatographic Resolution of (RS)-Salbutamol

Authors: Poonam Malik, Ravi Bhushan

Abstract:

This work describes a very efficient approach for synthesis of activated ester of (S)-naproxen which was characterized by UV, IR, ¹HNMR, elemental analysis and polarimetric studies. It was used as a C-N bond forming chiral derivatizing reagent for further synthesis of diastereomeric amides of (RS)-salbutamol (a β₂ agonist that belongs to the group β-adrenolytic and is marketed as racamate) under microwave irradiation. The diastereomeric pair was separated by achiral phase HPLC, using mobile phase in gradient mode containing methanol and aqueous triethylaminephosphate (TEAP); separation conditions were optimized with respect to pH, flow rate, and buffer concentration and the method of separation was validated as per International Council for Harmonisation (ICH) guidelines. The reagent proved to be very effective for on-line sensitive detection of the diastereomers with very low limit of detection (LOD) values of 0.69 and 0.57 ng mL⁻¹ for diastereomeric derivatives of (S)- and (R)-salbutamol, respectively. The retention times were greatly reduced (2.7 min) with less consumption of organic solvents and large (α) as compared to literature reports. Besides, the diastereomeric derivatives were separated and isolated by preparative HPLC; these were characterized and were used as standard reference samples for recording ¹HNMR and IR spectra for determining absolute configuration and elution order; it ensured the success of diastereomeric synthesis and established the reliability of enantioseparation and eliminated the requirement of pure enantiomer of the analyte which is generally not available. The newly developed reagent can suitably be applied to several other amino group containing compounds either from organic syntheses or pharmaceutical industries because the presence of (S)-Npx as a strong chromophore would allow sensitive detection.This work is significant not only in the area of enantioseparation and determination of absolute configuration of diastereomeric derivatives but also in the area of developing new chiral derivatizing reagents (CDRs).

Keywords: chiral derivatizing reagent, naproxen, salbutamol, synthesis

Procedia PDF Downloads 151
1508 Thermomechanical Deformation Response in Cold Sprayed SiCp/Al Composites: Strengthening, Microstructure Characterization, and Thermomechanical Properties

Authors: L. Gyansah, Yanfang Shen, Jiqiang Wang, Tianying Xiong

Abstract:

SiCₚ/ pure Al composites with different SiC fractions (20 wt %, 30 wt %, and 40 wt %) were precisely cold sprayed, followed by hot axial-compression tests at deformation temperatures of 473 K to 673 K, leading to failure of specimens through routine crack propagation in their multiphase. The plastic deformation behaviour with respect to the SiCₚ contents and the deformation temperatures were studied at strain rate 1s-1.As-sprayed and post-failure specimens were analyzed by X-ray computed tomography (XCT), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Quasi-static thermomechanical testing results revealed that compressive strength (UTS = 228 MPa and 30.4 %) was the highest in the composites that was thermomechanically compressed at 473 K compared to those of the as-sprayed, while the as-sprayed exhibited a compressive strength of 182.8 MPa related to the increment in SiC fraction. Strength—plasticity synergy was promoted by dynamic recrystallization (DRX) through strengthening and refinement of the grains. The DRX degree depends relevantly on retainment of the uniformly ultrafine SiCₚ particulates, the pinning effects of the interfaces promoted by the ultrafine grain structures (UFG), and the higher deformation temperature. Reconstructed X-ray computed tomography data revealed different crack propagation mechanisms. A single-plane shear crack with multi-laminates fracture morphology yields relatively through the as-sprayed and as-deformed at 473 K deposits, while a multiphase plane shear cracks preeminently existed in high temperature deformed deposits resulting in multiphase-interface delaminations. Three pertinent strengthening mechanisms, videlicet, SiCp dispersed strengthening, refined grain strengthening, and dislocation strengthening, existed in the gradient microstructure, and their detailed contributions to the thermomechanical properties were discussed.

Keywords: cold spraying, hot deformation, deformation temperature, thermomechancal properties, SiC/Al composite

Procedia PDF Downloads 105
1507 Green Thumb Engineering - Explainable Artificial Intelligence for Managing IoT Enabled Houseplants

Authors: Antti Nurminen, Avleen Malhi

Abstract:

Significant progress in intelligent systems in combination with exceedingly wide application domains having machine learning as the core technology are usually opaque, non-intuitive, and commonly complex for human users. We use innovative IoT technology which monitors and analyzes moisture, humidity, luminosity and temperature levels to assist end users for optimization of environmental conditions for their houseplants. For plant health monitoring, we construct a system yielding the Normalized Difference Vegetation Index (NDVI), supported by visual validation by users. We run the system for a selected plant, basil, in varying environmental conditions to cater for typical home conditions, and bootstrap our AI with the acquired data. For end users, we implement a web based user interface which provides both instructions and explanations.

Keywords: explainable artificial intelligence, intelligent agent, IoT, NDVI

Procedia PDF Downloads 161