Search results for: predictive models
5377 Domain Driven Design vs Soft Domain Driven Design Frameworks
Authors: Mohammed Salahat, Steve Wade
Abstract:
This paper presents and compares the SSDDD “Systematic Soft Domain Driven Design Framework” to DDD “Domain Driven Design Framework” as a soft system approach of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework has been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, a comparison between SSDDD and DDD is presented in this paper, to show how SSDDD improved DDD as an approach to modelling and implementing business domain perspectives for Information Systems Development. The comparison process, the results, and the improvements are presented in the following sections of this paper.Keywords: domain-driven design, soft domain-driven design, naked objects, soft language
Procedia PDF Downloads 3005376 Studying on Pile Seismic Operation with Numerical Method by Using FLAC 3D Software
Authors: Hossein Motaghedi, Kaveh Arkani, Siavash Salamatpoor
Abstract:
Usually the piles are important tools for safety and economical design of high and heavy structures. For this aim the response of single pile under dynamic load is so effective. Also, the agents which have influence on single pile response are properties of pile geometrical, soil and subjected loads. In this study the finite difference numerical method and by using FLAC 3D software is used for evaluation of single pile behavior under peak ground acceleration (PGA) of El Centro earthquake record in California (1940). The results of this models compared by experimental results of other researchers and it will be seen that the results of this models are approximately coincide by experimental data's. For example the maximum moment and displacement in top of the pile is corresponding to the other experimental results of pervious researchers. Furthermore, in this paper is tried to evaluate the effective properties between soil and pile. The results is shown that by increasing the pile diagonal, the pile top displacement will be decreased. As well as, by increasing the length of pile, the top displacement will be increased. Also, by increasing the stiffness ratio of pile to soil, the produced moment in pile body will be increased and the taller piles have more interaction by soils and have high inertia. So, these results can help directly to optimization design of pile dimensions.Keywords: pile seismic response, interaction between soil and pile, numerical analysis, FLAC 3D
Procedia PDF Downloads 3935375 Giftedness Cloud Model: A Psychological and Ecological Vision of Giftedness Concept
Authors: Rimeyah H. S. Almutairi, Alaa Eldin A. Ayoub
Abstract:
The aim of this study was to identify empirical and theoretical studies that explored giftedness theories and identification. In order to assess and synthesize the mechanisms, outcomes, and impacts of gifted identification models. Thus, we sought to provide an evidence-informed answer to how does current giftedness theories work and effectiveness. In order to develop a model that incorporates the advantages of existing models and avoids their disadvantages as much as possible. We conducted a systematic literature review (SLR). The disciplined analysis resulted in a final sample consisting of 30 appropriate searches. The results indicated that: (a) there is no uniform and consistent definition of Giftedness; (b) researchers are using several non-consistent criteria to detect gifted, and (d) The detection of talent is largely limited to early ages, and there is obvious neglect of adults. This study contributes to the development of Giftedness Cloud Model (GCM) which defined as a model that attempts to interpretation giftedness within an interactive psychological and ecological framework. GCM aims to help a talented to reach giftedness core and manifestation talent in creative productivity or invention. Besides that, GCM suggests classifying giftedness into four levels of mastery, excellence, creative productivity, and manifestation. In addition, GCM presents an idea to distinguish between talent and giftedness.Keywords: giftedness cloud model, talent, systematic literature review, giftedness concept
Procedia PDF Downloads 1705374 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 1895373 Current Status and Prospects of Further Control of Brucellosis in Humans and Domestic Ruminants in Bangladesh
Authors: A. K. M. Anisur Rahman
Abstract:
Brucellosis is an ancient and one of the world's most widespread zoonotic diseases affecting both, public health and animal production. Its current status in humans and domestic ruminants along with probable means to control further in Bangladesh are described. The true exposure prevalence of brucellosis in cattle, goats, and sheep seems to be low: 0.3% in cattle, 1% in goats and 1.2% in sheep. The true prevalence of brucellosis in humans was also reported to be around 2%. In such a low prevalence scenario both in humans and animals, the positive predictive values of the diagnostic tests were very low. The role Brucella species in the abortion of domestic ruminants is less likely. Still now, no Brucella spp. was isolated from animal and human samples. However, Brucella abortus DNA was detected from seropositive humans, cattle, and buffalo; milk of cow, goats, and gayals and semen of an infected bull. Consuming raw milk and unpasteurized milk products by Bangladeshi people are not common. Close contact with animals, artificial insemination using semen from infected bulls, grazing mixed species of animals together in the field and transboundary animal movement are important factors, which should be considered for the further control of this zoonosis in Bangladesh.Keywords: brucellosis, control, human, zoonosis
Procedia PDF Downloads 3705372 Body Image Dissatifaction with and Personal Behavioral Control in Obese Patients Who are Attending to Treatment
Authors: Mariela Gonzalez, Zoraide Lugli, Eleonora Vivas, Rosana Guzmán
Abstract:
The objective was to determine the predictive capacity of self-efficacy perceived for weight control, locus of weight control and skills of weight self-management in the dissatisfaction of the body image in obese people who attend treatment. Sectional study conducted in the city of Maracay, Venezuela, with 243 obese who attend to treatment, 173 of the feminine gender and 70 of the male, with ages ranging between 18 and 57 years old. The sample body mass index ranged between 29.39 and 44.14. The following instruments were used: The Body Shape Questionnaire (BSQ), the inventory of body weight self-regulation, The Inventory of self-efficacy in the regulation of body weight and the Inventory of the Locus of weight control. Calculating the descriptive statistics and of central tendency, coefficients of correlation and multiple regression; it was found that a low ‘perceived Self-efficacy in the weight control’ and a high ‘Locus of external control’, predict the dissatisfaction with body image in obese who attend treatment. The findings are a first approximation to give an account of the importance of the personal control variables in the study of the psychological grief on the overweight individual.Keywords: dissatisfaction with body image, obese people, personal control, psychological variables
Procedia PDF Downloads 4375371 Awareness in the Code of Ethics for Nurse Educators among Nurse Educators, Nursing Students and Professional Nurses at the Royal Thai Army, Thailand
Authors: Wallapa Boonrod
Abstract:
Thai National Education Act 1999 required all educational institutions received external quality evaluation at least once every five years. The purpose of this study was to compare the awareness in the code of ethics for nurse educators among nurse educators, professional nurses, and nursing students under The Royal Thai Army Nurse College. The sample consisted of 51 of nurse educators 200 nursing students and 340 professional nurses from Army nursing college and hospital by stratified random sampling techniques. The descriptive statistics indicated that the nurse educators, nursing students and professional nurses had different levels of awareness in the 9 roles of nurse educators: Nurse, Reliable Sacrifice, Intelligence, Giver, Nursing Skills, Teaching Responsibility, Unbiased Care, Tie to Organization, and Role Model. The code of ethics for nurse educators (CENE) measurement models from the awareness of nurse educators, professional nurses, and nursing students were well fitted with the empirical data. The CENE models from them were invariant in forms, but variant in factor loadings. Thai Army nurse educators strive to create a learning environment that nurtures the highest nursing potential and standards in their nursing students.Keywords: awareness of the code of ethics for nurse educators, nursing college and hospital under The Royal Thai Army, Thai Army nurse educators, professional nurses
Procedia PDF Downloads 4545370 Landslide Susceptibility Mapping: A Comparison between Logistic Regression and Multivariate Adaptive Regression Spline Models in the Municipality of Oudka, Northern of Morocco
Authors: S. Benchelha, H. C. Aoudjehane, M. Hakdaoui, R. El Hamdouni, H. Mansouri, T. Benchelha, M. Layelmam, M. Alaoui
Abstract:
The logistic regression (LR) and multivariate adaptive regression spline (MarSpline) are applied and verified for analysis of landslide susceptibility map in Oudka, Morocco, using geographical information system. From spatial database containing data such as landslide mapping, topography, soil, hydrology and lithology, the eight factors related to landslides such as elevation, slope, aspect, distance to streams, distance to road, distance to faults, lithology map and Normalized Difference Vegetation Index (NDVI) were calculated or extracted. Using these factors, landslide susceptibility indexes were calculated by the two mentioned methods. Before the calculation, this database was divided into two parts, the first for the formation of the model and the second for the validation. The results of the landslide susceptibility analysis were verified using success and prediction rates to evaluate the quality of these probabilistic models. The result of this verification was that the MarSpline model is the best model with a success rate (AUC = 0.963) and a prediction rate (AUC = 0.951) higher than the LR model (success rate AUC = 0.918, rate prediction AUC = 0.901).Keywords: landslide susceptibility mapping, regression logistic, multivariate adaptive regression spline, Oudka, Taounate
Procedia PDF Downloads 1935369 Analysis of Residents’ Travel Characteristics and Policy Improving Strategies
Authors: Zhenzhen Xu, Chunfu Shao, Shengyou Wang, Chunjiao Dong
Abstract:
To improve the satisfaction of residents' travel, this paper analyzes the characteristics and influencing factors of urban residents' travel behavior. First, a Multinominal Logit Model (MNL) model is built to analyze the characteristics of residents' travel behavior, reveal the influence of individual attributes, family attributes and travel characteristics on the choice of travel mode, and identify the significant factors. Then put forward suggestions for policy improvement. Finally, Support Vector Machine (SVM) and Multi-Layer Perceptron (MLP) models are introduced to evaluate the policy effect. This paper selects Futian Street in Futian District, Shenzhen City for investigation and research. The results show that gender, age, education, income, number of cars owned, travel purpose, departure time, journey time, travel distance and times all have a significant influence on residents' choice of travel mode. Based on the above results, two policy improvement suggestions are put forward from reducing public transportation and non-motor vehicle travel time, and the policy effect is evaluated. Before the evaluation, the prediction effect of MNL, SVM and MLP models was evaluated. After parameter optimization, it was found that the prediction accuracy of the three models was 72.80%, 71.42%, and 76.42%, respectively. The MLP model with the highest prediction accuracy was selected to evaluate the effect of policy improvement. The results showed that after the implementation of the policy, the proportion of public transportation in plan 1 and plan 2 increased by 14.04% and 9.86%, respectively, while the proportion of private cars decreased by 3.47% and 2.54%, respectively. The proportion of car trips decreased obviously, while the proportion of public transport trips increased. It can be considered that the measures have a positive effect on promoting green trips and improving the satisfaction of urban residents, and can provide a reference for relevant departments to formulate transportation policies.Keywords: neural network, travel characteristics analysis, transportation choice, travel sharing rate, traffic resource allocation
Procedia PDF Downloads 1425368 System for the Detecting of Fake Profiles on Online Social Networks Using Machine Learning and the Bio-Inspired Algorithms
Authors: Sekkal Nawel, Mahammed Nadir
Abstract:
The proliferation of online activities on Online Social Networks (OSNs) has captured significant user attention. However, this growth has been hindered by the emergence of fraudulent accounts that do not represent real individuals and violate privacy regulations within social network communities. Consequently, it is imperative to identify and remove these profiles to enhance the security of OSN users. In recent years, researchers have turned to machine learning (ML) to develop strategies and methods to tackle this issue. Numerous studies have been conducted in this field to compare various ML-based techniques. However, the existing literature still lacks a comprehensive examination, especially considering different OSN platforms. Additionally, the utilization of bio-inspired algorithms has been largely overlooked. Our study conducts an extensive comparison analysis of various fake profile detection techniques in online social networks. The results of our study indicate that supervised models, along with other machine learning techniques, as well as unsupervised models, are effective for detecting false profiles in social media. To achieve optimal results, we have incorporated six bio-inspired algorithms to enhance the performance of fake profile identification results.Keywords: machine learning, bio-inspired algorithm, detection, fake profile, system, social network
Procedia PDF Downloads 735367 Electrocardiogram-Based Heartbeat Classification Using Convolutional Neural Networks
Authors: Jacqueline Rose T. Alipo-on, Francesca Isabelle F. Escobar, Myles Joshua T. Tan, Hezerul Abdul Karim, Nouar Al Dahoul
Abstract:
Electrocardiogram (ECG) signal analysis and processing are crucial in the diagnosis of cardiovascular diseases, which are considered one of the leading causes of mortality worldwide. However, the traditional rule-based analysis of large volumes of ECG data is time-consuming, labor-intensive, and prone to human errors. With the advancement of the programming paradigm, algorithms such as machine learning have been increasingly used to perform an analysis of ECG signals. In this paper, various deep learning algorithms were adapted to classify five classes of heartbeat types. The dataset used in this work is the synthetic MIT-BIH Arrhythmia dataset produced from generative adversarial networks (GANs). Various deep learning models such as ResNet-50 convolutional neural network (CNN), 1-D CNN, and long short-term memory (LSTM) were evaluated and compared. ResNet-50 was found to outperform other models in terms of recall and F1 score using a five-fold average score of 98.88% and 98.87%, respectively. 1-D CNN, on the other hand, was found to have the highest average precision of 98.93%.Keywords: heartbeat classification, convolutional neural network, electrocardiogram signals, generative adversarial networks, long short-term memory, ResNet-50
Procedia PDF Downloads 1335366 Analogical Reasoning on Preschoolers’ Linguistic Performance
Authors: Yenie Norambuena
Abstract:
Analogical reasoning is a cognitive process that consists of structured comparisons of mental representations and scheme construction. Because of its heuristic function, it is ubiquitous in cognition and could play an important role in language development. The use of analogies is expressed early in children and this behavior is also reflected in language, suggesting a possible way to understand the complex links between thought and language. The current research examines factors of verbal and non-verbal reasoning that should be taken into consideration in the study of language development for their relations and predictive value. The study was conducted with 48 Chilean preschoolers (Spanish speakers) from 4 to 6-year-old. We assessed children’s verbal analogical reasoning, non-verbal analogical reasoning and linguistics skills (Listening Comprehension, Phonemic awareness, Alphabetic principle, Syllabification, Lexical repetition and Lexical decision). The results evidenced significant correlations between analogical reasoning factors and linguistic skills and they can predict linguistic performance mainly on oral comprehension, lexical decision and phonological skills. These findings suggest a fundamental interrelationship between analogical reasoning and linguistic performance on children’s and points to the need to consider this cognitive process in comprehensive theories of children's language development.Keywords: verbal analogical reasoning, non-verbal analogical reasoning, linguistic skills, language development
Procedia PDF Downloads 2695365 The Effects of Consumer Inertia and Emotions on New Technology Acceptance
Authors: Chyi Jaw
Abstract:
Prior literature on innovation diffusion or acceptance has almost exclusively concentrated on consumers’ positive attitudes and behaviors for new products/services. Consumers’ negative attitudes or behaviors to innovations have received relatively little marketing attention, but it happens frequently in practice. This study discusses consumer psychological factors when they try to learn or use new technologies. According to recent research, technological innovation acceptance has been considered as a dynamic or mediated process. This research argues that consumers can experience inertia and emotions in the initial use of new technologies. However, given such consumer psychology, the argument can be made as to whether the inclusion of consumer inertia (routine seeking and cognitive rigidity) and emotions increases the predictive power of new technology acceptance model. As data from the empirical study find, the process is potentially consumer emotion changing (independent of performance benefits) because of technology complexity and consumer inertia, and impact innovative technology use significantly. Finally, the study presents the superior predictability of the hypothesized model, which let managers can better predict and influence the successful diffusion of complex technological innovations.Keywords: cognitive rigidity, consumer emotions, new technology acceptance, routine seeking, technology complexity
Procedia PDF Downloads 3005364 Ontology Mapping with R-GNN for IT Infrastructure: Enhancing Ontology Construction and Knowledge Graph Expansion
Authors: Andrey Khalov
Abstract:
The rapid growth of unstructured data necessitates advanced methods for transforming raw information into structured knowledge, particularly in domain-specific contexts such as IT service management and outsourcing. This paper presents a methodology for automatically constructing domain ontologies using the DOLCE framework as the base ontology. The research focuses on expanding ITIL-based ontologies by integrating concepts from ITSMO, followed by the extraction of entities and relationships from domain-specific texts through transformers and statistical methods like formal concept analysis (FCA). In particular, this work introduces an R-GNN-based approach for ontology mapping, enabling more efficient entity extraction and ontology alignment with existing knowledge bases. Additionally, the research explores transfer learning techniques using pre-trained transformer models (e.g., DeBERTa-v3-large) fine-tuned on synthetic datasets generated via large language models such as LLaMA. The resulting ontology, termed IT Ontology (ITO), is evaluated against existing methodologies, highlighting significant improvements in precision and recall. This study advances the field of ontology engineering by automating the extraction, expansion, and refinement of ontologies tailored to the IT domain, thus bridging the gap between unstructured data and actionable knowledge.Keywords: ontology mapping, knowledge graphs, R-GNN, ITIL, NER
Procedia PDF Downloads 265363 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1315362 Leveraging Natural Language Processing for Legal Artificial Intelligence: A Longformer Approach for Taiwanese Legal Cases
Abstract:
Legal artificial intelligence (LegalAI) has been increasing applications within legal systems, propelled by advancements in natural language processing (NLP). Compared with general documents, legal case documents are typically long text sequences with intrinsic logical structures. Most existing language models have difficulty understanding the long-distance dependencies between different structures. Another unique challenge is that while the Judiciary of Taiwan has released legal judgments from various levels of courts over the years, there remains a significant obstacle in the lack of labeled datasets. This deficiency makes it difficult to train models with strong generalization capabilities, as well as accurately evaluate model performance. To date, models in Taiwan have yet to be specifically trained on judgment data. Given these challenges, this research proposes a Longformer-based pre-trained language model explicitly devised for retrieving similar judgments in Taiwanese legal documents. This model is trained on a self-constructed dataset, which this research has independently labeled to measure judgment similarities, thereby addressing a void left by the lack of an existing labeled dataset for Taiwanese judgments. This research adopts strategies such as early stopping and gradient clipping to prevent overfitting and manage gradient explosion, respectively, thereby enhancing the model's performance. The model in this research is evaluated using both the dataset and the Average Entropy of Offense-charged Clustering (AEOC) metric, which utilizes the notion of similar case scenarios within the same type of legal cases. Our experimental results illustrate our model's significant advancements in handling similarity comparisons within extensive legal judgments. By enabling more efficient retrieval and analysis of legal case documents, our model holds the potential to facilitate legal research, aid legal decision-making, and contribute to the further development of LegalAI in Taiwan.Keywords: legal artificial intelligence, computation and language, language model, Taiwanese legal cases
Procedia PDF Downloads 775361 Women in the Soviet Press during the Great Patriotic War (1941-1945)
Authors: Nani Manvelishvili
Abstract:
Soviet propaganda tried to shape common public opinion through Soviet Press. The activation of propaganda gained special importance to increase the fighting ability of the military and people behind the front During the Great Patriotic war (1941-1945). The state propaganda used unnecessary intervention in Press and created characters who were supposed to be role models for society. The new female role models were identified, which were supported by the authorities. The representation of the mother, warrior woman, working woman, victim, feminine woman, etc., in the works aimed to raise the fighting ability of the Soviet citizen and incite patriotism. This paper analyzes the soviet Press (The newspaper “Komunisti”) that was written and published during the Great Patriotic war in Soviet Georgia. The study aims to find propagandistic content in Press that used Soviet ideology during the Great Patriotic war. We analyzed the Soviet Newspaper "Komunisti," published during wartime. Soviet Press had the most significant impact on the formation of public opinion. The Soviet government actively used this resource to increase combat capability. While at the beginning of the war, women were supposed to replace men, propaganda by the end of the war moved to reassert conservative gender politics. Women returned to their traditional roles.Keywords: Great Patriotic War, Soviet Georgia, women in war, women's history, Soviet press
Procedia PDF Downloads 1035360 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 1265359 Collaboration in Palliative Care Networks in Urban and Rural Regions of Switzerland
Authors: R. Schweighoffer, N. Nagy, E. Reeves, B. Liebig
Abstract:
Due to aging populations, the need for seamless palliative care provision is of central interest for western societies. An essential aspect of palliative care delivery is the quality of collaboration amongst palliative care providers. Therefore, the current research is based on Bainbridge’s conceptual framework, which provides an outline for the evaluation of palliative care provision. This study is the first one to investigate the predictive validity of spatial distribution on the quantity of interaction amongst various palliative care providers. Furthermore, based on the familiarity principle, we examine whether the extent of collaboration influences the perceived quality of collaboration among palliative care providers in urban versus rural areas of Switzerland. Based on a population-representative survey of Swiss palliative care providers, the results of the current study show that professionals in densely populated areas report higher absolute numbers of interactions and are more satisfied with their collaborative practice. This indicates that palliative care providers who work in urban areas are better embedded into networks than their counterparts in more rural areas. The findings are especially important, considering that efficient collaboration is a prerequisite to achieve satisfactory patient outcomes. Conclusively, measures should be taken to foster collaboration in weakly interconnected palliative care networks.Keywords: collaboration, healthcare networks, palliative care, Switzerland
Procedia PDF Downloads 2735358 Design and Construction of Models of Sun Tracker or Sun Tracking System for Light Transmission
Authors: Mohsen Azarmjoo, Yasaman Azarmjoo, Zahra Alikhani Koopaei
Abstract:
This article introduces devices that can transfer sunlight to buildings that do not have access to direct sunlight during the day. The transmission and reflection of sunlight are done through the movement of movable mirrors. The focus of this article is on two models of sun tracker systems designed and built by the Macad team. In fact, this article will reveal the distinction between the two Macad devices and the previously built competitor device. What distinguishes the devices built by the Macad team from the competitor's device is the different mode of operation and the difference in the location of the sensors. Given that the devices have the same results, the Macad team has tried to reduce the defects of the competitor's device as much as possible. The special feature of the second type of device built by the Macad team has enabled buildings with different construction positions to use sun tracking systems. This article will also discuss diagrams of the path of sunlight transmission and more details of the device. It is worth mentioning that fixed mirrors are also placed next to the main devices. So that the light shining on the first device is reflected to these mirrors, this light is guided within the light receiver space and is transferred to the different parts around by steel sheets built in the light receiver space, and finally, these spaces benefit from sunlight.Keywords: design, construction, mechatronic device, sun tracker system, sun tracker, sunlight
Procedia PDF Downloads 885357 Multi-Labeled Aromatic Medicinal Plant Image Classification Using Deep Learning
Authors: Tsega Asresa, Getahun Tigistu, Melaku Bayih
Abstract:
Computer vision is a subfield of artificial intelligence that allows computers and systems to extract meaning from digital images and video. It is used in a wide range of fields of study, including self-driving cars, video surveillance, medical diagnosis, manufacturing, law, agriculture, quality control, health care, facial recognition, and military applications. Aromatic medicinal plants are botanical raw materials used in cosmetics, medicines, health foods, essential oils, decoration, cleaning, and other natural health products for therapeutic and Aromatic culinary purposes. These plants and their products not only serve as a valuable source of income for farmers and entrepreneurs but also going to export for valuable foreign currency exchange. In Ethiopia, there is a lack of technologies for the classification and identification of Aromatic medicinal plant parts and disease type cured by aromatic medicinal plants. Farmers, industry personnel, academicians, and pharmacists find it difficult to identify plant parts and disease types cured by plants before ingredient extraction in the laboratory. Manual plant identification is a time-consuming, labor-intensive, and lengthy process. To alleviate these challenges, few studies have been conducted in the area to address these issues. One way to overcome these problems is to develop a deep learning model for efficient identification of Aromatic medicinal plant parts with their corresponding disease type. The objective of the proposed study is to identify the aromatic medicinal plant parts and their disease type classification using computer vision technology. Therefore, this research initiated a model for the classification of aromatic medicinal plant parts and their disease type by exploring computer vision technology. Morphological characteristics are still the most important tools for the identification of plants. Leaves are the most widely used parts of plants besides roots, flowers, fruits, and latex. For this study, the researcher used RGB leaf images with a size of 128x128 x3. In this study, the researchers trained five cutting-edge models: convolutional neural network, Inception V3, Residual Neural Network, Mobile Network, and Visual Geometry Group. Those models were chosen after a comprehensive review of the best-performing models. The 80/20 percentage split is used to evaluate the model, and classification metrics are used to compare models. The pre-trained Inception V3 model outperforms well, with training and validation accuracy of 99.8% and 98.7%, respectively.Keywords: aromatic medicinal plant, computer vision, convolutional neural network, deep learning, plant classification, residual neural network
Procedia PDF Downloads 1945356 A Bayesian Multivariate Microeconometric Model for Estimation of Price Elasticity of Demand
Authors: Jefferson Hernandez, Juan Padilla
Abstract:
Estimation of price elasticity of demand is a valuable tool for the task of price settling. Given its relevance, it is an active field for microeconomic and statistical research. Price elasticity in the industry of oil and gas, in particular for fuels sold in gas stations, has shown to be a challenging topic given the market and state restrictions, and underlying correlations structures between the types of fuels sold by the same gas station. This paper explores the Lotka-Volterra model for the problem for price elasticity estimation in the context of fuels; in addition, it is introduced multivariate random effects with the purpose of dealing with errors, e.g., measurement or missing data errors. In order to model the underlying correlation structures, the Inverse-Wishart, Hierarchical Half-t and LKJ distributions are studied. Here, the Bayesian paradigm through Markov Chain Monte Carlo (MCMC) algorithms for model estimation is considered. Simulation studies covering a wide range of situations were performed in order to evaluate parameter recovery for the proposed models and algorithms. Results revealed that the proposed algorithms recovered quite well all model parameters. Also, a real data set analysis was performed in order to illustrate the proposed approach.Keywords: price elasticity, volume, correlation structures, Bayesian models
Procedia PDF Downloads 1715355 The Biochemical and Radiographic Evaluation of the Non-Metastatic Bone Disease in Patients with Renal Cell Carcinoma Undergoing Hemodialysis
Authors: Aliakbar Hafezi, Jalal Taherian, Jamshid Abedi, Mahsa Elahi
Abstract:
Background: Bones are commonly affected by renal cell carcinoma (RCC) (primarily or secondary), and this condition causes bone fragility. The aim of this study was to evaluate the diagnostic value of noninvasive methods for the diagnosis of ROD in RCC patients on hemodialysis (HD) in northern Iran. Methods: In this cross-sectional study, 50 RCC patients with ESRD referred to dialysis units in northern Iran during 2021-2024 were randomly selected and investigated. The biochemical and radiographic evaluation of ROD and its subtypes was performed, and then all patients underwent bone biopsy and histopathological study, and finally, the diagnostic value of the noninvasive methods was assessed. Results: The mean age of patients was 58.9 ± 11.7 years, and 27 cases (54.0%) were female. 38 (76.0%) of RCC patients with ESRD had ROD, and 12 patients (24.0%) had no evidence of bone disorders. The sensitivity, specificity, positive and predictive values and accuracy of the noninvasive methods for the diagnosis of ROD were 92%, 82%, 95%, 75% and 90%, respectively. Conclusion: This study showed that the frequency of ROD in RCC patients with ESRD in northern Iran was high and the biochemical and radiographic markers have a high diagnostic value for ROD as well as histopathological assessment.Keywords: renal cell carcinoma, renal osteodystrophy, hemodialysis, non-metastatic
Procedia PDF Downloads 175354 An Application for Risk of Crime Prediction Using Machine Learning
Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento
Abstract:
The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.Keywords: crime prediction, machine learning, public safety, smart city
Procedia PDF Downloads 1185353 Convergence Results of Two-Dimensional Homogeneous Elastic Plates from Truncation of Potential Energy
Authors: Erick Pruchnicki, Nikhil Padhye
Abstract:
Plates are important engineering structures which have attracted extensive research since the 19th century. The subject of this work is statical analysis of a linearly elastic homogenous plate under small deformations. A 'thin plate' is a three-dimensional structure comprising of a small transverse dimension with respect to a flat mid-surface. The general aim of any plate theory is to deduce a two-dimensional model, in terms of mid-surface quantities, to approximately and accurately describe the plate's deformation in terms of mid-surface quantities. In recent decades, a common starting point for this purpose is to utilize series expansion of a displacement field across the thickness dimension in terms of the thickness parameter (h). These attempts are mathematically consistent in deriving leading-order plate theories based on certain a priori scaling between the thickness and the applied loads; for example, asymptotic methods which are aimed at generating leading-order two-dimensional variational problems by postulating formal asymptotic expansion of the displacement fields. Such methods rigorously generate a hierarchy of two-dimensional models depending on the order of magnitude of the applied load with respect to the plate-thickness. However, in practice, applied loads are external and thus not directly linked or dependent on the geometry/thickness of the plate; thus, rendering any such model (based on a priori scaling) of limited practical utility. In other words, the main limitation of these approaches is that they do not furnish a single plate model for all orders of applied loads. Following analogy of recent efforts of deploying Fourier-series expansion to study convergence of reduced models, we propose two-dimensional model(s) resulting from truncation of the potential energy and rigorously prove the convergence of these two-dimensional plate models to the parent three-dimensional linear elasticity with increasing truncation order of the potential energy.Keywords: plate theory, Fourier-series expansion, convergence result, Legendre polynomials
Procedia PDF Downloads 1155352 PhenoScreen: Development of a Systems Biology Tool for Decision Making in Recurrent Urinary Tract Infections
Authors: Jonathan Josephs-Spaulding, Hannah Rettig, Simon Graspeunter, Jan Rupp, Christoph Kaleta
Abstract:
Background: Recurrent urinary tract infections (rUTIs) are a global cause of emergency room visits and represent a significant burden for public health systems. Therefore, metatranscriptomic approaches to investigate metabolic exchange and crosstalk between uropathogenic Escherichia coli (UPEC), which is responsible for 90% of UTIs, and collaborating pathogens of the urogenital microbiome is necessary to better understand the pathogenetic processes underlying rUTIs. Objectives: This study aims to determine the level in which uropathogens optimize the host urinary metabolic environment to succeed during invasion. By developing patient-specific metabolic models of infection, these observations can be taken advantage of for the precision treatment of human disease. Methods: To date, we have set up an rUTI patient cohort and observed various urine-associated pathogens. From this cohort, we developed patient-specific metabolic models to predict bladder microbiome metabolism during rUTIs. This was done by creating an in silico metabolomic urine environment, which is representative of human urine. Metabolic models of uptake and cross-feeding of rUTI pathogens were created from genomes in relation to the artificial urine environment. Finally, microbial interactions were constrained by metatranscriptomics to indicate patient-specific metabolic requirements of pathogenic communities. Results: Metabolite uptake and cross-feeding are essential for strain growth; therefore, we plan to design patient-specific treatments by adjusting urinary metabolites through nutritional regimens to counteract uropathogens by depleting essential growth metabolites. These methods will provide mechanistic insights into the metabolic components of rUTI pathogenesis to provide an evidence-based tool for infection treatment.Keywords: recurrent urinary tract infections, human microbiome, uropathogenic Escherichia coli, UPEC, microbial ecology
Procedia PDF Downloads 1385351 Facility Data Model as Integration and Interoperability Platform
Authors: Nikola Tomasevic, Marko Batic, Sanja Vranes
Abstract:
Emerging Semantic Web technologies can be seen as the next step in evolution of the intelligent facility management systems. Particularly, this considers increased usage of open source and/or standardized concepts for data classification and semantic interpretation. To deliver such facility management systems, providing the comprehensive integration and interoperability platform in from of the facility data model is a prerequisite. In this paper, one of the possible modelling approaches to provide such integrative facility data model which was based on the ontology modelling concept was presented. Complete ontology development process, starting from the input data acquisition, ontology concepts definition and finally ontology concepts population, was described. At the beginning, the core facility ontology was developed representing the generic facility infrastructure comprised of the common facility concepts relevant from the facility management perspective. To develop the data model of a specific facility infrastructure, first extension and then population of the core facility ontology was performed. For the development of the full-blown facility data models, Malpensa and Fiumicino airports in Italy, two major European air-traffic hubs, were chosen as a test-bed platform. Furthermore, the way how these ontology models supported the integration and interoperability of the overall airport energy management system was analyzed as well.Keywords: airport ontology, energy management, facility data model, ontology modeling
Procedia PDF Downloads 4535350 Deep Graph Embeddings for the Analysis of Short Heartbeat Interval Time Series
Authors: Tamas Madl
Abstract:
Sudden cardiac death (SCD) constitutes a large proportion of cardiovascular mortalities, provides little advance warning, and the risk is difficult to recognize based on ubiquitous, low cost medical equipment such as the standard, 12-lead, ten second ECG. Autonomic abnormalities have been shown to be strongly predictive of SCD risk; yet current methods are not trivially applicable to the brevity and low temporal and electrical resolution of standard ECGs. Here, we build horizontal visibility graph representations of very short inter-beat interval time series, and perform unsuper- vised representation learning in order to convert these variable size objects into fixed-length vectors preserving similarity rela- tions. We show that such representations facilitate classification into healthy vs. at-risk patients on two different datasets, the Mul- tiparameter Intelligent Monitoring in Intensive Care II and the PhysioNet Sudden Cardiac Death Holter Database. Our results suggest that graph representation learning of heartbeat interval time series facilitates robust classification even in sequences as short as ten seconds.Keywords: sudden cardiac death, heart rate variability, ECG analysis, time series classification
Procedia PDF Downloads 2385349 Competition between Regression Technique and Statistical Learning Models for Predicting Credit Risk Management
Authors: Chokri Slim
Abstract:
The objective of this research is attempting to respond to this question: Is there a significant difference between the regression model and statistical learning models in predicting credit risk management? A Multiple Linear Regression (MLR) model was compared with neural networks including Multi-Layer Perceptron (MLP), and a Support vector regression (SVR). The population of this study includes 50 listed Banks in Tunis Stock Exchange (TSE) market from 2000 to 2016. Firstly, we show the factors that have significant effect on the quality of loan portfolios of banks in Tunisia. Secondly, it attempts to establish that the systematic use of objective techniques and methods designed to apprehend and assess risk when considering applications for granting credit, has a positive effect on the quality of loan portfolios of banks and their future collectability. Finally, we will try to show that the bank governance has an impact on the choice of methods and techniques for analyzing and measuring the risks inherent in the banking business, including the risk of non-repayment. The results of empirical tests confirm our claims.Keywords: credit risk management, multiple linear regression, principal components analysis, artificial neural networks, support vector machines
Procedia PDF Downloads 1575348 Ethno-Religious Conflicts In Nigeria; Implications for National Security
Authors: Samuel Onyekachi Chidi
Abstract:
Nigeria today faces more internal threats stemming from ethnic and religious conflicts than external sources. This article seeks to examine the ethno-religious conflicts in Nigeria from 2015 to 2021 and their impact on national security. The research was guided by six objectives. The theoretical framework adopted for this study is Structural Conflict Theory, which provides an adequate explanation, a predictive rationale for the frequent occurrence of ethno-religious conflicts and a tendency to provide the necessary insight for their resolution. The results of the study revealed that there is a strong relationship between ethnicity, religion, conflict and national security and that the ethno-religious conflicts experienced in Nigeria have gross implications for national security. The study recommends that the secularity of the Nigerian state be restored and preserved and that the state of origin be removed and replaced by the state of residence in all our national documents, as this will reduce ethnic identity, which is in opposition to nationalism. Religious leaders, traditional rulers, the media and other stakeholders should support the government in its fight to reduce ethno-religious conflict by sensitizing its youth, preaching unity and peaceful coexistence, and discouraging the use of violence as a means of settling disputes between groups and individuals.Keywords: ethnicity, religion, conflict, national security
Procedia PDF Downloads 82