Search results for: equipment drilling parameters
8294 Impediments to Female Sports Management and Participation: The Experience in the Selected Nigeria South West Colleges of Education
Authors: Saseyi Olaitan Olaoluwa, Osifeko Olalekan Remigious
Abstract:
The study was meant to identify the impediments to female sports management and participation in the selected colleges. Seven colleges of education in the south west parts of the country were selected for the study. A total of one hundred and five subjects were sampled to supply data. Only one hundred adequately completed and returned, copies of the questionnaire were used for data analysis. The collected data were analysed descriptively. The result of the study showed that inadequate fund, personnel, facilities equipment, supplies, management of sports, supervision and coaching were some of the impediments to female sports management and participation. Athletes were not encouraged to participate. Based on the findings, it was recommended that the government should come to the aid of the colleges by providing fund and other needs that will make sports attractive for enhanced participation.Keywords: female sports, impediments, management, Nigeria, south west, colleges
Procedia PDF Downloads 4098293 Separate Powers Control Structure of DFIG Based on Fractional Regulator Fed by Multilevel Inverters DC Bus Voltages of a photovoltaic System
Authors: S. Ghoudelbourk, A. Omeiri, D. Dib, H. Cheghib
Abstract:
This paper shows that we can improve the performance of the auto-adjustable electric machines if a fractional dynamic is considered in the algorithm of the controlling order. This structure is particularly interested in the separate control of active and reactive power of the double-fed induction generator (DFIG) of wind power conversion chain. Fractional regulators are used in the regulation of chain of powers. Knowing that, usually, the source of DFIG is provided by converters through controlled rectifiers, all this system makes the currents of lines strongly polluted that can have a harmful effect for the connected loads and sensitive equipment nearby. The solution to overcome these problems is to replace the power of the rotor DFIG by multilevel inverters supplied by PV which improve the THD. The structure of the adopted adjustment is tested using Matlab/Simulink and the results are presented and analyzed for a variable wind.Keywords: DFIG, fractional regulator, multilevel inverters, PV
Procedia PDF Downloads 4018292 Ultimate Stress of the Steel Tube in Circular Concrete-Filled Steel Tube Stub Columns Subjected to Axial Compression
Authors: Siqi Lin, Yangang Zhao
Abstract:
Concrete-filled steel tube column achieves the excellent performance of high strength, stiffness, and ductility due to the confinement from the steel tube. Well understanding the stress of the steel tube is important to make clear the confinement effect. In this paper, the ultimate stress of the steel tube in circular concrete-filled steel tube columns subjected to axial compression was studied. Experimental tests were conducted to investigate the effects of the parameters, including concrete strength, steel strength, and D/t ratio, on the ultimate stress of the steel tube. The stress of the steel tube was determined by employing the Prandtl-Reuss flow rule associated with isotropic strain hardening. Results indicate that the stress of steel tube was influenced by the parameters. Specimen with higher strength ratio fy/fc and smaller D/t ratio generally leads to a higher utilization efficiency of the steel tube.Keywords: concrete-filled steel tube, axial compression, ultimate stress, utilization efficiency
Procedia PDF Downloads 4258291 A Stepwise Approach for Piezoresistive Microcantilever Biosensor Optimization
Authors: Amal E. Ahmed, Levent Trabzon
Abstract:
Due to the low concentration of the analytes in biological samples, the use of Biological Microelectromechanical System (Bio-MEMS) biosensors for biomolecules detection results in a minuscule output signal that is not good enough for practical applications. In response to this, a need has arisen for an optimized biosensor capable of giving high output signal in response the detection of few analytes in the sample; the ultimate goal is being able to convert the attachment of a single biomolecule into a measurable quantity. For this purpose, MEMS microcantilevers based biosensors emerged as a promising sensing solution because it is simple, cheap, very sensitive and more importantly does not need analytes optical labeling (Label-free). Among the different microcantilever transducing techniques, piezoresistive based microcantilever biosensors became more prominent because it works well in liquid environments and has an integrated readout system. However, the design of piezoresistive microcantilevers is not a straightforward problem due to coupling between the design parameters, constraints, process conditions, and performance. It was found that the parameters that can be optimized to enhance the sensitivity of Piezoresistive microcantilever-based sensors are: cantilever dimensions, cantilever material, cantilever shape, piezoresistor material, piezoresistor doping level, piezoresistor dimensions, piezoresistor position, Stress Concentration Region's (SCR) shape and position. After a systematic analyzation of the effect of each design and process parameters on the sensitivity, a step-wise optimization approach was developed in which almost all these parameters were variated one at each step while fixing the others to get the maximum possible sensitivity at the end. At each step, the goal was to optimize the parameter in a way that it maximizes and concentrates the stress in the piezoresistor region for the same applied force thus get the higher sensitivity. Using this approach, an optimized sensor that has 73.5x times higher electrical sensitivity (ΔR⁄R) than the starting sensor was obtained. In addition to that, this piezoresistive microcantilever biosensor it is more sensitive than the other similar sensors previously reported in the open literature. The mechanical sensitivity of the final senior is -1.5×10-8 Ω/Ω ⁄pN; which means that for each 1pN (10-10 g) biomolecules attach to this biosensor; the piezoresistor resistivity will decrease by 1.5×10-8 Ω. Throughout this work COMSOL Multiphysics 5.0, a commercial Finite Element Analysis (FEA) tool, has been used to simulate the sensor performance.Keywords: biosensor, microcantilever, piezoresistive, stress concentration region (SCR)
Procedia PDF Downloads 5718290 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions
Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann
Abstract:
Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact
Procedia PDF Downloads 2798289 Diagnosis of the Lubrification System of a Gas Turbine Using the Adaptive Neuro-Fuzzy Inference System
Authors: H. Mahdjoub, B. Hamaidi, B. Zerouali, S. Rouabhia
Abstract:
The issue of fault detection and diagnosis (FDD) has gained widespread industrial interest in process condition monitoring applications. Accordingly, the use of neuro-fuzzy technic seems very promising. This paper treats a diagnosis modeling a strategic equipment of an industrial installation. We propose a diagnostic tool based on adaptive neuro-fuzzy inference system (ANFIS). The neuro-fuzzy network provides an abductive diagnosis. Moreover, it takes into account the uncertainties on the maintenance knowledge by giving a fuzzy characterization of each cause. This work was carried out with real data of a lubrication circuit from the gas turbine. The machine of interest is a gas turbine placed in a gas compressor station at South Industrial Centre (SIC Hassi Messaoud Ouargla, Algeria). We have defined the zones of good and bad functioning, and the results are presented to demonstrate the advantages of the proposed method.Keywords: fault detection and diagnosis, lubrication system, turbine, ANFIS, training, pattern recognition
Procedia PDF Downloads 4908288 Radiology Information System’s Mechanisms: HL7-MHS & HL7/DICOM Translation
Authors: Kulwinder Singh Mann
Abstract:
The innovative features of information system, known as Radiology Information System (RIS), for electronic medical records has shown a good impact in the hospital. The objective is to help and make their work easier; such as for a physician to access the patient’s data and for a patient to check their bill transparently. The interoperability of RIS with the other intra-hospital information systems it interacts with, dealing with the compatibility and open architecture issues, are accomplished by two novel mechanisms. The first one is the particular message handling system that is applied for the exchange of information, according to the Health Level Seven (HL7) protocol’s specifications and serves the transfer of medical and administrative data among the RIS applications and data store unit. The second one implements the translation of information between the formats that HL7 and Digital Imaging and Communication in Medicine (DICOM) protocols specify, providing the communication between RIS and Picture and Archive Communication System (PACS) which is used for the increasing incorporation of modern medical imaging equipment.Keywords: RIS, PACS, HIS, HL7, DICOM, messaging service, interoperability, digital images
Procedia PDF Downloads 3018287 Design of a Fuzzy Expert System for the Impact of Diabetes Mellitus on Cardiac and Renal Impediments
Authors: E. Rama Devi Jothilingam
Abstract:
Diabetes mellitus is now one of the most common non communicable diseases globally. India leads the world with largest number of diabetic subjects earning the title "diabetes capital of the world". In order to reduce the mortality rate, a fuzzy expert system is designed to predict the severity of cardiac and renal problems of diabetic patients using fuzzy logic. Since uncertainty is inherent in medicine, fuzzy logic is used in this research work to remove the inherent fuzziness of linguistic concepts and uncertain status in diabetes mellitus which is the prime cause for the cardiac arrest and renal failure. In this work, the controllable risk factors "blood sugar, insulin, ketones, lipids, obesity, blood pressure and protein/creatinine ratio" are considered as input parameters and the "the stages of cardiac" (SOC)" and the stages of renal" (SORD) are considered as the output parameters. The triangular membership functions are used to model the input and output parameters. The rule base is constructed for the proposed expert system based on the knowledge from the medical experts. Mamdani inference engine is used to infer the information based on the rule base to take major decision in diagnosis. Mean of maximum is used to get a non fuzzy control action that best represent possibility distribution of an inferred fuzzy control action. The proposed system also classifies the patients with high risk and low risk using fuzzy c means clustering techniques so that the patients with high risk are treated immediately. The system is validated with Matlab and is used as a tracking system with accuracy and robustness.Keywords: Diabetes mellitus, fuzzy expert system, Mamdani, MATLAB
Procedia PDF Downloads 2918286 Optimization and Vibration Suppression of Double Tuned Inertial Mass Damper of Damped System
Authors: Chaozhi Yang, Xinzhong Chen, Guoqing Huang
Abstract:
Inerter is a two-terminal inertial element that can produce apparent mass far larger than its physical mass. A double tuned inertial mass damper (DTIMD) is developed by combining a spring with an inerter and a dashpot in series to replace the viscous damper of a tuned mass damper (TMD), and its performance is investigated. Firstly, the DTIMD is optimized numerically with H∞ and H2 methods considering the system’s damping based on the single-degree-of-freedom (SDOF)-DTIMD system, and the optimal structural parameters are obtained. Then, compared with a TMD, the control effect of the DTIMD with the optimal structural parameters on wind-induced vibration of a wind turbine in downwind direction under the shutdown condition is studied. The results demonstrate that the vibration suppression of the DTIMD is superior than that of a TMD at the same mass ratio. And at the identical vibration suppression, the tuned mass of the DTIMD can be reduced by up to 40% compared with a TMD.Keywords: wind-induced vibration, vibration control, inerter, tuned mass damper, damped system
Procedia PDF Downloads 1668285 Lethal and Sub-Lethal Effects of Pyriproxyfen on Demography of Convergent Lady Beetle, Hippodamia convergens (Goeze) (Coccinellidae: Coleoptera)
Authors: Ayesha Iftikhar, Faisal Hafeez, Muhammad Jawad Saleem, Afifa Naeem, Muhammad Sohaib
Abstract:
To further develop integrated pest management (IPM) tactics against insect pests, demographic toxicology is considered important and efficient to evaluate the long-term effects of pesticides on biological control agents. In this study, lethal and sub-lethal effects of Pyriproxyfen (insect growth regulator) two concentrations of LC10 and LC30 were tested on second instar larvae of convergent lady beetle, Hippodamia convergens (Goeze) in order to evaluate the effect of insecticide on demographic parameters of the predator under laboratory conditions. The life table parameters were analysed statistically by using age-stage, two sex life table procedure. The results of this study show that developmental time for immature was prolonged in treated population (LC30 and LC10) rather than in control. Similarly, male and female longevity was also longer in the control group as compared to the treated population. Adult pre-oviposition period and fecundity were also greater in control as compared to the treated population. In addition, population parameters such as net reproductive rate (R0), intrinsic rate of increase (r) and finite rate of increase (λ) were also greater in control group rather than treated population. However, mean generation time (T) was greater in the treated group. The results revealed that pyriproxyfen, even at low concentrations, has potential to greatly affect the population growth of predatory lady beetle, therefore care should be taken when insect growth regulators are used within an IPM framework.Keywords: ladybird beetle, IGR, integrated pest management, population inhibition
Procedia PDF Downloads 1308284 Static and Dynamic Analysis of Microcantilever Beam
Authors: S. B. Kerur, B. S. Murgayya
Abstract:
The development of micro and nano particle is challenging task and the study of the behavior of material at the micro level is gaining importance as their behavior at micro/nano level is different. These micro particle are being used as a sensing element to measure and detects the hazardous chemical, gases, explosives and biological agents. In the present study, finite element method is used for static and dynamic analysis of simple and composite cantilever beams of different shapes. The present FE model is validated with available analytical results and various parameters like shape, materials properties, damped and undamped conditions are considered for the numerical study. The results show the effects of shape change on the natural frequency and as these are used with fluid for chemical applications, the effect of damping due to viscous nature of fluid are simulated by considering different damping coefficient effect on the dynamic behavior of cantilever beams. The obtained results show the effect of these parameters can be effectively utilized based on system requirements.Keywords: micro, FEM, dynamic, cantilever beam
Procedia PDF Downloads 3838283 Comparative Study of Bending Angle in Laser Forming Process Using Artificial Neural Network and Fuzzy Logic System
Authors: M. Hassani, Y. Hassani, N. Ajudanioskooei, N. N. Benvid
Abstract:
Laser Forming process as a non-contact thermal forming process is widely used to forming and bending of metallic and non-metallic sheets. In this process, according to laser irradiation along a specific path, sheet is bent. One of the most important output parameters in laser forming is bending angle that depends on process parameters such as physical and mechanical properties of materials, laser power, laser travel speed and the number of scan passes. In this paper, Artificial Neural Network and Fuzzy Logic System were used to predict of bending angle in laser forming process. Inputs to these models were laser travel speed and laser power. The comparison between artificial neural network and fuzzy logic models with experimental results has been shown both of these models have high ability to prediction of bending angles with minimum errors.Keywords: artificial neural network, bending angle, fuzzy logic, laser forming
Procedia PDF Downloads 5978282 Numerical Modeling of Flow in USBR II Stilling Basin with End Adverse Slope
Authors: Hamidreza Babaali, Alireza Mojtahedi, Nasim Soori, Saba Soori
Abstract:
Hydraulic jump is one of the effective ways of energy dissipation in stilling basins that the energy is highly dissipated by jumping. Adverse slope surface at the end stilling basin is caused to increase energy dissipation and stability of the hydraulic jump. In this study, the adverse slope has been added to end of United States Bureau of Reclamation (USBR) II stilling basin in hydraulic model of Nazloochay dam with scale 1:40, and flow simulated into stilling basin using Flow-3D software. The numerical model is verified by experimental data of water depth in stilling basin. Then, the parameters of water level profile, Froude Number, pressure, air entrainment and turbulent dissipation investigated for discharging 300 m3/s using K-Ɛ and Re-Normalization Group (RNG) turbulence models. The results showed a good agreement between numerical and experimental model as numerical model can be used to optimize of stilling basins.Keywords: experimental and numerical modelling, end adverse slope, flow parameters, USBR II stilling basin
Procedia PDF Downloads 1798281 Change to the Location/Ownership and Control of Liquid Metering Skids
Authors: Mahmoud Jumah
Abstract:
This paper presents the circumstances and decision making in case of change management in any industrial processes, and the effective strategic planning ensured to provide with the on time completion of projects. In this specific case, the Front End Engineering Design and the awarded Lump Sum Turn Key Contract had provided for full control and ownership of all Liquid Metering Skids by Controlling Team. The demarcation and location were changed, and the Ownership and Control of the Liquid Metering Skids inside the boundaries of the Asset Owner were transferred from Controlling Team to Asset Owner after the award of the LSTK Contract. The requested changes resulted in Adjustment Order and the relevant scope of work is an essential part of the original Contract. The majority of equipment and materials (i.e. liquid metering skids, valves, piping, etc.) has already been in process.Keywords: critical path, project change management, stakeholders problem solving, strategic planning
Procedia PDF Downloads 2678280 Influence of Long-Term Variability in Atmospheric Parameters on Ocean State over the Head Bay of Bengal
Authors: Anindita Patra, Prasad K. Bhaskaran
Abstract:
The atmosphere-ocean is a dynamically linked system that influences the exchange of energy, mass, and gas at the air-sea interface. The exchange of energy takes place in the form of sensible heat, latent heat, and momentum commonly referred to as fluxes along the atmosphere-ocean boundary. The large scale features such as El Nino and Southern Oscillation (ENSO) is a classic example on the interaction mechanism that occurs along the air-sea interface that deals with the inter-annual variability of the Earth’s Climate System. Most importantly the ocean and atmosphere as a coupled system acts in tandem thereby maintaining the energy balance of the climate system, a manifestation of the coupled air-sea interaction process. The present work is an attempt to understand the long-term variability in atmospheric parameters (from surface to upper levels) and investigate their role in influencing the surface ocean variables. More specifically the influence of atmospheric circulation and its variability influencing the mean Sea Level Pressure (SLP) has been explored. The study reports on a critical examination of both ocean-atmosphere parameters during a monsoon season over the head Bay of Bengal region. A trend analysis has been carried out for several atmospheric parameters such as the air temperature, geo-potential height, and omega (vertical velocity) for different vertical levels in the atmosphere (from surface to the troposphere) covering a period from 1992 to 2012. The Reanalysis 2 dataset from the National Centers for Environmental Prediction-Department of Energy (NCEP-DOE) was used in this study. The study signifies that the variability in air temperature and omega corroborates with the variation noticed in geo-potential height. Further, the study advocates that for the lower atmosphere the geo-potential heights depict a typical east-west contrast exhibiting a zonal dipole behavior over the study domain. In addition, the study clearly brings to light that the variations over different levels in the atmosphere plays a pivotal role in supporting the observed dipole pattern as clearly evidenced from the trends in SLP, associated surface wind speed and significant wave height over the study domain.Keywords: air temperature, geopotential height, head Bay of Bengal, long-term variability, NCEP reanalysis 2, omega, wind-waves
Procedia PDF Downloads 2258279 Modeling of the Effect of Explosives, Geological and Geotechnical Parameters on the Stability of Rock Masses Case of Marrakech: Agadir Highway, Morocco
Authors: Taoufik Benchelha, Toufik Remmal, Rachid El Hamdouni, Hamou Mansouri, Houssein Ejjaouani, Halima Jounaid, Said Benchelha
Abstract:
During the earthworks for the construction of Marrakech-Agadir highway in southern Morocco, which crosses mountainous areas of the High Western Atlas, the main problem faced is the stability of the slopes. Indeed, the use of explosives as a means of excavation associated with the geological structure of the terrain encountered can trigger major ruptures and cause damage which depends on the intrinsic characteristics of the rock mass. The study consists of a geological and geotechnical analysis of several unstable zones located along the route, mobilizing millions of cubic meters of rock, with deduction of the parameters influencing slope stability. From this analysis, a predictive model for rock mass stability is carried out, based on a statistic method of logistic regression, in order to predict the geomechanical behavior of the rock slopes constrained by earthworks.Keywords: explosive, logistic regression, rock mass, slope stability
Procedia PDF Downloads 3768278 Effect of Salt Forms and Concentrations on the Alveograph and Extensigraph Parameters of Rye Flour
Authors: Péter Sipos, Gerda Diósi, Mariann Móré, Zsófia Szigeti
Abstract:
Several medical research found that the sodium is one of the main risk factor of high blood pressure and reason for different cardiovascular diseases, while sodium chloride is one of the most ancient food additives. As people consume much more sodium chloride as the recommended value several salt reduction programs started worldwide in the last years. The cereal products are the main source of sodium, and the bakery products are one of the main targets of these programs. In this paper we have evaluated the effects of different concentrations of sodium chloride on the alveo graphical and extensi graphical parameters of rye flours to determine whether it has the same strengthening effect on the dough texture as it was found in the case of wheat flours and these effects were compared to the effects of other salt forms. We found that while the strength of rye flours are similar to the ones of wheat flour, rye flours are much less extensible. The effects of salt concentrations are less significant on the rheological properties of rye flour than on the wheat flour and there is no significant difference between the effects of different salts.Keywords: alveograph, extensigraph, rye flour, salt
Procedia PDF Downloads 4908277 A Comparative Study on Sampling Techniques of Polynomial Regression Model Based Stochastic Free Vibration of Composite Plates
Authors: S. Dey, T. Mukhopadhyay, S. Adhikari
Abstract:
This paper presents an exhaustive comparative investigation on sampling techniques of polynomial regression model based stochastic natural frequency of composite plates. Both individual and combined variations of input parameters are considered to map the computational time and accuracy of each modelling techniques. The finite element formulation of composites is capable to deal with both correlated and uncorrelated random input variables such as fibre parameters and material properties. The results obtained by Polynomial regression (PR) using different sampling techniques are compared. Depending on the suitability of sampling techniques such as 2k Factorial designs, Central composite design, A-Optimal design, I-Optimal, D-Optimal, Taguchi’s orthogonal array design, Box-Behnken design, Latin hypercube sampling, sobol sequence are illustrated. Statistical analysis of the first three natural frequencies is presented to compare the results and its performance.Keywords: composite plate, natural frequency, polynomial regression model, sampling technique, uncertainty quantification
Procedia PDF Downloads 5138276 Statistical Analysis of Failure Cases in Aerospace
Authors: J. H. Lv, W. Z. Wang, S.W. Liu
Abstract:
The major concern in the aviation industry is the flight safety. Although great effort has been put onto the development of material and system reliability, the failure cases of fatal accidents still occur nowadays. Due to the complexity of the aviation system, and the interaction among the failure components, the failure analysis of the related equipment is a little difficult. This study focuses on surveying the failure cases in aviation, which are extracted from failure analysis journals, including Engineering Failure Analysis and Case studies in Engineering Failure Analysis, in order to obtain the failure sensitive factors or failure sensitive parts. The analytical results show that, among the failure cases, fatigue failure is the largest in number of occurrence. The most failed components are the disk, blade, landing gear, bearing, and fastener. The frequently failed materials consist of steel, aluminum alloy, superalloy, and titanium alloy. Therefore, in order to assure the safety in aviation, more attention should be paid to the fatigue failures.Keywords: aerospace, disk, failure analysis, fatigue
Procedia PDF Downloads 3328275 Effect of Model Dimension in Numerical Simulation on Assessment of Water Inflow to Tunnel in Discontinues Rock
Authors: Hadi Farhadian, Homayoon Katibeh
Abstract:
Groundwater inflow to the tunnels is one of the most important problems in tunneling operation. The objective of this study is the investigation of model dimension effects on tunnel inflow assessment in discontinuous rock masses using numerical modeling. In the numerical simulation, the model dimension has an important role in prediction of water inflow rate. When the model dimension is very small, due to low distance to the tunnel border, the model boundary conditions affect the estimated amount of groundwater flow into the tunnel and results show a very high inflow to tunnel. Hence, in this study, the two-dimensional universal distinct element code (UDEC) used and the impact of different model parameters, such as tunnel radius, joint spacing, horizontal and vertical model domain extent has been evaluated. Results show that the model domain extent is a function of the most significant parameters, which are tunnel radius and joint spacing.Keywords: water inflow, tunnel, discontinues rock, numerical simulation
Procedia PDF Downloads 5248274 Laboratory Assessment of Electrical Vertical Drains in Composite Soils Using Kaolin and Bentonite Clays
Authors: Maher Z. Mohammed, Barry G. Clarke
Abstract:
As an alternative to stone column in fine grained soils, it is possible to create stiffened columns of soils using electroosmosis (electroosmotic piles). This program of this research is to establish the effectiveness and efficiency of the process in different soils. The aim of this study is to assess the capability of electroosmosis treatment in a range of composite soils. The combined electroosmotic and preloading equipment developed by Nizar and Clarke (2013) was used with an octagonal array of anodes surrounding a single cathode in a nominal 250mm diameter 300mm deep cylinder of soil and 80mm anode to cathode distance. Copper coiled springs were used as electrodes to allow the soil to consolidate either due to an external vertical applied load or electroosmosis. The equipment was modified to allow the temperature to be monitored during the test. Electroosmotic tests were performed on China Clay Grade E kaolin and calcium bentonite (Bentonex CB) mixed with sand fraction C (BS 1881 part 131) at different ratios by weight; (0, 23, 33, 50 and 67%) subjected to applied voltages (5, 10, 15 and 20). The soil slurry was prepared by mixing the dry soil with water to 1.5 times the liquid limit of the soil mixture. The mineralogical and geotechnical properties of the tested soils were measured before the electroosmosis treatment began. In the electroosmosis cell tests, the settlement, expelled water, variation of electrical current and applied voltage, and the generated heat was monitored during the test time for 24 osmotic tests. Water content was measured at the end of each test. The electroosmotic tests are divided into three phases. In Phase 1, 15 kPa was applied to simulate a working platform and produce a uniform soil which had been deposited as a slurry. 50 kPa was used in Phase 3 to simulate a surcharge load. The electroosmotic treatment was only performed during Phase 2 where a constant voltage was applied through the electrodes in addition to the 15 kPa pressure. This phase was stopped when no further water was expelled from the cell, indicating the electroosmotic process had stopped due to either the degradation of the anode or the flow due to the hydraulic gradient exactly balanced the electroosmotic flow resulting in no flow. Control tests for each soil mixture were carried out to assess the behaviour of the soil samples subjected to only an increase of vertical pressure, which is 15kPa in Phase 1 and 50kPa in Phase 3. Analysis of the experimental results from this study showed a significant dewatering effect on the soil slurries. The water discharged by the electroosmotic treatment process decreased as the sand content increased. Soil temperature increased significantly when electrical power was applied and drops when applied DC power turned off or when the electrode degraded. The highest increase in temperature was found in pure clays at higher applied voltage after about 8 hours of electroosmosis test.Keywords: electrokinetic treatment, electrical conductivity, electroosmotic consolidation, electroosmosis permeability ratio
Procedia PDF Downloads 1668273 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study
Authors: Maria Santana, Jose Estaire
Abstract:
Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.Keywords: industrial wastes, landfill, leachate tests, stability
Procedia PDF Downloads 1958272 Recycling of Tea: A Prepared Lithium Anode Material Research
Authors: Yea-Chyi Lin, Shinn-Dar Wu, Chien-Ping Chung
Abstract:
Tea is not only part of the daily lives of the Chinese people, but also represents an essence of their culture. A manufactured tea is prepared with other complicated steps for self-cultivation. Tea drinking promotes friendship and is etiquette in Chinese ceremony. Tea was discovered in China and introduced worldwide. Tea is generally used as herbal medicine. Paowan of tea can be used as plant composts and deodorant as well as for moisture proof-package. Tea prepared via carbon material technology resulted in the increase of its value. Carbon material technology uses graphite. With the battery anode material, tea can also become a new carbon material element. It has a fiber carbon structure that can retain the advantage of tea ontology. Therefore, this study provides a new preparation method through special sintering technology equipment with a gas counter-current system of 300°C to 400°C and 400°C to 900°C. The recovery of carbonization was up to 80% or more. This study addresses tea recycling technology and shows charred sintering method and loss from solving grinder to obtain a good fiber carbon structure.Keywords: recycling technology, tea, carbonization, sintering technology, manufacturing
Procedia PDF Downloads 4318271 Strategies of Risk Management for Smallholder Farmers in South Africa: A Case Study on Pigeonpea (Cajanus cajan) Production
Authors: Sanari Chalin Moriri, Kwabena Kingsley Ayisi, Alina Mofokeng
Abstract:
Dryland smallholder farmers in South Africa are vulnerable to all kinds of risks, and it negatively affects crop productivity and profit. Pigeonpea is a leguminous and multipurpose crop that provides food, fodder, and wood for smallholder farmers. The majority of these farmers are still growing pigeonpea from traditional unimproved seeds, which comprise a mixture of genotypes. The objectives of the study were to identify the key risk factors that affect pigeonpea productivity and to develop management strategies on how to alleviate the risk factors in pigeonpea production. The study was conducted in two provinces (Limpopo and Mpumalanga) of South Africa in six municipalities during the 2020/2021 growing seasons. The non-probability sampling method using purposive and snowball sampling techniques were used to collect data from the farmers through a structured questionnaire. A total of 114 pigeonpea producers were interviewed individually using a questionnaire. Key stakeholders in each municipality were also identified, invited, and interviewed to verify the information given by farmers. Data collected were subjected to SPSS statistical software 25 version. The findings of the study were that majority of farmers affected by risk factors were women, subsistence, and old farmers resulted in low food production. Drought, unavailability of improved pigeonpea seeds for planting, access to information, and processing equipment were found to be the main risk factors contributing to low crop productivity in farmer’s fields. Above 80% of farmers lack knowledge on the improvement of the crop and also on the processing techniques to secure high prices during the crop off-season. Market availability, pricing, and incidence of pests and diseases were found to be minor risk factors which were triggered by the major risk factors. The minor risk factors can be corrected only if the major risk factors are first given the necessary attention. About 10% of the farmers found to use the crop as a mulch to reduce soil temperatures and to improve soil fertility. The study revealed that most of the farmers were unaware of its utilisation as fodder, much, medicinal, nitrogen fixation, and many more. The risk of frequent drought in dry areas of South Africa where farmers solely depend on rainfall poses a serious threat to crop productivity. The majority of these risk factors are caused by climate change due to unrealistic, low rainfall with extreme temperatures poses a threat to food security, water, and the environment. The use of drought-tolerant, multipurpose legume crops such as pigeonpea, access to new information, provision of processing equipment, and support from all stakeholders will help in addressing food security for smallholder farmers. Policies should be revisited to address the prevailing risk factors faced by farmers and involve them in addressing the risk factors. Awareness should be prioritized in promoting the crop to improve its production and commercialization in the dryland farming system of South Africa.Keywords: management strategies, pigeonpea, risk factors, smallholder farmers
Procedia PDF Downloads 2138270 On-Plot Piping Corrosion Analysis for Gas and Oil Separation Plants (GOSPs)
Authors: Sultan A. Al Shaqaq
Abstract:
Corrosion is a serious challenge for a piping system in our Gas and Oil Separation Plant (GOSP) that causes piping failures. Two GOSPs (Plant-A and Plant-B) observed chronic corrosion issue with an on-plot piping system that leads to having more piping replacement during the past years. Since it is almost impossible to avoid corrosion, it is becoming more obvious that managing the corrosion level may be the most economical resolution. Corrosion engineers are thus increasingly involved in approximating the cost of their answers to corrosion prevention, and assessing the useful life of the equipment. This case study covers the background of corrosion encountered in piping internally and externally in these two GOSPs. The collected piping replacement data from year of 2011 to 2014 was covered. These data showed the replicate corrosion levels in an on-plot piping system. Also, it is included the total piping replacement with drain lines system and other service lines in plants (Plant-A and Plant-B) at Saudi Aramco facility.Keywords: gas and oil separation plant, on-plot piping, drain lines, Saudi Aramco
Procedia PDF Downloads 3368269 Hyperelastic Formulation for Orthotropic Materials
Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann
Abstract:
In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.Keywords: finite strain, hyperelastic, invariants, orthotropic
Procedia PDF Downloads 4468268 A False Introduction: Teaching in a Pandemic
Authors: Robert Michael, Kayla Tobin, William Foster, Rachel Fairchild
Abstract:
The COVID-19 pandemic has caused significant disruptions in education, particularly in the teaching of health and physical education (HPE). This study examined a cohort of teachers that experienced being a preservice and first-year teacher during various stages of the pandemic. Qualitative data collection was conducted by interviewing six teachers from different schools in the Eastern U.S. over a series of structured interviews. Thematic analysis was employed to analyze the data. The pandemic significantly impacted the way HPE was taught as schools shifted to virtual and hybrid models. Findings revealed five major themes: (a) You want me to teach HOW?, (b) PE without equipment and six feet apart, (c) Behind the Scenes, (d) They’re back…I became a behavior management guru, and (e) The Pandemic Crater. Overall, this study highlights the significant challenges faced by preservice and first-year teachers in teaching physical education during the pandemic and underscores the need for ongoing support and resources to help them adapt and succeed in these challenging circumstances.Keywords: teacher education, preservice teachers, first year teachers, health and physical education
Procedia PDF Downloads 1868267 Microwave Freeze Drying of Fruit Foams for the Production of Healthy Snacks
Authors: Sabine Ambros, Mine Oezcelik, Evelyn Dachmann, Ulrich Kulozik
Abstract:
Nutritional quality and taste of dried fruit products is still often unsatisfactory and does not meet anymore the current consumer trends. Dried foams from fruit puree could be an attractive alternative. Due to their open-porous structure, a new sensory perception with a sudden and very intense aroma release could be generated. To make such high quality fruit snacks affordable for the consumer, a gentle but at the same time fast drying process has to be applied. Therefore, microwave-assisted freeze drying of raspberry foams was investigated in this work and compared with the conventional freeze drying technique in terms of nutritional parameters such as antioxidative capacity, anthocyanin content and vitamin C and the physical parameters colour and wettability. The following process settings were applied: 0.01 kPa chamber pressure and a maximum temperature of 30 °C for both freeze and microwave freeze drying. The influence of microwave power levels on the dried foams was investigated between 1 and 5 W/g. Intermediate microwave power settings led to the highest nutritional values, a colour appearance comparable to the undried foam and a proper wettability. A proper process stability could also be guaranteed for these power levels. By the volumetric energy input of the microwaves drying time could be reduced from 24 h in conventional freeze drying to about 6 h. The short drying times further resulted in an equally high maintenance of the above mentioned parameters in both drying techniques. Hence, microwave assisted freeze drying could lead to a process acceleration in comparison to freeze drying and be therefore an interesting alternative drying technique which on industrial scale enables higher efficiency and higher product throughput.Keywords: foam drying, freeze drying, fruit puree, microwave freeze drying, raspberry
Procedia PDF Downloads 3418266 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling
Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang
Abstract:
In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation
Procedia PDF Downloads 2858265 Loudspeaker Parameters Inverse Problem for Improving Sound Frequency Response Simulation
Authors: Y. T. Tsai, Jin H. Huang
Abstract:
The sound pressure level (SPL) of the moving-coil loudspeaker (MCL) is often simulated and analyzed using the lumped parameter model. However, the SPL of a MCL cannot be simulated precisely in the high frequency region, because the value of cone effective area is changed due to the geometry variation in different mode shapes, it is also related to affect the acoustic radiation mass and resistance. Herein, the paper presents the inverse method which has a high ability to measure the value of cone effective area in various frequency points, also can estimate the MCL electroacoustic parameters simultaneously. The proposed inverse method comprises the direct problem, adjoint problem, and sensitivity problem in collaboration with nonlinear conjugate gradient method. Estimated values from the inverse method are validated experimentally which compared with the measured SPL curve result. Results presented in this paper not only improve the accuracy of lumped parameter model but also provide the valuable information on loudspeaker cone design.Keywords: inverse problem, cone effective area, loudspeaker, nonlinear conjugate gradient method
Procedia PDF Downloads 303