Search results for: artificial intelligence based optimization
29541 Optimization of Titanium Leaching Process Using Experimental Design
Authors: Arash Rafiei, Carroll Moore
Abstract:
Leaching process as the first stage of hydrometallurgy is a multidisciplinary system including material properties, chemistry, reactor design, mechanics and fluid dynamics. Therefore, doing leaching system optimization by pure scientific methods need lots of times and expenses. In this work, a mixture of two titanium ores and one titanium slag are used for extracting titanium for leaching stage of TiO2 pigment production procedure. Optimum titanium extraction can be obtained from following strategies: i) Maximizing titanium extraction without selective digestion; and ii) Optimizing selective titanium extraction by balancing between maximum titanium extraction and minimum impurity digestion. The main difference between two strategies is due to process optimization framework. For the first strategy, the most important stage of production process is concerned as the main stage and rest of stages would be adopted with respect to the main stage. The second strategy optimizes performance of more than one stage at once. The second strategy has more technical complexity compared to the first one but it brings more economical and technical advantages for the leaching system. Obviously, each strategy has its own optimum operational zone that is not as same as the other one and the best operational zone is chosen due to complexity, economical and practical aspects of the leaching system. Experimental design has been carried out by using Taguchi method. The most important advantages of this methodology are involving different technical aspects of leaching process; minimizing the number of needed experiments as well as time and expense; and concerning the role of parameter interactions due to principles of multifactor-at-time optimization. Leaching tests have been done at batch scale on lab with appropriate control on temperature. The leaching tank geometry has been concerned as an important factor to provide comparable agitation conditions. Data analysis has been done by using reactor design and mass balancing principles. Finally, optimum zone for operational parameters are determined for each leaching strategy and discussed due to their economical and practical aspects.Keywords: titanium leaching, optimization, experimental design, performance analysis
Procedia PDF Downloads 37729540 Valorisation of Mango Seed: Response Surface Methodology Based Optimization of Starch Extraction from Mango Seeds
Authors: Tamrat Tesfaye, Bruce Sithole
Abstract:
Box-Behnken Response surface methodology was used to determine the optimum processing conditions that give maximum extraction yield and whiteness index from mango seed. The steeping time ranges from 2 to 12 hours and slurring of the steeped seed in sodium metabisulphite solution (0.1 to 0.5 w/v) was carried out. Experiments were designed according to Box-Behnken Design with these three factors and a total of 15 runs experimental variables of were analyzed. At linear level, the concentration of sodium metabisulphite had significant positive influence on percentage yield and whiteness index at p<0.05. At quadratic level, sodium metabisulphite concentration and sodium metabisulphite concentration2 had a significant negative influence on starch yield; sodium metabisulphite concentration and steeping time*temperature had significant (p<0.05) positive influence on whiteness index. The adjusted R2 above 0.8 for starch yield (0.906465) and whiteness index (0.909268) showed a good fit of the model with the experimental data. The optimum sodium metabisulphite concentration, steeping hours, and temperature for starch isolation with maximum starch yield (66.428%) and whiteness index (85%) as set goals for optimization with the desirability of 0.91939 was 0.255w/v concentration, 2hrs and 50 °C respectively. The determined experimental value of each response based on optimal condition was statistically in accordance with predicted levels at p<0.05. The Mango seeds are the by-products obtained during mango processing and possess disposal problem if not handled properly. The substitution of food based sizing agents with mango seed starch can contribute as pertinent resource deployment for value-added product manufacturing and waste utilization which might play significance role of food security in Ethiopia.Keywords: mango, synthetic sizing agent, starch, extraction, textile, sizing
Procedia PDF Downloads 23629539 The Impact of Artificial Intelligence on Food Nutrition
Authors: Antonyous Fawzy Boshra Girgis
Abstract:
Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning
Procedia PDF Downloads 4529538 Hybridized Approach for Distance Estimation Using K-Means Clustering
Authors: Ritu Vashistha, Jitender Kumar
Abstract:
Clustering using the K-means algorithm is a very common way to understand and analyze the obtained output data. When a similar object is grouped, this is called the basis of Clustering. There is K number of objects and C number of cluster in to single cluster in which k is always supposed to be less than C having each cluster to be its own centroid but the major problem is how is identify the cluster is correct based on the data. Formulation of the cluster is not a regular task for every tuple of row record or entity but it is done by an iterative process. Each and every record, tuple, entity is checked and examined and similarity dissimilarity is examined. So this iterative process seems to be very lengthy and unable to give optimal output for the cluster and time taken to find the cluster. To overcome the drawback challenge, we are proposing a formula to find the clusters at the run time, so this approach can give us optimal results. The proposed approach uses the Euclidian distance formula as well melanosis to find the minimum distance between slots as technically we called clusters and the same approach we have also applied to Ant Colony Optimization(ACO) algorithm, which results in the production of two and multi-dimensional matrix.Keywords: ant colony optimization, data clustering, centroids, data mining, k-means
Procedia PDF Downloads 13029537 Cluster Analysis and Benchmarking for Performance Optimization of a Pyrochlore Processing Unit
Authors: Ana C. R. P. Ferreira, Adriano H. P. Pereira
Abstract:
Given the frequent variation of mineral properties throughout the Araxá pyrochlore deposit, even if a good homogenization work has been carried out before feeding the processing plants, an operation with quality and performance’s high variety standard is expected. These results could be improved and standardized if the blend composition parameters that most influence the processing route are determined, and then the types of raw materials are grouped by them, finally presenting a great reference with operational settings for each group. Associating the physical and chemical parameters of a unit operation through benchmarking or even an optimal reference of metallurgical recovery and product quality reflects in the reduction of the production costs, optimization of the mineral resource, and guarantee of greater stability in the subsequent processes of the production chain that uses the mineral of interest. Conducting a comprehensive exploratory data analysis to identify which characteristics of the ore are most relevant to the process route, associated with the use of Machine Learning algorithms for grouping the raw material (ore) and associating these with reference variables in the process’ benchmark is a reasonable alternative for the standardization and improvement of mineral processing units. Clustering methods through Decision Tree and K-Means were employed, associated with algorithms based on the theory of benchmarking, with criteria defined by the process team in order to reference the best adjustments for processing the ore piles of each cluster. A clean user interface was created to obtain the outputs of the created algorithm. The results were measured through the average time of adjustment and stabilization of the process after a new pile of homogenized ore enters the plant, as well as the average time needed to achieve the best processing result. Direct gains from the metallurgical recovery of the process were also measured. The results were promising, with a reduction in the adjustment time and stabilization when starting the processing of a new ore pile, as well as reaching the benchmark. Also noteworthy are the gains in metallurgical recovery, which reflect a significant saving in ore consumption and a consequent reduction in production costs, hence a more rational use of the tailings dams and life optimization of the mineral deposit.Keywords: mineral clustering, machine learning, process optimization, pyrochlore processing
Procedia PDF Downloads 14929536 Development of Methods for Plastic Injection Mold Weight Reduction
Authors: Bita Mohajernia, R. J. Urbanic
Abstract:
Mold making techniques have focused on meeting the customers’ functional and process requirements; however, today, molds are increasing in size and sophistication, and are difficult to manufacture, transport, and set up due to their size and mass. Presently, mold weight saving techniques focus on pockets to reduce the mass of the mold, but the overall size is still large, which introduces costs related to the stock material purchase, processing time for process planning, machining and validation, and excess waste materials. Reducing the overall size of the mold is desirable for many reasons, but the functional requirements, tool life, and durability cannot be compromised in the process. It is proposed to use Finite Element Analysis simulation tools to model the forces, and pressures to determine where the material can be removed. The potential results of this project will reduce manufacturing costs. In this study, a light weight structure is defined by an optimal distribution of material to carry external loads. The optimization objective of this research is to determine methods to provide the optimum layout for the mold structure. The topology optimization method is utilized to improve structural stiffness while decreasing the weight using the OptiStruct software. The optimized CAD model is compared with the primary geometry of the mold from the NX software. Results of optimization show an 8% weight reduction while the actual performance of the optimized structure, validated by physical testing, is similar to the original structure.Keywords: finite element analysis, plastic injection molding, topology optimization, weight reduction
Procedia PDF Downloads 29229535 Predicting Survival in Cancer: How Cox Regression Model Compares to Artifial Neural Networks?
Authors: Dalia Rimawi, Walid Salameh, Amal Al-Omari, Hadeel AbdelKhaleq
Abstract:
Predication of Survival time of patients with cancer, is a core factor that influences oncologist decisions in different aspects; such as offered treatment plans, patients’ quality of life and medications development. For a long time proportional hazards Cox regression (ph. Cox) was and still the most well-known statistical method to predict survival outcome. But due to the revolution of data sciences; new predication models were employed and proved to be more flexible and provided higher accuracy in that type of studies. Artificial neural network is one of those models that is suitable to handle time to event predication. In this study we aim to compare ph Cox regression with artificial neural network method according to data handling and Accuracy of each model.Keywords: Cox regression, neural networks, survival, cancer.
Procedia PDF Downloads 20729534 The Outcome of Using Machine Learning in Medical Imaging
Authors: Adel Edwar Waheeb Louka
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deeplearning, image processing, machine learningSarapin, intraarticular, chronic knee pain, osteoarthritisFNS, trauma, hip, neck femur fracture, minimally invasive surgery
Procedia PDF Downloads 7729533 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches
Authors: Aya Salama
Abstract:
Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering
Procedia PDF Downloads 9229532 A New Complex Method for Integrated Warehouse Design in Aspect of Dynamic and Static Capacity
Authors: Tamas Hartvanyi, Zoltan Andras Nagy, Miklos Szabo
Abstract:
The dynamic and static capacity are two opposing aspect of warehouse design. Static capacity optimization aims to maximize the space-usage for goods storing, while dynamic capacity needs more free place to handling them. They are opposing by the building structure and the area utilization. According to Pareto principle: the 80% of the goods are the 20% of the variety. From the origin of this statement, it worth to store the big amount of same products by fulfill the space with minimal corridors, meanwhile the rest 20% of goods have the 80% variety of the whole range, so there is more important to be fast-reachable instead of the space utilizing, what makes the space fulfillment numbers worse. The warehouse design decisions made in present practice by intuitive and empiric impressions, the planning method is formed to one selected technology, making this way the structure of the warehouse homogeny. Of course the result can’t be optimal for the inhomogeneous demands. A new innovative model based on our research will be introduced in this paper to describe the technic capacities, what makes possible to define optimal cluster of technology. It is able to optimize the space fulfillment and the dynamic operation together with this cluster application.Keywords: warehouse, warehouse capacity, warehouse design method, warehouse optimization
Procedia PDF Downloads 14729531 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations
Authors: Muhammad Fathurridho
Abstract:
Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors
Procedia PDF Downloads 15729530 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 30129529 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors
Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff
Abstract:
Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns
Procedia PDF Downloads 16129528 Illuminating Human Identity in Theology and Islamic Philosophy
Authors: Khan Shahid, Shahid Zakia
Abstract:
The article demonstrates how Theology and Islamic Philosophy can be illuminated and enhanced through the application of the SOUL framework (Sincere act, Optimization effort, Ultimate goal, Law compliance). The study explores historical development using a phenomenological approach and integrates the SOUL framework to enrich Theology and Islamic Philosophy. The proposed framework highlights the significance of these elements, ultimately leading to a deeper understanding of Theology and Islamic Philosophy.Keywords: SOUL framework, illuminating human identity, theology, Islamic Philosophy, sincerity act, optimization effort, ultimate goals, law compliance
Procedia PDF Downloads 9429527 Optimizing the Public Policy Information System under the Environment of E-Government
Authors: Qian Zaijian
Abstract:
E-government is one of the hot issues in the current academic research of public policy and management. As the organic integration of information and communication technology (ICT) and public administration, e-government is one of the most important areas in contemporary information society. Policy information system is a basic subsystem of public policy system, its operation affects the overall effect of the policy process or even exerts a direct impact on the operation of a public policy and its success or failure. The basic principle of its operation is information collection, processing, analysis and release for a specific purpose. The function of E-government for public policy information system lies in the promotion of public access to the policy information resources, information transmission through e-participation, e-consultation in the process of policy analysis and processing of information and electronic services in policy information stored, to promote the optimization of policy information systems. However, due to many factors, the function of e-government to promote policy information system optimization has its practical limits. In the building of E-government in our country, we should take such path as adhering to the principle of freedom of information, eliminating the information divide (gap), expanding e-consultation, breaking down information silos and other major path, so as to promote the optimization of public policy information systems.Keywords: China, e-consultation, e-democracy, e-government, e-participation, ICTs, public policy information systems
Procedia PDF Downloads 87229526 Identifying the Factors affecting on the Success of Energy Usage Saving in Municipality of Tehran
Authors: Rojin Bana Derakhshan, Abbas Toloie
Abstract:
For the purpose of optimizing and developing energy efficiency in building, it is required to recognize key elements of success in optimization of energy consumption before performing any actions. Surveying Principal Components is one of the most valuable result of Linear Algebra because the simple and non-parametric methods are become confusing. So that energy management system implemented according to energy management system international standard ISO50001:2011 and all energy parameters in building to be measured through performing energy auditing. In this essay by simulating used of data mining, the key impressive elements on energy saving in buildings to be determined. This approach is based on data mining statistical techniques using feature selection method and fuzzy logic and convert data from massive to compressed type and used to increase the selected feature. On the other side, influence portion and amount of each energy consumption elements in energy dissipation in percent are recognized as separated norm while using obtained results from energy auditing and after measurement of all energy consuming parameters and identified variables. Accordingly, energy saving solution divided into 3 categories, low, medium and high expense solutions.Keywords: energy saving, key elements of success, optimization of energy consumption, data mining
Procedia PDF Downloads 47329525 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub
Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi
Abstract:
This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendlyKeywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing
Procedia PDF Downloads 6629524 The Effect of Artificial Intelligence on Digital Factory
Authors: Keroles Benyamen Shafik Benyamen
Abstract:
up to date making plans has the undertaking of designing products, flora, strategies, organization, areas, and the development of a up-to-date. The requirements for manufacturing facilityupdated making plans and the constructing of a up to date have modified in latest years. normal restructuring is turning inupupdated extra crucial up to date be able upupdated keep the competitiveness of a up to datefacupupdated. restrictions in new regions, shorter lifestyles cycles of product and manufacturing technology up-to-date a VUCA world (Volatility, Uncertainty, Complexity & Ambiguity) cause extra common restructuring measures inside a up to datefacupupdated. A virtual up-to-date model is the making plans foundation for rebuilding measures and up-to-date an integral up-to-date. quick-time period rescheduling can now not be treated by means of on-web site inspections and guide measurements. The tight time schedules require 3177227fc5dac36e3e5ae6cd5820dcaa making plans models. up to datebecause of the high edition rate of facupdatedries defined above, a method for rescheduling facupdatedries on the idea of a current virtual up to date dual is conceived and designed for practical software in up-to-date restructuring projects. the point of interest is on rebuild processes. The goal is up-to-date keep the planning basis (digital up-to-date version) for conversions within a up to datery up-to-date. This calls for the software of a method that reduces the deficits of current approaches. The aim is up-to-date how a virtual up to datery version can be up-to-date up-to-date at some point of ongoing up to date operation. a way based on phoup-to-dategrammetry era is offered. the focus is on growing a easy and value-powerful approach upupdated music the many adjustments that occur in a manufacturing unit building at some point of operation. The technique is preceded by a hardware and software program contrast up to date pick out the most reasonably priced and quickest variation.Keywords: augmented reality, digital factory model, factory planning, restructuringdigital factory model, photogrammetry, restructuring
Procedia PDF Downloads 1129523 Multi-Objective Optimization of Assembly Manufacturing Factory Setups
Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson
Abstract:
Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.Keywords: factory setup, multi-objective, optimization, simulation
Procedia PDF Downloads 15729522 Optimization of Reliability and Communicability of a Random Two-Dimensional Point Patterns Using Delaunay Triangulation
Authors: Sopheak Sorn, Kwok Yip Szeto
Abstract:
Reliability is one of the important measures of how well the system meets its design objective, and mathematically is the probability that a complex system will perform satisfactorily. When the system is described by a network of N components (nodes) and their L connection (links), the reliability of the system becomes a network design problem that is an NP-hard combinatorial optimization problem. In this paper, we address the network design problem for a random point set’s pattern in two dimensions. We make use of a Voronoi construction with each cell containing exactly one point in the point pattern and compute the reliability of the Voronoi’s dual, i.e. the Delaunay graph. We further investigate the communicability of the Delaunay network. We find that there is a positive correlation and a negative correlation between the homogeneity of a Delaunay's degree distribution with its reliability and its communicability respectively. Based on the correlations, we alter the communicability and the reliability by performing random edge flips, which preserve the number of links and nodes in the network but can increase the communicability in a Delaunay network at the cost of its reliability. This transformation is later used to optimize a Delaunay network with the optimum geometric mean between communicability and reliability. We also discuss the importance of the edge flips in the evolution of real soap froth in two dimensions.Keywords: Communicability, Delaunay triangulation, Edge Flip, Reliability, Two dimensional network, Voronio
Procedia PDF Downloads 42329521 Optimization of Soybean Oil by Modified Supercritical Carbon Dioxide
Authors: N. R. Putra, A. H. Abdul Aziz, A. S. Zaini, Z. Idham, F. Idrus, M. Z. Bin Zullyadini, M. A. Che Yunus
Abstract:
The content of omega-3 in soybean oil is important in the development of infants and is an alternative for the omega-3 in fish oils. The investigation of extraction of soybean oil is needed to obtain the bioactive compound in the extract. Supercritical carbon dioxide extraction is modern and green technology to extract herbs and plants to obtain high quality extract due to high diffusivity and solubility of the solvent. The aim of this study was to obtain the optimum condition of soybean oil extraction by modified supercritical carbon dioxide. The soybean oil was extracted by using modified supercritical carbon dioxide (SC-CO2) under the temperatures of 40, 60, 80 °C, pressures of 150, 250, 350 Bar, and constant flow-rate of 10 g/min as the parameters of extraction processes. An experimental design was performed in order to optimize three important parameters of SC-CO2 extraction which are pressure (X1), temperature (X2) to achieve optimum yields of soybean oil. Box Behnken Design was applied for experimental design. From the optimization process, the optimum condition of extraction of soybean oil was obtained at pressure 338 Bar and temperature 80 °C with oil yield of 2.713 g. Effect of pressure is significant on the extraction of soybean oil by modified supercritical carbon dioxide. Increasing of pressure will increase the oil yield of soybean oil.Keywords: soybean oil, SC-CO₂ extraction, yield, optimization
Procedia PDF Downloads 25829520 Facebook Spam and Spam Filter Using Artificial Neural Networks
Authors: A. Fahim, Mutahira N. Naseem
Abstract:
SPAM is any unwanted electronic message or material in any form posted to many people. As the world is growing as global world, social networking sites play an important role in making world global providing people from different parts of the world a platform to meet and express their views. Among different social networking sites facebook become the leading one. With increase in usage different users start abusive use of facebook by posting or creating ways to post spam. This paper highlights the potential spam types nowadays facebook users faces. This paper also provide the reason how user become victim to spam attack. A methodology is proposed in the end discusses how to handle different types of spam.Keywords: artificial neural networks, facebook spam, social networking sites, spam filter
Procedia PDF Downloads 37829519 Foundation of the Information Model for Connected-Cars
Authors: Hae-Won Seo, Yong-Gu Lee
Abstract:
Recent progress in the next generation of automobile technology is geared towards incorporating information technology into cars. Collectively called smart cars are bringing intelligence to cars that provides comfort, convenience and safety. A branch of smart cars is connected-car system. The key concept in connected-cars is the sharing of driving information among cars through decentralized manner enabling collective intelligence. This paper proposes a foundation of the information model that is necessary to define the driving information for smart-cars. Road conditions are modeled through a unique data structure that unambiguously represent the time variant traffics in the streets. Additionally, the modeled data structure is exemplified in a navigational scenario and usage using UML. Optimal driving route searching is also discussed using the proposed data structure in a dynamically changing road conditions.Keywords: connected-car, data modeling, route planning, navigation system
Procedia PDF Downloads 37829518 Comparative Growth Kinetic Studies of Two Strains Saccharomyces cerevisiae Isolated from Dates and a Commercial Strain
Authors: Nizar Chaira
Abstract:
Dates, main products of the oases, due to their therapeutic interests, are considered highly nutritious fruit. Several studies on the valuation biotechnology and technology of dates are made, and several products are already prepared. Isolation of the yeast Saccharomyces cerevisiae, naturally presents in a scrap of date, optimization of growth in the medium based on date syrup and production biomass can potentially expand the range of secondary products of dates. To this end, this paper tries to study the suitability for processing dates technology and biotechnology to use the date pulp as a carbon source for biological transformation. Two strains of Saccharomyces cerevisiae isolated from date syrup (S1, S2) and a commercial strain have used for this study. After optimization of culture conditions, production in a fermenter on two different media (date syrup and beet molasses) was performed. This is followed by studying the kinetics of growth, protein production and consumption of sugars in crops strain 1, 2 and the commercial strain and on both media. The results obtained showed that a concentration of 2% sugar, 2.5 g/l yeast extract, pH 4.5 and a temperature between 25 and 35°C are the optimal conditions for cultivation in a bioreactor. The exponential phase of the specific growth rate of a strain on both media showed that it is about 0.3625 h-1 for the production of a medium based on date syrup and 0.3521 h-1 on beet molasses with a generation time equal to 1.912 h and on the medium based on date syrup, yeast consumes preferentially the reducing sugars. For the production of protein, we showed that this latter presents an exponential phase when the medium starts to run out of reducing sugars. For strain 2, the specific growth rate is about 0.261h-1 for the production on a medium based on date syrup and 0207 h-1 on beet molasses and the base medium syrup date of the yeast consumes preferentially reducing sugars. For the invertase and other metabolits, these increases rapidly after exhaustion of reducing sugars. The comparison of productivity between the three strains on the medium based on date syrup showed that the maximum value is obtained with the second strain: p = 1072 g/l/h as it is about of 0923 g/l/h for strain 1 and 0644 g/l/h for the commercial strain. Thus, isolates of date syrup are more competitive than the commercial strain and can give the same performance in a shorter time with energy gain.Keywords: date palm, fermentation, molasses, Saccharomyces, syrup
Procedia PDF Downloads 32529517 Zero Energy Buildings in Hot-Humid Tropical Climates: Boundaries of the Energy Optimization Grey Zone
Authors: Nakul V. Naphade, Sandra G. L. Persiani, Yew Wah Wong, Pramod S. Kamath, Avinash H. Anantharam, Hui Ling Aw, Yann Grynberg
Abstract:
Achieving zero-energy targets in existing buildings is known to be a difficult task requiring important cuts in the building energy consumption, which in many cases clash with the functional necessities of the building wherever the on-site energy generation is unable to match the overall energy consumption. Between the building’s consumption optimization limit and the energy, target stretches a case-specific optimization grey zone, which requires tailored intervention and enhanced user’s commitment. In the view of the future adoption of more stringent energy-efficiency targets in the context of hot-humid tropical climates, this study aims to define the energy optimization grey zone by assessing the energy-efficiency limit in the state-of-the-art typical mid- and high-rise full AC office buildings, through the integration of currently available technologies. Energy models of two code-compliant generic office-building typologies were developed as a baseline, a 20-storey ‘high-rise’ and a 7-storey ‘mid-rise’. Design iterations carried out on the energy models with advanced market ready technologies in lighting, envelope, plug load management and ACMV systems and controls, lead to a representative energy model of the current maximum technical potential. The simulations showed that ZEB targets could be achieved in fully AC buildings under an average of seven floors only by compromising on energy-intense facilities (as full AC, unlimited power-supply, standard user behaviour, etc.). This paper argues that drastic changes must be made in tropical buildings to span the energy optimization grey zone and achieve zero energy. Fully air-conditioned areas must be rethought, while smart technologies must be integrated with an aggressive involvement and motivation of the users to synchronize with the new system’s energy savings goal.Keywords: energy simulation, office building, tropical climate, zero energy buildings
Procedia PDF Downloads 18629516 Second Order Cone Optimization Approach to Two-stage Network DEA
Authors: K. Asanimoghadam, M. Salahi, A. Jamalian
Abstract:
Data envelopment analysis is an approach to measure the efficiency of decision making units with multiple inputs and outputs. The structure of many decision making units also has decision-making subunits that are not considered in most data envelopment analysis models. Also, the inputs and outputs of the decision-making units usually are considered desirable, while in some real-world problems, the nature of some inputs or outputs are undesirable. In this thesis, we study the evaluation of the efficiency of two stage decision-making units, where some outputs are undesirable using two non-radial models, the SBM and the ASBM models. We formulate the nonlinear ASBM model as a second order cone optimization problem. Finally, we compare two models for both external and internal evaluation approaches for two real world example in the presence of undesirable outputs. The results show that, in both external and internal evaluations, the overall efficiency of ASBM model is greater than or equal to the overall efficiency value of the SBM model, and in internal evaluation, the ASBM model is more flexible than the SBM model.Keywords: network DEA, conic optimization, undesirable output, SBM
Procedia PDF Downloads 19829515 The Effect of Artificial Intelligence on Urbanism, Architecture and Environmental Conditions
Authors: Abanoub Rady Shaker Saleb
Abstract:
Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)
Procedia PDF Downloads 7429514 Hyper Parameter Optimization of Deep Convolutional Neural Networks for Pavement Distress Classification
Authors: Oumaima Khlifati, Khadija Baba
Abstract:
Pavement distress is the main factor responsible for the deterioration of road structure durability, damage vehicles, and driver comfort. Transportation agencies spend a high proportion of their funds on pavement monitoring and maintenance. The auscultation of pavement distress was based on the manual survey, which was extremely time consuming, labor intensive, and required domain expertise. Therefore, the automatic distress detection is needed to reduce the cost of manual inspection and avoid more serious damage by implementing the appropriate remediation actions at the right time. Inspired by recent deep learning applications, this paper proposes an algorithm for automatic road distress detection and classification using on the Deep Convolutional Neural Network (DCNN). In this study, the types of pavement distress are classified as transverse or longitudinal cracking, alligator, pothole, and intact pavement. The dataset used in this work is composed of public asphalt pavement images. In order to learn the structure of the different type of distress, the DCNN models are trained and tested as a multi-label classification task. In addition, to get the highest accuracy for our model, we adjust the structural optimization hyper parameters such as the number of convolutions and max pooling, filers, size of filters, loss functions, activation functions, and optimizer and fine-tuning hyper parameters that conclude batch size and learning rate. The optimization of the model is executed by checking all feasible combinations and selecting the best performing one. The model, after being optimized, performance metrics is calculated, which describe the training and validation accuracies, precision, recall, and F1 score.Keywords: distress pavement, hyperparameters, automatic classification, deep learning
Procedia PDF Downloads 9929513 Optimization of Black-Litterman Model for Portfolio Assets Allocation
Authors: A. Hidalgo, A. Desportes, E. Bonin, A. Kadaoui, T. Bouaricha
Abstract:
Present paper is concerned with portfolio management with Black-Litterman (B-L) model. Considered stocks are exclusively limited to large companies stocks on US market. Results obtained by application of the model are presented. From analysis of collected Dow Jones stock data, remarkable explicit analytical expression of optimal B-L parameter τ, which scales dispersion of normal distribution of assets mean return, is proposed in terms of standard deviation of covariance matrix. Implementation has been developed in Matlab environment to split optimization in Markovitz sense from specific elements related to B-L representation.Keywords: Black-Litterman, Markowitz, market data, portfolio manager opinion
Procedia PDF Downloads 26329512 Simultaneous Optimization of Design and Maintenance through a Hybrid Process Using Genetic Algorithms
Authors: O. Adjoul, A. Feugier, K. Benfriha, A. Aoussat
Abstract:
In general, issues related to design and maintenance are considered in an independent manner. However, the decisions made in these two sets influence each other. The design for maintenance is considered an opportunity to optimize the life cycle cost of a product, particularly in the nuclear or aeronautical field, where maintenance expenses represent more than 60% of life cycle costs. The design of large-scale systems starts with product architecture, a choice of components in terms of cost, reliability, weight and other attributes, corresponding to the specifications. On the other hand, the design must take into account maintenance by improving, in particular, real-time monitoring of equipment through the integration of new technologies such as connected sensors and intelligent actuators. We noticed that different approaches used in the Design For Maintenance (DFM) methods are limited to the simultaneous characterization of the reliability and maintainability of a multi-component system. This article proposes a method of DFM that assists designers to propose dynamic maintenance for multi-component industrial systems. The term "dynamic" refers to the ability to integrate available monitoring data to adapt the maintenance decision in real time. The goal is to maximize the availability of the system at a given life cycle cost. This paper presents an approach for simultaneous optimization of the design and maintenance of multi-component systems. Here the design is characterized by four decision variables for each component (reliability level, maintainability level, redundancy level, and level of monitoring data). The maintenance is characterized by two decision variables (the dates of the maintenance stops and the maintenance operations to be performed on the system during these stops). The DFM model helps the designers choose technical solutions for the large-scale industrial products. Large-scale refers to the complex multi-component industrial systems and long life-cycle, such as trains, aircraft, etc. The method is based on a two-level hybrid algorithm for simultaneous optimization of design and maintenance, using genetic algorithms. The first level is to select a design solution for a given system that considers the life cycle cost and the reliability. The second level consists of determining a dynamic and optimal maintenance plan to be deployed for a design solution. This level is based on the Maintenance Free Operating Period (MFOP) concept, which takes into account the decision criteria such as, total reliability, maintenance cost and maintenance time. Depending on the life cycle duration, the desired availability, and the desired business model (sales or rental), this tool provides visibility of overall costs and optimal product architecture.Keywords: availability, design for maintenance (DFM), dynamic maintenance, life cycle cost (LCC), maintenance free operating period (MFOP), simultaneous optimization
Procedia PDF Downloads 122