Search results for: microchannel solar thermal collector
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4684

Search results for: microchannel solar thermal collector

4504 Solar Radiation Studies for Islamabad, Pakistan

Authors: Sidra A. Shaikh, M. A. Ahmed, M. W. Akhtar

Abstract:

Global and diffuse solar radiation studies have been carried out for Islamabad (Lat: 330 43’ N, Long: 370 71’) to access the solar potential of the area using sunshine hour data. A detailed analysis of global solar radiation values measured using several methods is presented. These values are then compared with the NASA SSE model. The variation in direct and diffuse components of solar radiation is observed in summer and winter months for Islamabad along with the clearness index KT. The diffuse solar radiation is found maximum in the month of July. Direct and beam radiation is found to be high in the month of April to June. From the results it appears that with the exception of monsoon months, July and August, solar radiation for electricity generation can be utilized very efficiently throughout the year. Finally, the mean bias error (MBE), root mean square error (RMSE) and mean percent error (MPE) for global solar radiation are also presented.

Keywords: solar potential, global and diffuse solar radiation, Islamabad, errors

Procedia PDF Downloads 413
4503 Numerical Modeling of hybrid Photovoltaic-Thermoelectric Solar Unit by Applying Various Cross-Sections of Cooling Ducts

Authors: Ziba Khalili, Mohsen Sheikholeslami, Ladan Momayez

Abstract:

Combining the photovoltaic/thermal (PVT) systems with a thermoelectric (TE) module can raise energy yields since the TE module boosts the system's energy conversion efficiency. In the current study, a PVT system integrated with a TE module was designed and simulated in ANSYS Fluent 19.2. A copper heat transfer tube (HTT) was employed for cooling the photovoltaic (PV) cells. Four different shapes of HTT cross-section, i.e., circular, square, elliptical, and triangular, with equal cross-section areas were investigated. Also, the influence of Cu-Al2O3/water hybrid nanofluid (0.024% volume concentration), fluid inlet velocity (uᵢ ), and amount of solar radiation (G), on the PV temperature (Tₚᵥ) and system performance were investigated. The ambient temperature (Tₐ), wind speed (u𝓌), and fluid inlet temperature (Tᵢ), were considered to be 25°C, 1 m/s, and 27°C, respectively. According to the obtained data, the triangular case had the greatest impact on reducing the compared to other cases. In the triangular case, examination of the effect of hybrid nanofluid showed that the use of hybrid nanofluid at 800 W/m2 led to a reduction of the TPV by 0.6% compared to water, at 0.19 m/s. Moreover, the thermal efficiency ( ) and the overall electrical efficiency (nₜ) of the system improved by 0.93% and 0.22%, respectively, at 0.19 m/s. In a triangular case where G and were 800 W/m2 and 19 m/s, respectively, the highest amount of, thermal power (Eₜ), and, were obtained as 72.76%, 130.84 W and 12.03%, respectively.

Keywords: electrical performance, photovoltaic/thermal, thermoelectric, hybrid nanofluid, thermal efficiency

Procedia PDF Downloads 47
4502 Enhancing Power Conversion Efficiency of P3HT/PCBM Polymer Solar Cells

Authors: Nidal H. Abu-Zahra, Mahmoud Algazzar

Abstract:

In this research, n-dodecylthiol was added to P3HT/PC70BM polymer solar cells to improve the crystallinity of P3HT and enhance the phase separation of P3HT/PC70BM. The improved crystallinity of P3HT/PC70BM doped with 0-5% by volume of n-dodecylthiol resulted in improving the power conversion efficiency of polymer solar cells by 33%. In addition, thermal annealing of the P3HT/PC70MB/n-dodecylthiolcompound showed further improvement in crystallinity with n-dodecylthiol concentration up to 2%. The highest power conversion efficiency of 3.21% was achieved with polymer crystallites size L of 11.2nm, after annealing at 150°C for 30 minutes under a vacuum atmosphere. The smaller crystallite size suggests a shorter path of the charge carriers between P3HT backbones, which could be beneficial to getting a higher short circuit current in the devices made with the additive.

Keywords: n-dodecylthiol, congugated PSC, P3HT/PCBM, polymer solar cells

Procedia PDF Downloads 258
4501 Numerical Analysis of Solar Cooling System

Authors: Nadia Allouache, Mohamed Belmedani

Abstract:

Energy source is a sustainable, totally inexhaustible and environmentally friendly alternative to the fossil fuels available. It is a renewable and economical energy that can be harnessed sustainably over the long term and thus stabilizes energy costs. Solar cooling technologies have been developed to decrease the augmentation electricity consumption for air conditioning and to displace the peak load during hot summer days. A numerical analysis of thermal and solar performances of an annular finned adsorber, which is the most important component of the adsorption solar refrigerating system, is considered in this work. Different adsorbent/adsorbate pairs, such as activated carbon AC35/methanol, activated carbon AC35/ethanol, and activated carbon BPL/Ammoniac, are undertaken in this study. The modeling of the adsorption cooling machine requires the resolution of the equation describing the energy and mass transfer in the tubular finned adsorber. The Wilson and Dubinin- Astakhov models of the solid-adsorbate equilibrium are used to calculate the adsorbed quantity. The porous medium and the fins are contained in the annular space, and the adsorber is heated by solar energy. Effects of key parameters on the adsorbed quantity and on the thermal and solar performances are analysed and discussed. The AC35/methanol pair is the best pair compared to BPL/Ammoniac and AC35/ethanol pairs in terms of system performance. The system performances are sensitive to the fin geometry. For the considered data measured for clear type days of July 2023 in Algeria and Morocco, the performances of the cooling system are very significant in Algeria.

Keywords: activated carbon AC35-methanol pair, activated carbon AC35-ethanol pair, activated carbon BPL-ammoniac pair, annular finned adsorber, performance coefficients, numerical analysis, solar cooling system

Procedia PDF Downloads 31
4500 Thermo-Ecological Assessment of a ‎Hybrid ‎‎Solar ‎Greenhouse Dryer for Grape Drying ‎

Authors: Ilham Ihoume, Rachid Tadili, Nora Arbaoui

Abstract:

The use of solar energy in agricultural applications has gained significant at‎tention ‎‎in recent years as a sustainable and environmentally friendly alternative to ‎‎conventional energy sources. In particular, solar drying of crops has ‎been identified ‎‎as an effective method to preserve agricultural produce while ‎minimizing energy ‎‎consumption and reducing carbon emissions. In this context, the present study ‎‎aims to evaluate the thermo-economic and ecological ‎performance of a solar-electric hybrid greenhouse dryer designed for grape ‎drying. The proposed system ‎‎integrates solar collectors, an electric heater, ‎and a greenhouse structure to create a ‎‎controlled and energy-efficient environment for grape drying. The thermo-economic assessment involves the ‎analysis of the thermal performance, energy ‎‎consumption, and cost-effectiveness of the solar-electric hybrid greenhouse dryer. ‎‎On the other ‎hand, the ecological assessment focuses on the environmental impact ‎‎of the ‎system in terms of carbon emissions and sustainability. The findings of this ‎‎‎study are expected to contribute to the development of sustainable agricultural ‎‎practices and the promotion of renewable energy technologies in the ‎context of ‎‎food production. Moreover, the results may serve as a basis for the ‎design and ‎‎optimization of similar solar drying systems for other crops and ‎regions.‎

Keywords: solar energy, sustainability, agriculture, energy ‎‎analysis‎

Procedia PDF Downloads 23
4499 Thermal End Effect on the Isotachophoretic Separation of Analytes

Authors: Partha P. Gopmandal, S. Bhattacharyya

Abstract:

We investigate the thermal end effect on the pseudo-steady state behavior of the isotachophoretic transport of ionic species in a 2-D microchannel. Both ends of the channel are kept at a constant temperature which may lead to significant changes in electrophoretic migration speed. A mathematical model based on Nernst-Planck equations for transport of ions coupled with the equation for temperature field is considered. In addition, the charge conservation equations govern the potential field due to the external electric field. We have computed the equations for ion transport, potential and temperature in a coupled manner through the finite volume method. The diffusive terms are discretized via central difference scheme, while QUICK (Quadratic Upwind Interpolation Convection Kinematics) scheme is used to discretize the convective terms. We find that the thermal end effect has significant effect on the isotachophoretic (ITP) migration speed of the analyte. Our result shows that the ITP velocity for temperature dependent case no longer varies linearly with the applied electric field. A detailed analysis has been made to provide a range of the key parameters to minimize the Joule heating effect on ITP transport of analytes.

Keywords: finite volume method, isotachophoresis, QUICK scheme, thermal effect

Procedia PDF Downloads 251
4498 Development of Drying System for Dew Collection to Supplement Minimum Water Required for Grazing Plants in Arid Regions

Authors: Mohamed I. Alzarah

Abstract:

Passive dew harvesting and rainwater collection requires a very small financial investment meanwhile they can exploit a free and clean source of water in rural or remote areas. Dew condensation on greenhouse dryer cladding and assorted other surfaces was frequently noticed. Accordingly, this study was performed in order to measure the quantity of condensation in the arid regions. Dew was measured by using three different kinds of collectors which were glass of flat plate solar collector, tempered glass of photovoltaic (PV) and double sloped (25°) acrylic plexiglas of greenhouse dryer. The total amount of dew collection for three different types of collectors was measured during December 2013 to March 2014 in Alahsa, Saudi Arabia. Meteorological data were collected for one year. The condensate dew drops were collected naturally (before scraping) and by scraping once and twice. Dew began to condense most likely between 12:00 am and 6:30 am and its intensity reached the peak at about 45 min before sunrise. The cumulative dew yield on double-sloped test roof was varying with wind speed and direction. Results indicated that, wiping twice gave more dew yield compared to wiping once or collection by gravity. Dew and rain pH were neutral (close to 7) and the total mineralization was considerable. The ions concentration agrees with the World Health Organization recommendations for potable water. Using existing drying system for dew and rain harvesting cold provide a potable water source for arid region.

Keywords: PV module, flat plate solar collector, greenhouse, drying system, dew collection, water vapor, rainwater harvesting

Procedia PDF Downloads 305
4497 Single Phase Fluid Flow in Series of Microchannel Connected via Converging-Diverging Section with or without Throat

Authors: Abhishek Kumar Chandra, Kaushal Kishor, Wasim Khan, Dhananjay Singh, M. S. Alam

Abstract:

Single phase fluid flow through series of uniform microchannels connected via transition section (converging-diverging section with or without throat) was analytically and numerically studied to characterize the flow within the channel and in the transition sections. Three sets of microchannels of diameters 100, 184, and 249 μm were considered for investigation. Each set contains 10 numbers of microchannels of length 20 mm, connected to each other in series via transition sections. Transition section consists of either converging-diverging section with throat or without throat. The effect of non-uniformity in microchannels on pressure drop was determined by passing water/air through the set of channels for Reynolds number 50 to 1000. Compressibility and rarefaction effects in transition sections were also tested analytically and numerically for air flow. The analytical and numerical results show that these configurations can be used in enhancement of transport processes. However, converging-diverging section without throat shows superior performance over with throat configuration.

Keywords: contraction-expansion flow, integrated microchannel, microchannel network, single phase flow

Procedia PDF Downloads 257
4496 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network

Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim

Abstract:

In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.

Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt

Procedia PDF Downloads 334
4495 Exergy Based Analysis of Parabolic Trough Collector Using Twisted-Tape Inserts

Authors: Atwari Rawani, Suresh Prasad Sharma, K. D. P. Singh

Abstract:

In this paper, an analytical investigation based on energy and exergy analysis of the parabolic trough collector (PTC) with alternate clockwise and counter-clockwise twisted tape inserts in the absorber tube has been presented. For fully developed flow under quasi-steady state conditions, energy equations have been developed in order to analyze the rise in fluid temperature, thermal efficiency, entropy generation and exergy efficiency. Also the effect of system and operating parameters on performance have been studied. A computer program, based on mathematical models is developed in C++ language to estimate the temperature rise of fluid for evaluation of performances under specified conditions. For numerical simulations four different twist ratio, x = 2,3,4,5 and mass flow rate 0.06 kg/s to 0.16 kg/s which cover the Reynolds number range of 3000 - 9000 is considered. This study shows that twisted tape inserts when used shows great promise for enhancing the performance of PTC. Results show that for x=1, Nusselt number/heat transfer coefficient is found to be 3.528 and 3.008 times over plain absorber of PTC at mass flow rate of 0.06 kg/s and 0.16 kg/s respectively; while corresponding enhancement in thermal efficiency is 12.57% and 5.065% respectively. Also the exergy efficiency has been found to be 10.61% and 10.97% and enhancement factor is 1.135 and 1.048 for same set of conditions.

Keywords: exergy efficiency, twisted tape ratio, turbulent flow, useful heat gain

Procedia PDF Downloads 144
4494 Characterization of Solar Panel Efficiency Using Sun Tracking Device and Cooling System

Authors: J. B. G. Ibarra, J. M. A. Gagui, E. J. T. Jonson, J. A. V. Lim

Abstract:

This paper focused on studying the performance of the solar panels that were equipped with water-spray cooling system, solar tracking system, and combination of both systems. The efficiencies were compared with the solar panels without any efficiency improvement technique. The efficiency of each setup was computed on an hourly basis every day for a month. The study compared the efficiencies and combined systems that significantly improved at a specific time of the day. The data showed that the solar tracking system had the highest efficiency during 6:00 AM to 7:45 AM. Then after 7:45 AM, the combination of both solar tracking and water-spray cooling system was the most efficient to use up to 12:00 NN. Meanwhile, from 12:00 NN to 12:45 PM, the water-spray cooling system had the significant contribution on efficiency. From 12:45 PM up to 4:30 PM, the combination of both systems was the most efficient, and lastly, from 4:30 PM to 6:00 PM, the solar tracking system was the best to use. The study intended to use solar tracking or water-spray cooling system or combined systems alternately to improve the solar panel efficiency on a specific time of the day.

Keywords: solar panel efficiency, solar panel efficiency technique, solar tracking system, water-spray cooling system

Procedia PDF Downloads 138
4493 Energy System for Algerian Green Building in Tlemcen, North Africa

Authors: M. A. Boukli Hacene, N. E.Chabane Sari, A. Benzair

Abstract:

This article highlights a method for natural heating and cooling of systems in areas of moderate climate. Movement of air is generated inside a space by an underground piping system. In this paper, we discuss a feasibility study in Algeria of air-conditioning using a ground source heat pump (GSHP) with vertical mounting, coupled with a solar collector. This study consists of modeling ground temperature at different depths, for a clay soil in the city of Tlemcen. Our model is developed from the non-stationary heat equation for a homogeneous medium and takes into consideration the soil thermal diffusivity. It uses the daily ambient temperature during a typical year for the locality of Tlemcen. The study shows the feasibility of using a heating/cooling GSHP in the town of Tlemcen for the particular soil type; and indicates that the duration of air flow in the borehole has a major influence on the outgoing temperature drilling.

Keywords: green building, heat pump, insulation, climate change

Procedia PDF Downloads 197
4492 Fabrication of Glucose/O₂ Microfluidic Biofuel Cell with Double Layer of Electrodes

Authors: Haroon Khan, Chul Min Kim, Sung Yeol Kim, Sanket Goel, Prabhat K. Dwivedi, Ashutosh Sharma, Gyu Man Kim

Abstract:

Enzymatic biofuel cells (EBFCs) have drawn the attention of researchers due to its demanding application in medical implants. In EBFCs, electricity is produced with the help of redox enzymes. In this study, we report the fabrication of membraneless EBFC with new design of electrodes to overcome microchannel related limitations. The device consists of double layer of electrodes on both sides of Y-shaped microchannel to reduce the effect of oxygen depletion layer and diffusion of fuel and oxidant at the end of microchannel. Moreover, the length of microchannel was reduced by half keeping the same area of multiwalled carbon nanotubes (MWCNT) electrodes. Polydimethylsiloxane (PDMS) stencils were used to pattern MWCNT electrodes on etched Indium Tin Oxide (ITO) glass. PDMS casting was used to fabricate microchannel of the device. Both anode and cathode were modified with glucose oxidase and laccase. Furthermore, these enzymes were covalently bound to carboxyl MWCNTs with the help of EDC/NHS. Glucose used as fuel was oxidized by glucose oxidase at anode while oxygen was reduced to water at the cathode side. The resulted devices were investigated with the help of polarization curves obtained from Chronopotentiometry technique by using potentiostat. From results, we conclude that the performance of double layer EBFC is improved 15 % as compared to single layer EBFC delivering maximum power density of 71.25 µW cm-2 at a cell potential of 0.3 V and current density of 250 µA cm-2 at micro channel height of 450-µm and flow rate of 25 ml hr-1. However, the new device was stable only for three days after which its power output was rapidly dropped by 75 %. This work demonstrates that the power output of membraneless EBFC is improved comparatively, but still efforts will be needed to make the device stable over long period of time.

Keywords: EBFC, glucose, MWCNT, microfluidic

Procedia PDF Downloads 301
4491 EU-SOLARIS: The European Infrastructure for Concentrated Solar Thermal and Solar Chemistry Technologies

Authors: Vassiliki Drosou, Theoni Oikonomou

Abstract:

EU-SOLARIS will form a new legal entity to explore and implement improved rules and procedures for Research Infrastructures (RI) for Concentrated Solar Thermal (CST) and solar chemistry technologies, in order to optimize RI development and R&D coordination. It is expected to be the first of its kind, where industrial needs and private funding will play a significant role. The success of EU-SOLARIS initiative will be the establishment of a new governance body, aided by sustainable financial models. EU-SOLARIS is expected to be an important tool, which will provide the most complete, high quality scientific infrastructure portfolio at international level and to facilitate researchers' access to highly specialised research infrastructure through a single access point. This will be accomplished by linking scientific communities, industry and universities involved in the CST sector. The access to be offered by EU-SOLARIS will guarantee the direct contact of experienced scientists with newcomers and interested students. The set of RIs participating in EU-SOLARIS will offer access to state of the art infrastructures, high-quality services, and will enable users to conduct high quality research. Access to these facilities will contribute to the enhancement of the European research area by: -Opening installations to European and non-European scientists, coming from both academia and industry, thus improving co-operation. -Improving scientific critical mass in domains where knowledge is now widely dispersed. -Generating strong Europe-wide R&D project consortia, increasing the competitiveness of each member alone. EU-SOLARIS will be created in the framework of a European project, co-funded by the 7th Framework Programme of the European Union –whose initiative is to foster, contribute and promote the scientific and technological development of the CST and solar chemistry technologies. Primary objective of EU-SOLARIS is to contribute to the improvement of the state of the art of these technologies with the aim of preserving and reinforcing the European leadership in this field, in which EU-SOLARIS is expected to be a valuable instrument. EU-SOLARIS scope, activities, objectives, current status and vision will be given in the article. Moreover, the rules, processes and criteria regulating the access to the research infrastructures included in EU-SOLARIS will be presented.

Keywords: concentrated solar thermal (CST) technology, renewable energy sources, research infrastructures, solar chemistry

Procedia PDF Downloads 215
4490 Models Comparison for Solar Radiation

Authors: Djelloul Benatiallah

Abstract:

Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.

Keywords: solar radiation, renewable energy, fossil, photovoltaic systems

Procedia PDF Downloads 52
4489 Solar Architecture of Low-Energy Buildings for Industrial Applications

Authors: P. Brinks, O. Kornadt, R. Oly

Abstract:

This research focuses on the optimization of glazed surfaces and the assessment of possible solar gains in industrial buildings. Existing window rating methods for single windows were evaluated and a new method for a simple analysis of energy gains and losses by single windows was introduced. Furthermore extensive transient building simulations were carried out to appraise the performance of low cost polycarbonate multi-cell sheets in interaction with typical buildings for industrial applications. Mainly, energy-saving potential was determined by optimizing the orientation and area of such glazing systems in dependency on their thermal qualities. Moreover the impact on critical aspects such as summer overheating and daylight illumination was considered to ensure the user comfort and avoid additional energy demand for lighting or cooling. Hereby the simulated heating demand could be reduced by up to 1/3 compared to traditional architecture of industrial halls using mainly skylights.

Keywords: solar architecture, Passive Solar Building Design, glazing, Low-Energy Buildings, industrial buildings

Procedia PDF Downloads 214
4488 A Detail Analysis of Solar Energy Potential of Provinces of Pakistan for Power Generation

Authors: M. Akhlaque Ahmed, Maliha Afshan

Abstract:

Solar energy potential of Capital city Islamabad and five major cities Peshawar, Lahore, Multan, Quetta and Karachi have been analyzed by using sun shine hour data of the area. Global and diffused solar radiation on horizontal surfaces has been assessed to see the feasibility of solar energy utilization. The result obtained shows 70% direct and 30% diffuse solar radiation for five cities throughout the year except Karachi which shows large variation in direct and diffuse component of solar radiation 57% direct and 43% diffuse in the month of July and August. The cloudiness index were also calculated which lies between 60 to 70% for all the cities except for Karachi which shows 37% clear sky in monsoon month July and August. All the cities show high solar potential throughout the year except Karachi which shows low solar potential during July and August months.

Keywords: global and diffuse solar radiations, Pakistan, power generation, solar potential, sunshine hour

Procedia PDF Downloads 156
4487 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: solar cell, solar-cell power generating system, computer, systems engineering

Procedia PDF Downloads 292
4486 Performance Improvement of Solar Thermal Cooling Systems Integrated with Encapsulated PCM

Authors: Lana Migla

Abstract:

Phase change materials (PCMs) have an important role in improving the efficiency of thermal heat storage. As these materials are characterized by low thermal conductivity, it is necessary to develop heat transfer techniques to improve their thermophysical properties. This scientific article focuses on the geometrical configurations of encapsulated PCM containers and the impact of designs to improve the performance of the solar thermal cooling system. The literature review showed that in-depth research is being conducted on different methods of improving the efficiency of PCM heat transfer, which is the main design task for the containers. Techniques such as microencapsulated PCMs, adding fins and different combinations of fins and nanoparticles are used. The use of graphite, metal foam and doping of high photothermal materials is also being studied. To determine most efficient container configuration, the article looks at different designs of PCM containers with fins for the storage tank. This paper experimentally investigates the effect of the encapsulation design on the performance of a lab-scale thermal energy storage tank. The development of optimized energy storage with integrated phase change material containers reduces auxiliary heater energy consumption, increases the COP of the solar cooling system, and reduces the environmental impact of the cooling system. The review shows that in the cylindrical construction, the ratio between the radius of shell and tube is significant, which means this ratio is the main issue to enhance transfer efficiency and to increase the value of stored heat. Therefore, three cylindrical tube containers with different radiuses 20mm, 35mm, 50mm filled with commercial phase change material were tested. The results show that using a smaller radius achieved a higher power, leading to a reduction in the charging and discharging time. The three fins were added to the selected cylindrical tube to determine their effects on heat exchanging efficiency. The observed optimized performance given by the fin’s arrangement achieved a 40% reduction of PCM's melting time compared to the heat exchanging without fins. The exact dimensions of the PCM containers and fins placements will be presented on-site.

Keywords: energy performance, PCM containers, solar thermal cooling, storage tank

Procedia PDF Downloads 116
4485 Estimation of Solar Radiation Power Using Reference Evaluation of Solar Transmittance, 2 Bands Model: Case Study of Semarang, Central Java, Indonesia

Authors: Benedictus Asriparusa

Abstract:

Solar radiation is a green renewable energy which has the potential to answer the needs of energy problems on the period. Knowing how to estimate the strength of the solar radiation force may be one solution of sustainable energy development in an integrated manner. Unfortunately, a fairly extensive area of Indonesia is still very low availability of solar radiation data. Therefore, we need a method to estimate the exact strength of solar radiation. In this study, author used a model Reference Evaluation of Solar Transmittance, 2 Bands (REST 2). Validation of REST 2 model has been performed in Spain, India, Colorado, Saudi Arabia, and several other areas. But it is not widely used in Indonesia. Indonesian region study area is represented by the area of Semarang, Central Java. Solar radiation values estimated using REST 2 model was then verified by field data and gives average RMSE value of 6.53%. Based on the value, it can be concluded that the model REST 2 can be used to estimate the value of solar radiation in clear sky conditions in parts of Indonesia.

Keywords: estimation, solar radiation power, REST 2, solar transmittance

Procedia PDF Downloads 398
4484 Experimental Testing of Solar Still with Movable Inclined Surface and Equipped with Wick

Authors: Ahmed N. Shmroukh

Abstract:

This study examined a new solar still equipped with a movable inclined back, and this back is covered with a wick for seawater desalination. The tested backside inclination angles were 105, 125 and 160, respectively. The wick helped in increasing the seawater evaporation rate by increasing the evaporation surface area allowed for seawater in the still basin. The proposed modified solar still was compared with the conventional simple still. The results showed that the daily produced desalinated water of the modified solar still with angles 105, 125 and 160 increased by approximately 13.7%, 27.9%, and 39.2%, respectively, compared with the conventional solar still.

Keywords: solar still, inclined still, porous materials, Wick

Procedia PDF Downloads 44
4483 Hydrodynamics and Heat Transfer Characteristics of a Solar Thermochemical Fluidized Bed Reactor

Authors: Selvan Bellan, Koji Matsubara, Nobuyuki Gokon, Tatsuya Kodama, Hyun Seok-Cho

Abstract:

In concentrated solar thermal industry, fluidized-bed technology has been used to produce hydrogen by thermochemical two step water splitting cycles, and synthetic gas by gasification of coal coke. Recently, couple of fluidized bed reactors have been developed and tested at Niigata University, Japan, for two-step thermochemical water splitting cycles and coal coke gasification using Xe light, solar simulator. The hydrodynamic behavior of the gas-solid flow plays a vital role in the aforementioned fluidized bed reactors. Thus, in order to study the dynamics of dense gas-solid flow, a CFD-DEM model has been developed; in which the contact forces between the particles have been calculated by the spring-dashpot model, based on the soft-sphere method. Heat transfer and hydrodynamics of a solar thermochemical fluidized bed reactor filled with ceria particles have been studied numerically and experimentally for beam-down solar concentrating system. An experimental visualization of particles circulation pattern and mixing of two-tower fluidized bed system has been presented. Simulation results have been compared with experimental data to validate the CFD-DEM model. Results indicate that the model can predict the particle-fluid flow of the two-tower fluidized bed reactor. Using this model, the key operating parameters can be optimized.

Keywords: solar reactor, CFD-DEM modeling, fluidized bed, beam-down solar concentrating system

Procedia PDF Downloads 175
4482 Performance of Photovoltaic Thermal Greenhouse Dryer in Composite Climate of India

Authors: G. N. Tiwari, Shyam

Abstract:

Photovoltaic thermal (PVT) roof type greenhouse dryer installed above the wind tower of SODHA BERS COMPLEX, Varanasi has been analyzed for all types of weather conditions. The product to be dried has been kept at three different trays. The upper tray receives energy from the PV cover while the bottom tray receives thermal energy from the hot air of the wind tower. The annual energy estimation has been done for the all types of weather condition of composite climate of northern India. It has been found that maximum energy saving is observed for c type of weather condition whereas minimum energy saving is observed for a type of weather condition. The energy saving on overall thermal energy basis and exergy basis are 1206.8 kWh and 360 kWh respectively for c type of weather condition. The energy saving from all types of weather condition are found to be 3175.3 kWh and 957.6 kWh on overall thermal energy and overall exergy basis respectively.

Keywords: exergy, greenhouse, photovoltaic thermal, solar dryer

Procedia PDF Downloads 388
4481 TiN/TiO2 Nanostructure Coating on Glass Substrate

Authors: F. Dabir, R. Sarraf-Mamoory, N. Riahi-Noori

Abstract:

In this work, a nanostructured TiO2 layer was coated onto a FTO-less glass substrate using screen printing technique for back contact DSSC application. Then, titanium nitride thin film was applied on TiO2 layer by plasma assisted chemical vapor deposition (PACVD) as charge collector layer. The microstructure of prepared TiO2 layer was characterized by SEM. The sheet resistance, microstructure and elemental composition of titanium nitride thin films were analysed by four point probe, SEM, and EDS, respectively. TiO2 layer had porous nanostructure. The EDS analysis of TiN thin film showed presence of chlorine impurity. Sheet resistance of TiN thin film was 30 Ω/sq. With respect to the results, PACVD TiN can be a good candidate as a charge collector layer in back contacts DSSC.

Keywords: TiO2, TiN, charge collector, DSSC

Procedia PDF Downloads 444
4480 Synthesis and Characterization of Partially Oxidized Graphite Oxide for Solar Energy Storage Applications

Authors: Ghada Ben Hamad, Zohir Younsi, Fabien Salaun, Hassane Naji, Noureddine Lebaz

Abstract:

The graphene oxide (GO) material has attracted much attention for solar energy applications. This paper reports the synthesis and characterization of partially oxidized graphite oxide (GTO). GTO was obtained by modified Hummers method, which is based on the chemical oxidation of natural graphite. Several samples were prepared with different oxidation degree by an adjustment of the oxidizing agent’s amount. The effect of the oxidation degree on the chemical structure and on the morphology of GTO was determined by using Fourier transform infrared (FT-IR) spectroscopy, Energy Dispersive X-ray Spectroscopy (EDS), and scanning electronic microscope (SEM). The thermal stability of GTO was evaluated by using thermogravimetric analyzer (TGA) in Nitrogen atmosphere. The results indicate high degree oxidation of graphite oxide for each sample, proving that the process is efficient. The GTO synthesized by modified Hummers method shows promising characteristics. Graphene oxide (GO) obtained by exfoliation of GTO are recognized as a good candidate for thermal energy storage, and it will be used as solid shell material in the encapsulation of phase change materials (PCM).

Keywords: modified hummers method, graphite oxide, oxidation degree, solar energy storage

Procedia PDF Downloads 98
4479 Study on Eco-Feedback of Thermal Comfort and Cost Efficiency for Low Energy Residence

Authors: Y. Jin, N. Zhang, X. Luo, W. Zhang

Abstract:

China with annual increasing 0.5-0.6 billion squares city residence has brought in enormous energy consumption by HVAC facilities and other appliances. In this regard, governments and researchers are encouraging renewable energy like solar energy, geothermal energy using in houses. However, high cost of equipment and low energy conversion result in a very low acceptable to residents. So what’s the equilibrium point of eco-feedback to reach economic benefit and thermal comfort? That is the main question should be answered. In this paper, the objective is an on-site solar PV and heater house, which has been evaluated as a low energy building. Since HVAC system is considered as main energy consumption equipment, the residence with 24-hour monitoring system set to measure temperature, wind velocity and energy in-out value with no HVAC system for one month of summer and winter. Thermal comfort time period will be analyzed and confirmed; then the air-conditioner will be started within thermal discomfort time for the following one summer and winter month. The same data will be recorded to calculate the average energy consumption monthly for a purpose of whole day thermal comfort. Finally, two analysis work will be done: 1) Original building thermal simulation by computer at design stage with actual measured temperature after construction will be contrastive analyzed; 2) The cost of renewable energy facilities and power consumption converted to cost efficient rate to assess the feasibility of renewable energy input for residence. The results of the experiment showed that a certain deviation exists between actual measured data and simulated one for human thermal comfort, especially in summer period. Moreover, the cost-effectiveness is high for a house in targeting city Guilin now with at least 11 years of cost-covering. The conclusion proves that an eco-feedback of a low energy residence is never only consideration of its energy net value, but also the cost efficiency that is the critical factor to push renewable energy acceptable by the public.

Keywords: cost efficiency, eco-feedback, low energy residence, thermal comfort

Procedia PDF Downloads 232
4478 Feasibility of Solar Distillation as Household Water Supply in Saline Zones of Bangladesh

Authors: Md. Rezaul Karim, Md. Ashikur Rahman, Dewan Mahmud Mim

Abstract:

Scarcity of potable water as the result of rapid climate change and saltwater intrusion in groundwater has been a major problem in the coastal regions over the world. In equinoctial countries like Bangladesh, where sunlight is available for more than 10 hours a day, Solar Distillation provides a promising sustainable way for safe drinking water supply in coastal poor households with negligible major cost and difficulty of construction and maintenance. In this paper, two passive type solar stills- a Conventional Single Slope Solar still (CSS) and a Pyramid Solar Sill (PSS) is used and relationship is established between distill water output corresponding to four different factors- temperature, solar intensity, relative humidity and wind speed for Gazipur, Bangladesh. Comparison is analyzed between the two different still outputs for nine months period (January- September) and efficiency is calculated. Later a thermal mathematical model is developed and the distilled water output for Khulna, Bangladesh is computed. Again, difference between the output of the two cities- Gazipur and Khulna is demonstrated and finally an economic analysis is prepared. The distillation output has a positive correlation with temperature and solar intensity, inverse relation with relative humidity and wind speed has nugatory consequence. The maximum output of Conventional Solar Still is obtained 3.8 L/m2/day and Pyramid still is 4.3 L/m2/day for Gazipur and almost 15% more efficiency is found for Pyramid still. Productivity in Khulna is found almost 20% more than Gazipur. Based on economic analysis, taking 10 BDT, per liter, the net profit, benefit cost ratio, payback period all indicates that both stills are feasible but pyramid still is more feasible than Conventional Still. Finally, for a 3-4 member family, area of 4 m2 is suggested for Conventional Still and 3m2 for Pyramid Solar Still.

Keywords: solar distillation, household water supply, saline zones, Bangladesh

Procedia PDF Downloads 251
4477 Analysis and Modeling of the Building’s Facades in Terms of Different Convection Coefficients

Authors: Enes Yasa, Guven Fidan

Abstract:

Building Simulation tools need to better evaluate convective heat exchanges between external air and wall surfaces. Previous analysis demonstrated the significant effects of convective heat transfer coefficient values on the room energy balance. Some authors have pointed out that large discrepancies observed between widely used building thermal models can be attributed to the different correlations used to calculate or impose the value of the convective heat transfer coefficients. Moreover, numerous researchers have made sensitivity calculations and proved that the choice of Convective Heat Transfer Coefficient values can lead to differences from 20% to 40% of energy demands. The thermal losses to the ambient from a building surface or a roof mounted solar collector represent an important portion of the overall energy balance and depend heavily on the wind induced convection. In an effort to help designers make better use of the available correlations in the literature for the external convection coefficients due to the wind, a critical discussion and a suitable tabulation is presented, on the basis of algebraic form of the coefficients and their dependence upon characteristic length and wind direction, in addition to wind speed. Many research works have been conducted since early eighties focused on the convection heat transfer problems inside buildings. In this context, a Computational Fluid Dynamics (CFD) program has been used to predict external convective heat transfer coefficients at external building surfaces. For the building facades model, effects of wind speed and temperature differences between the surfaces and the external air have been analyzed, showing different heat transfer conditions and coefficients. In order to provide further information on external convective heat transfer coefficients, a numerical work is presented in this paper, using a Computational Fluid Dynamics (CFD) commercial package (CFX) to predict convective heat transfer coefficients at external building surface.

Keywords: CFD in buildings, external convective heat transfer coefficients, building facades, thermal modelling

Procedia PDF Downloads 396
4476 Performance Evaluation of Vermiculite as Adsorbent Material for Solar-Assisted Air-Conditioning in Tropical Climate

Authors: Norhayati Mat Wajid, Abdul Murad Zainal Abidin, Hasila Jarimi, Kamaruzaman Sopian, Adnan Ibrahim, Ahmad Fazlizan, Afif Safwan

Abstract:

Solar-adsorption air-conditioning system (SADCS) is an alternative to the conventional vapor compression system (VCS). SADCS have advantages over VCS system, such as 1) a green cooling technology which utilizes solar energy to drive the adsorption/desorption cycle, 2) can be operated using green refrigerant HFC free pure water, 3) mechanically simpler, and 4) lower operating noise level since it has no moving parts other than the magnetic valves. Several advancements have been achieved in these fields in the last decade, but further research is still needed to escalate this technology to a practical level. Hence, this paper presents a literature survey and a review that add insights into the current state-of-the-art of SADCS technologies with emphasis on the practical researches that were conducted at the laboratory scale and commercial level. In this paper, the performance evaluation of vermiculite as adsorbent material for SADCS in tropical climate discussed in comparison to other adsorbent material such as silica gel.

Keywords: adsorption cooling, solar-assisted cooling, HVAC, tropical climate, solar thermal

Procedia PDF Downloads 129
4475 Experimental Study on Modified Double Slope Solar Still and Modified Basin Type Double Slope Multiwick Solar Still

Authors: Piyush Pal, Rahul Dev

Abstract:

Water is essential for life and fresh water is a finite resource that is becoming scarce day by day even though it is recycled by hydrological cycle. The fresh water reserves are being polluted due to expanding irrigation, industries, urban population and its development. Contaminated water leads to several health problems. With the increasing demand of fresh water, solar distillation is an alternate solution which uses solar energy to evaporate water and then to condense it, thereby collecting distilled water within or outside the same system to use it as potable water. The structure that houses the process is known as a 'solar still'. In this paper, ‘Modified double slope solar still (MDSSS)’ & 'Modified double slope basin type multiwick solar still (MDSBMSS)' have been designed to convert saline, brackish water into drinking water. In this work two different modified solar stills are fabricated to study the performance of these solar stills. For modification of solar stills, Fibre Reinforced Plastic (FRP) and Acrylic sheets are used. The experiments in MDSBMSS and MDSSS was carried on 10 September 2015 & 5 November 2015 respectively. Performances of the stills were investigated. The amount of distillate has been found 3624 Ml/day in MDSBMSS on 10 September 2015 and 2400 Ml/day in MDSSS on 5 November 2015.

Keywords: contaminated water, conventional solar still, modified solar still, wick

Procedia PDF Downloads 398