Search results for: microbial detection
4208 Detection Characteristics of the Random and Deterministic Signals in Antenna Arrays
Authors: Olesya Bolkhovskaya, Alexey Davydov, Alexander Maltsev
Abstract:
In this paper approach to incoherent signal detection in multi-element antenna array are researched and modeled. Two types of useful signals with unknown wavefront were considered. First one is deterministic (Barker code), the second one is random (Gaussian distribution). The derivation of the sufficient statistics took into account the linearity of the antenna array. The performance characteristics and detecting curves are modeled and compared for different useful signals parameters and for different number of elements of the antenna array. Results of researches in case of some additional conditions can be applied to a digital communications systems.Keywords: antenna array, detection curves, performance characteristics, quadrature processing, signal detection
Procedia PDF Downloads 4054207 The Guaranteed Detection of the Seismoacoustic Emission Source in the C-OTDR Systems
Authors: Andrey V. Timofeev
Abstract:
A method is proposed for stable detection of seismoacoustic sources in C-OTDR systems that guarantee given upper bounds for probabilities of type I and type II errors. Properties of the proposed method are rigorously proved. The results of practical applications of the proposed method in a real C-OTDR-system are presented in this.Keywords: guaranteed detection, C-OTDR systems, change point, interval estimation
Procedia PDF Downloads 2564206 Real-Time Lane Marking Detection Using Weighted Filter
Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan
Abstract:
Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.Keywords: lane marking filter, lane detection, ADAS, LDWS
Procedia PDF Downloads 1944205 Cells Detection and Recognition in Bone Marrow Examination with Deep Learning Method
Authors: Shiyin He, Zheng Huang
Abstract:
In this paper, deep learning methods are applied in bio-medical field to detect and count different types of cells in an automatic way instead of manual work in medical practice, specifically in bone marrow examination. The process is mainly composed of two steps, detection and recognition. Mask-Region-Convolutional Neural Networks (Mask-RCNN) was used for detection and image segmentation to extract cells and then Convolutional Neural Networks (CNN), as well as Deep Residual Network (ResNet) was used to classify. Result of cell detection network shows high efficiency to meet application requirements. For the cell recognition network, two networks are compared and the final system is fully applicable.Keywords: cell detection, cell recognition, deep learning, Mask-RCNN, ResNet
Procedia PDF Downloads 1894204 Development of Sulfite Biosensor Based on Sulfite Oxidase Immobilized on 3-Aminoproplytriethoxysilane Modified Indium Tin Oxide Electrode
Authors: Pawasuth Saengdee, Chamras Promptmas, Ting Zeng, Silke Leimkühler, Ulla Wollenberger
Abstract:
Sulfite has been used as a versatile preservative to limit the microbial growth and to control the taste in some food and beverage. However, it has been reported to cause a wide spectrum of severe adverse reactions. Therefore, it is important to determine the amount of sulfite in food and beverage to ensure consumer safety. An efficient electrocatalytic biosensor for sulfite detection was developed by immobilizing of human sulfite oxidase (hSO) on 3-aminoproplytriethoxysilane (APTES) modified indium tin oxide (ITO) electrode. Cyclic voltammetry was employed to investigate the electrochemical characteristics of the hSO modified ITO electrode for various pretreatment and binding conditions. Amperometry was also utilized to demonstrate the current responses of the sulfite sensor toward sodium sulfite in an aqueous solution at a potential of 0 V (vs. Ag/AgCl 1 M KCl). The proposed sulfite sensor has a linear range between 0.5 to 2 mM with a correlation coefficient 0.972. Then, the additional polymer layer of PVA was introduced to extend the linear range of sulfite sensor and protect the enzyme. The linear range of sulfite sensor with 5% coverage increases from 2.8 to 20 mM at a correlation coefficient of 0.983. In addition, the stability of sulfite sensor with 5% PVA coverage increases until 14 days when kept in 0.5 mM Tris-buffer, pH 7.0 at 4 8C. Therefore, this sensor could be applied for the detection of sulfite in the real sample, especially in food and beverage.Keywords: sulfite oxidase, bioelectrocatalytsis, indium tin oxide, direct electrochemistry, sulfite sensor
Procedia PDF Downloads 2314203 CdS Quantum Dots as Fluorescent Probes for Detection of Naphthalene
Authors: Zhengyu Yan, Yan Yu, Jianqiu Chen
Abstract:
A novel sensing system has been designed for naphthalene detection based on the quenched fluorescence signal of CdS quantum dots. The fluorescence intensity of the system reduced significantly after adding CdS quantum dots to the water pollution model because of the fluorescent static quenching f mechanism. Herein, we have demonstrated the facile methodology can offer a convenient and low analysis cost with the recovery rate as 97.43%-103.2%, which has potential application prospect.Keywords: CdS quantum dots, modification, detection, naphthalene
Procedia PDF Downloads 4934202 Burnout Recognition for Call Center Agents by Using Skin Color Detection with Hand Poses
Authors: El Sayed A. Sharara, A. Tsuji, K. Terada
Abstract:
Call centers have been expanding and they have influence on activation in various markets increasingly. A call center’s work is known as one of the most demanding and stressful jobs. In this paper, we propose the fatigue detection system in order to detect burnout of call center agents in the case of a neck pain and upper back pain. Our proposed system is based on the computer vision technique combined skin color detection with the Viola-Jones object detector. To recognize the gesture of hand poses caused by stress sign, the YCbCr color space is used to detect the skin color region including face and hand poses around the area related to neck ache and upper back pain. A cascade of clarifiers by Viola-Jones is used for face recognition to extract from the skin color region. The detection of hand poses is given by the evaluation of neck pain and upper back pain by using skin color detection and face recognition method. The system performance is evaluated using two groups of dataset created in the laboratory to simulate call center environment. Our call center agent burnout detection system has been implemented by using a web camera and has been processed by MATLAB. From the experimental results, our system achieved 96.3% for upper back pain detection and 94.2% for neck pain detection.Keywords: call center agents, fatigue, skin color detection, face recognition
Procedia PDF Downloads 2944201 Microbial and Meiofaunal Dynamics in the Intertidal Sediments of the Northern Red Sea
Authors: Hamed A. El-Serehy, Khaled A. Al-Rasheid, Fahad A Al-Misned
Abstract:
The meiofaunal population fluctuation, microbial dynamic and the composition of the sedimentary organic matter were investigated seasonally in the Egyptian shores along the northern part of Red Sea. Total meiofaunal population densities were extremely low with an annual average of 109 ±26 ind./10 cm2 and largely dominated by nematodes (on annual average from 52% to 94% of total meiofaunal density). The benthic microbial population densities ranged from 0.26±0.02 x 108 to 102.67±18.62 x 108/g dry sediment. Total sedimentary organic matter concentrations varied between 5.8 and 11.6 mg/g and the organic carbon, which was measured as summation of the carbohydrates, proteins and lipids, accounted for only a small fraction of being 32 % of the total organic matter. Chlorophyll a attained very low values and fluctuated between 2 and 11 µg/g. The very low chlorophyll a concentration in the Egyptian coasts along the Red Sea can suggest that the sedimentary organic matter along the Egyptian coasts is dominated by organic detrital and heterotrophic bacteria on one hand, and do not promote carbon transfer towards the higher trophic level on the other hand. However, the present study indicates that the existing of well diversified meiofaunal group, with a total of ten meiofaunal taxa, can serve as food for higher trophic levels in the Red Sea marine ecosystem.Keywords: bacteria, meiofauna, intertidal sediments, Red Sea
Procedia PDF Downloads 4244200 Comprehensive Review of Adversarial Machine Learning in PDF Malware
Authors: Preston Nabors, Nasseh Tabrizi
Abstract:
Portable Document Format (PDF) files have gained significant popularity for sharing and distributing documents due to their universal compatibility. However, the widespread use of PDF files has made them attractive targets for cybercriminals, who exploit vulnerabilities to deliver malware and compromise the security of end-user systems. This paper reviews notable contributions in PDF malware detection, including static, dynamic, signature-based, and hybrid analysis. It presents a comprehensive examination of PDF malware detection techniques, focusing on the emerging threat of adversarial sampling and the need for robust defense mechanisms. The paper highlights the vulnerability of machine learning classifiers to evasion attacks. It explores adversarial sampling techniques in PDF malware detection to produce mimicry and reverse mimicry evasion attacks, which aim to bypass detection systems. Improvements for future research are identified, including accessible methods, applying adversarial sampling techniques to malicious payloads, evaluating other models, evaluating the importance of features to malware, implementing adversarial defense techniques, and conducting comprehensive examination across various scenarios. By addressing these opportunities, researchers can enhance PDF malware detection and develop more resilient defense mechanisms against adversarial attacks.Keywords: adversarial attacks, adversarial defense, adversarial machine learning, intrusion detection, PDF malware, malware detection, malware detection evasion
Procedia PDF Downloads 394199 Detection of Parkinsonian Freezing of Gait
Authors: Sang-Hoon Park, Yeji Ho, Gwang-Moon Eom
Abstract:
Fast and accurate detection of Freezing of Gait (FOG) is desirable for appropriate application of cueing which has been shown to ameliorate FOG. Utilization of frequency spectrum of leg acceleration to derive the freeze index requires much calculation and it would lead to delayed cueing. We hypothesized that FOG can be reasonably detected from the time domain amplitude of foot acceleration. A time instant was recognized as FOG if the mean amplitude of the acceleration in the time window surrounding the time instant was in the specific FOG range. Parameters required in the FOG detection was optimized by simulated annealing. The suggested time domain methods showed performances comparable to those of frequency domain methods.Keywords: freezing of gait, detection, Parkinson's disease, time-domain method
Procedia PDF Downloads 4444198 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple
Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob
Abstract:
The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, pineapple, microbial decay
Procedia PDF Downloads 574197 Effect of Sodium Alginate Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-Cut Pineapple
Authors: Muhammad Rafiullah Khan, Vanee Chonhenchob
Abstract:
The effect of sodium alginate (1%) based edible coating incorporated natural essential oils, thymol, carvone, and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5, and 1.0%) on the quality changes of fresh-cut pineapple was investigated. Pineapple dipped in distilled water was served as control. After coating, the fruit was sealed in a modified atmosphere package (MAP) using high permeable film and stored at 5°C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased, and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple
Procedia PDF Downloads 574196 Temperature Dependence and Seasonal Variation of Denitrifying Microbial Consortia from a Woodchip Bioreactor in Denmark
Authors: A. Jéglot, F. Plauborg, M. K. Schnorr, R. S. Sørensen, L. Elsgaard
Abstract:
Artificial wetlands such as woodchip bioreactors are efficient tools to remove nitrate from agricultural wastewater with a minimized environmental impact. However, the temperature dependence of the microbiological nitrate removal prevents the woodchip bioreactors from being an efficient system when the water temperature drops below 8℃. To quantify and describe the temperature effects on nitrate removal efficiency, we studied nitrate-reducing enrichments from a woodchip bioreactor in Denmark based on samples collected in Spring and Fall. Growth was quantified as optical density, and nitrate and nitrous oxide concentrations were measured in time-course experiments to compare the growth of the microbial population and the nitrate conversion efficiencies at different temperatures. Ammonia was measured to indicate the importance of dissimilatory nitrate reduction to ammonia (DNRA) in nitrate conversion for the given denitrifying community. The temperature responses observed followed the increasing trend proposed by the Arrhenius equation, indicating higher nitrate removal efficiencies at higher temperatures. However, the growth and the nitrous oxide production observed at low temperature provided evidence of the psychrotolerance of the microbial community under study. The assays conducted showed higher nitrate removal from the microbial community extracted from the woodchip bioreactor at the cold season compared to the ones extracted during the warmer season. This indicated the ability of the bacterial populations in the bioreactor to evolve and adapt to different seasonal temperatures.Keywords: agricultural waste water treatment, artificial wetland, denitrification, psychrophilic conditions
Procedia PDF Downloads 1224195 Multi-Spectral Deep Learning Models for Forest Fire Detection
Authors: Smitha Haridasan, Zelalem Demissie, Atri Dutta, Ajita Rattani
Abstract:
Aided by the wind, all it takes is one ember and a few minutes to create a wildfire. Wildfires are growing in frequency and size due to climate change. Wildfires and its consequences are one of the major environmental concerns. Every year, millions of hectares of forests are destroyed over the world, causing mass destruction and human casualties. Thus early detection of wildfire becomes a critical component to mitigate this threat. Many computer vision-based techniques have been proposed for the early detection of forest fire using video surveillance. Several computer vision-based methods have been proposed to predict and detect forest fires at various spectrums, namely, RGB, HSV, and YCbCr. The aim of this paper is to propose a multi-spectral deep learning model that combines information from different spectrums at intermediate layers for accurate fire detection. A heterogeneous dataset assembled from publicly available datasets is used for model training and evaluation in this study. The experimental results show that multi-spectral deep learning models could obtain an improvement of about 4.68 % over those based on a single spectrum for fire detection.Keywords: deep learning, forest fire detection, multi-spectral learning, natural hazard detection
Procedia PDF Downloads 2414194 Leukocyte Detection Using Image Stitching and Color Overlapping Windows
Authors: Lina, Arlends Chris, Bagus Mulyawan, Agus B. Dharmawan
Abstract:
Blood cell analysis plays a significant role in the diagnosis of human health. As an alternative to the traditional technique conducted by laboratory technicians, this paper presents an automatic white blood cell (leukocyte) detection system using Image Stitching and Color Overlapping Windows. The advantage of this method is to present a detection technique of white blood cells that are robust to imperfect shapes of blood cells with various image qualities. The input for this application is images from a microscope-slide translation video. The preprocessing stage is performed by stitching the input images. First, the overlapping parts of the images are determined, then stitching and blending processes of two input images are performed. Next, the Color Overlapping Windows is performed for white blood cell detection which consists of color filtering, window candidate checking, window marking, finds window overlaps, and window cropping processes. Experimental results show that this method could achieve an average of 82.12% detection accuracy of the leukocyte images.Keywords: color overlapping windows, image stitching, leukocyte detection, white blood cell detection
Procedia PDF Downloads 3104193 Effect of Fertilization and Combined Inoculation with Azospirillum brasilense and Pseudomonas fluorescens on Rhizosphere Microbial Communities of Avena sativa (Oats) and Secale Cereale (Rye) Grown as Cover Crops
Authors: Jhovana Silvia Escobar Ortega, Ines Eugenia Garcia De Salamone
Abstract:
Cover crops are an agri-technological alternative to improve all properties of soils. Cover crops such as oats and rye could be used to reduce erosion and favor system sustainability when they are grown in the same agricultural cycle of the soybean crop. This crop is very profitable but its low contribution of easily decomposable residues, due to its low C/N ratio, leaves the soil exposed to erosive action and raises the need to reduce its monoculture. Furthermore, inoculation with the plant growth promoting rhizobacteria contributes to the implementation, development and production of several cereal crops. However, there is little information on its effects on forage crops which are often used as cover crops to improve soil quality. In order to evaluate the effect of combined inoculation with Azospirillum brasilense and Pseudomonas fluorescens on rhizosphere microbial communities, field experiments were conducted in the west of Buenos Aires province, Argentina, with a split-split plot randomized complete block factorial design with three replicates. The factors were: type of cover crop, inoculation and fertilization. In the main plot two levels of fertilization 0 and 7 40-0-5 (NPKS) were established at sowing. Rye (Secale cereale cultivar Quehué) and oats (Avena sativa var Aurora.) were sown in the subplots. In the sub-subplots two inoculation treatments are applied without and with application of a combined inoculant with A. brasilense and P. fluorescens. Due to the growth of cover crops has to be stopped usually with the herbicide glyphosate, rhizosphere soil of 0-20 and 20-40 cm layers was sampled at three sampling times which were: before glyphosate application (BG), a month after glyphosate application (AG) and at soybean harvest (SH). Community level of physiological profiles (CLPP) and Shannon index of microbial diversity (H) were obtained by multivariate analysis of Principal Components. Also, the most probable number (MPN) of nitrifiers and cellulolytics were determined using selective liquid media for each functional group. The CLPP of rhizosphere microbial communities showed significant differences between sampling times. There was not interaction between sampling times and both, types of cover crops and inoculation. Rhizosphere microbial communities of samples obtained BG had different CLPP with respect to the samples obtained in the sampling times AG and SH. Fertilizer and depth of sampling also caused changes in the CLPP. The H diversity index of rhizosphere microbial communities of rye in the sampling time BG were higher than those associated with oats. The MPN of both microbial functional types was lower in the deeper layer since these microorganisms are mostly aerobic. The MPN of nitrifiers decreased in rhizosphere of both cover crops only AG. At the sampling time BG, the NMP of both microbial types were larger than those obtained for AG and SH. This may mean that the glyphosate application could cause fairly permanent changes in these microbial communities which can be considered bio-indicators of soil quality. Inoculation and fertilizer inputs could be included to improve management of these cover crops because they can have a significant positive effect on the sustainability of the agro-ecosystem.Keywords: community level of physiological profiles, microbial diversity, plant growth promoting rhizobacteria, rhizosphere microbial communities, soil quality, system sustainability
Procedia PDF Downloads 4044192 Electrical Dault Detection of Photovoltaic System: A Short-Circuit Fault Case
Authors: Moustapha H. Ibrahim, Dahir Abdourahman
Abstract:
This document presents a short-circuit fault detection process in a photovoltaic (PV) system. The proposed method is developed in MATLAB/Simulink. It determines whatever the size of the installation number of the short circuit module. The proposed algorithm indicates the presence or absence of an abnormality on the power of the PV system through measures of hourly global irradiation, power output, and ambient temperature. In case a fault is detected, it displays the number of modules in a short circuit. This fault detection method has been successfully tested on two different PV installations.Keywords: PV system, short-circuit, fault detection, modelling, MATLAB-Simulink
Procedia PDF Downloads 2324191 Ship Detection Requirements Analysis for Different Sea States: Validation on Real SAR Data
Authors: Jaime Martín-de-Nicolás, David Mata-Moya, Nerea del-Rey-Maestre, Pedro Gómez-del-Hoyo, María-Pilar Jarabo-Amores
Abstract:
Ship detection is nowadays quite an important issue in tasks related to sea traffic control, fishery management and ship search and rescue. Although it has traditionally been carried out by patrol ships or aircrafts, coverage and weather conditions and sea state can become a problem. Synthetic aperture radars can surpass these coverage limitations and work under any climatological condition. A fast CFAR ship detector based on a robust statistical modeling of sea clutter with respect to sea states in SAR images is used. In this paper, the minimum SNR required to obtain a given detection probability with a given false alarm rate for any sea state is determined. A Gaussian target model using real SAR data is considered. Results show that SNR does not depend heavily on the class considered. Provided there is some variation in the backscattering of targets in SAR imagery, the detection probability is limited and a post-processing stage based on morphology would be suitable.Keywords: SAR, generalized gamma distribution, detection curves, radar detection
Procedia PDF Downloads 4524190 Neural Network in Fixed Time for Collision Detection between Two Convex Polyhedra
Authors: M. Khouil, N. Saber, M. Mestari
Abstract:
In this paper, a different architecture of a collision detection neural network (DCNN) is developed. This network, which has been particularly reviewed, has enabled us to solve with a new approach the problem of collision detection between two convex polyhedra in a fixed time (O (1) time). We used two types of neurons, linear and threshold logic, which simplified the actual implementation of all the networks proposed. The study of the collision detection is divided into two sections, the collision between a point and a polyhedron and then the collision between two convex polyhedra. The aim of this research is to determine through the AMAXNET network a mini maximum point in a fixed time, which allows us to detect the presence of a potential collision.Keywords: collision identification, fixed time, convex polyhedra, neural network, AMAXNET
Procedia PDF Downloads 4224189 Hull Detection from Handwritten Digit Image
Authors: Sriraman Kothuri, Komal Teja Mattupalli
Abstract:
In this paper we proposed a novel algorithm for recognizing hulls in a hand written digits. This is an extension to the work on “Digit Recognition Using Freeman Chain code”. In order to find out the hulls in a user given digit it is necessary to follow three steps. Those are pre-processing, Boundary Extraction and at last apply the Hull Detection system in a way to attain the better results. The detection of Hull Regions is mainly intended to increase the machine learning capability in detection of characters or digits. This can also extend this in order to get the hull regions and their intensities in Black Holes in Space Exploration.Keywords: chain code, machine learning, hull regions, hull recognition system, SASK algorithm
Procedia PDF Downloads 4004188 Environmental Health Risk Assessment of Hospital Wastewater in Enugu Urban, Nigeria
Authors: C. T. Eze, I. N. E. Onwurah
Abstract:
An important hydrogeologic problem in areas of high faults formations is high environmental health hazard occasioned by microbial and heavy metals contamination of ground waters. Consequently, we examined the microbial load and heavy metals concentration of hospital wastewater discharged into the environment at Park Lane General Hospital Enugu Urban, Nigeria. The microbial counts, characteristics and frequency of occurrences of the isolated microorganisms were determined by cultural, morphological and biochemical characteristics using established procedure while the varying concentrations of the identified heavy metals were determined using the spectrophotometric method. The microbiological analyses showed a mean total aerobic bacteria counts from 13.7 ± 0.65 × 107 to 22.8 ± 1.14 ×1010 CFU/ml, mean total anaerobic bacteria counts from 6.0 ± 1.6 × 103 to 1.7 ± 0.41 ×104 CFU/ml and mean total fungal counts from 0 ± 0 to 2.3 ± 0.16 × 105 CFU/ml. The isolated micro-organisms which included both pathogenic and non-pathogenic organisms were Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Bacillus subtilis, Proteus vulgaris, Klesbsiella pneumonia and bacteriodes sp. The only fungal isolate was Candida albican. The heavy metals identified in the leachate were Arsenic, Cadmium, Lead, Mercury and Chromium and their concentrations ranged from 0.003 ± 0.00082 to 0.14 ± 0.0082 mg/l. These values were above WHO permissible limits while others fall within the limits. Therefore, hospital waste water can pose the environmental health risk when not properly treated before discharge, especially in geologic formations with high fault formations.Keywords: bacterial isolates, fungal isolates, heavy metals, hospital wastewater, microbial counts
Procedia PDF Downloads 3514187 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
A purpose of this study is to develop efficient detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive estimation. Due to dependence of radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. Thus, to utilize GNSS for aerospace or ground vehicles requiring high level of safety, unhealthy measurements should be considered seriously. For the reason, this paper proposes adaptive fault detection method to deal with unhealthy measurements in various harsh environments. By the proposed method, the test statistics for fault detection is generated by estimated measurement noise. Pseudorange and carrier-phase measurement noise are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. Performance of the proposed method was evaluated by field-collected GNSS measurements. To evaluate the fault detection capability, intentional faults were added to measurements. The experimental result shows that the proposed detection method is efficient in detecting unhealthy measurements and improves the accuracy of GNSS positioning under fault occurrence.Keywords: adaptive estimation, fault detection, GNSS, residual
Procedia PDF Downloads 5754186 Optical Flow Direction Determination for Railway Crossing Occupancy Monitoring
Authors: Zdenek Silar, Martin Dobrovolny
Abstract:
This article deals with the obstacle detection on a railway crossing (clearance detection). Detection is based on the optical flow estimation and classification of the flow vectors by K-means clustering algorithm. For classification of passing vehicles is used optical flow direction determination. The optical flow estimation is based on a modified Lucas-Kanade method.Keywords: background estimation, direction of optical flow, K-means clustering, objects detection, railway crossing monitoring, velocity vectors
Procedia PDF Downloads 5184185 Algorithm Research on Traffic Sign Detection Based on Improved EfficientDet
Authors: Ma Lei-Lei, Zhou You
Abstract:
Aiming at the problems of low detection accuracy of deep learning algorithm in traffic sign detection, this paper proposes improved EfficientDet based traffic sign detection algorithm. Multi-head self-attention is introduced in the minimum resolution layer of the backbone of EfficientDet to achieve effective aggregation of local and global depth information, and this study proposes an improved feature fusion pyramid with increased vertical cross-layer connections, which improves the performance of the model while introducing a small amount of complexity, the Balanced L1 Loss is introduced to replace the original regression loss function Smooth L1 Loss, which solves the problem of balance in the loss function. Experimental results show, the algorithm proposed in this study is suitable for the task of traffic sign detection. Compared with other models, the improved EfficientDet has the best detection accuracy. Although the test speed is not completely dominant, it still meets the real-time requirement.Keywords: convolutional neural network, transformer, feature pyramid networks, loss function
Procedia PDF Downloads 974184 Development of an in vitro Fermentation Chicken Ileum Microbiota Model
Authors: Bello Gonzalez, Setten Van M., Brouwer M.
Abstract:
The chicken small intestine represents a dynamic and complex organ in which the enzymatic digestion and absorption of nutrients take place. The development of an in vitro fermentation chicken small intestinal model could be used as an alternative to explore the interaction between the microbiota and nutrient metabolism and to enhance the efficacy of targeting interventions to improve animal health. In the present study we have developed an in vitro fermentation chicken ileum microbiota model for unrevealing the complex interaction of ileum microbial community under physiological conditions. A two-vessel continuous fermentation process simulating in real-time the physiological conditions of the ileum content (pH, temperature, microaerophilic/anoxic conditions, and peristaltic movements) has been standardized as a proof of concept. As inoculum, we use a pool of ileum microbial community obtained from chicken broilers at the age of day 14. The development and validation of the model provide insight into the initial characterization of the ileum microbial community and its dynamics over time-related to nutrient assimilation and fermentation. Samples can be collected at different time points and can be used to determine the microbial compositional structure, dynamics, and diversity over time. The results of studies using this in vitro model will serve as the foundation for the development of a whole small intestine in vitro fermentation chicken gastrointestinal model to complement our already established in vitro fermentation chicken caeca model. The insight gained from this model could provide us with some information about the nutritional strategies to restore and maintain chicken gut homeostasis. Moreover, the in vitro fermentation model will also allow us to study relationships between gut microbiota composition and its dynamics over time associated with nutrients, antimicrobial compounds, and disease modelling.Keywords: broilers, in vitro model, ileum microbiota, fermentation
Procedia PDF Downloads 574183 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1574182 Intelligent Driver Safety System Using Fatigue Detection
Authors: Samra Naz, Aneeqa Ahmed, Qurat-ul-ain Mubarak, Irum Nausheen
Abstract:
Driver safety systems protect driver from accidents by sensing signs of drowsiness. The paper proposes a technique which can detect the signs of drowsiness and make corresponding decisions to make the driver alert. This paper presents a technique in which the driver will be continuously monitored by a camera and his eyes, head and mouth movements will be observed. If the drowsiness signs are detected on the basis of these three movements under the predefined criteria, driver will be declared as sleepy and he will get alert with the help of alarms. Three robust techniques of drowsiness detection are combined together to make a robust system that can prevent form accident.Keywords: drowsiness, eye closure, fatigue detection, yawn detection
Procedia PDF Downloads 2934181 Toxicological Standardization of Heavy Metals and Microbial Contamination Haematinic Herbal Formulations Marketed in India
Authors: A. V. Chandewar, Sanjay Bais
Abstract:
Backgound: In India, drugs of herbal origin have been used in traditional systems of medicines such as Unani and Ayurveda since ancient times. WHO limit for Escherichia coli is 101/gm cfu, for Staphylococus aureus 105/gm cfu, and for Pseudomonas aeruginosa 103/gm cfu and for Salmonella species nil cfu. WHO mentions maximum permissible limits in raw materials only for arsenic, cadmium, and lead, which amount to 1.0, 0.3, and 10 ppm, respectively. Aim: The main purpose of the investigation was to document evidence for the users, and practitioners of marketed haematinic herbal formulations. In the present study haematinic herbal formulations marketed in Yavatmal India were determined for the presence of microbial and heavy metal content. Method: The investigations were performed by using specific medias and atomic absorption spectrometry. Result: The present work indicates the presence of heavy metal contents in herbal formulations selected for study. It was found that arsenic content in formulations was below the permissible limit in all formulations. The cadmium and lead content in six formulations were above the permissible limits. Such formulations are injurious to health of patient if consumed regularly. The specific medias were used to determining the presence of Escherichia coli 4 samples, Staphylococcus aureus 3 samples, and P. aeruginosa 4 samples. The data indicated suggest that there is requirement of in process improvement to provide better quality for consumer health in order to be competitive in international markets. Summary/Conclusion: The presence of microbial and heavy metal content above WHO limits indicates that the GMP was not followed during manufacturing of herbal formulations marketed in India.Keywords: toxicological standardization, heavy metals, microbial contamination, haematinic herbal formulations
Procedia PDF Downloads 4484180 Enhancement of Primary User Detection in Cognitive Radio by Scattering Transform
Authors: A. Moawad, K. C. Yao, A. Mansour, R. Gautier
Abstract:
The detecting of an occupied frequency band is a major issue in cognitive radio systems. The detection process becomes difficult if the signal occupying the band of interest has faded amplitude due to multipath effects. These effects make it hard for an occupying user to be detected. This work mitigates the missed-detection problem in the context of cognitive radio in frequency-selective fading channel by proposing blind channel estimation method that is based on scattering transform. By initially applying conventional energy detection, the missed-detection probability is evaluated, and if it is greater than or equal to 50%, channel estimation is applied on the received signal followed by channel equalization to reduce the channel effects. In the proposed channel estimator, we modify the Morlet wavelet by using its first derivative for better frequency resolution. A mathematical description of the modified function and its frequency resolution is formulated in this work. The improved frequency resolution is required to follow the spectral variation of the channel. The channel estimation error is evaluated in the mean-square sense for different channel settings, and energy detection is applied to the equalized received signal. The simulation results show improvement in reducing the missed-detection probability as compared to the detection based on principal component analysis. This improvement is achieved at the expense of increased estimator complexity, which depends on the number of wavelet filters as related to the channel taps. Also, the detection performance shows an improvement in detection probability for low signal-to-noise scenarios over principal component analysis- based energy detection.Keywords: channel estimation, cognitive radio, scattering transform, spectrum sensing
Procedia PDF Downloads 1964179 Harnessing Microorganism Having Potential for Biotreatment of Wastewater
Authors: Haruna Saidu, Sulaiman Mohammed, Abdulkarim Ali Deba, Shaza Eva Mohamad
Abstract:
Determining the diversity of the indigenous microorganisms in Palm Oil Mill Effluent (POME) could allow their wider application for the treatment of recalcitrant agro-based wastewater discharge into the environment. Many research studies mainly determined the efficiency of microorganism or their co-cultivation with microalgae for enhanced treatment of wastewater, suggesting a limited emphasis on the application of microbial diversity. In this study, the microorganism was cultured in POME for a period of 15 days using microalgae as a source of carbon. Pyrosequencing analysis reveals a diversity of microbial community in 20% (v/v) culture than the control experiment. Most of the bacterial species identified in POME belong to the families of Bacillaceae, Paenibacillaceae, Enterococcaceae, Clostridiaceae, Peptostreptococcaceae, Caulobacteraceae, Enterobacteriaceae, Moraxellaceae, and Pseudomonadaceae. Alpha (α) diversity analysis reveals the high composition of the microbial community of 52 in both samples. Beta (β) diversity index indicated the occurrence of similar species of microorganisms in unweighted uni fra than the weighted uni fra of both samples. It is therefore suggested that bacteria found in these families could have a potential for synergistic treatment of high-strength wastewater generated from the palm oil industry.Keywords: diversity, microorganism, wastewater, pyrosequencing, palm oil mill effluent
Procedia PDF Downloads 37