Search results for: bridge approach slabs
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 13975

Search results for: bridge approach slabs

13795 Budget Optimization for Maintenance of Bridges in Egypt

Authors: Hesham Abd Elkhalek, Sherif M. Hafez, Yasser M. El Fahham

Abstract:

Allocating limited budget to maintain bridge networks and selecting effective maintenance strategies for each bridge represent challenging tasks for maintenance managers and decision makers. In Egypt, bridges are continuously deteriorating. In many cases, maintenance works are performed due to user complaints. The objective of this paper is to develop a practical and reliable framework to manage the maintenance, repair, and rehabilitation (MR&R) activities of Bridges network considering performance and budget limits. The model solves an optimization problem that maximizes the average condition of the entire network given the limited available budget using Genetic Algorithm (GA). The framework contains bridge inventory, condition assessment, repair cost calculation, deterioration prediction, and maintenance optimization. The developed model takes into account multiple parameters including serviceability requirements, budget allocation, element importance on structural safety and serviceability, bridge impact on network, and traffic. A questionnaire is conducted to complete the research scope. The proposed model is implemented in software, which provides a friendly user interface. The framework provides a multi-year maintenance plan for the entire network for up to five years. A case study of ten bridges is presented to validate and test the proposed model with data collected from Transportation Authorities in Egypt. Different scenarios are presented. The results are reasonable, feasible and within acceptable domain.

Keywords: bridge management systems (BMS), cost optimization condition assessment, fund allocation, Markov chain

Procedia PDF Downloads 265
13794 IEP Curriculum to Include For-Credit University English Classes

Authors: Cheyne Kirkpatrick

Abstract:

In an attempt to make the university intensive English program more worthwhile for students, many English language programs are redesigning curriculum to offer for-credit English for Academic Purposes classes, sometimes marketed as “bridge” courses. These programs are designed to be accredited to national language standards, provide communicative language learning, and give students the opportunity to simultaneously earn university language credit while becoming proficient in academic English. This presentation will discuss the curriculum design of one such program in the United States at a large private university that created its own for-credit “bridge” program. The planning, development, piloting, teaching, and challenges of designing this type of curriculum will be presented along with the aspects of accreditation, communicative language learning, and integration within various university programs. Attendees will learn about how such programs are created and what types of objectives and outcomes are included in American EAP classes.

Keywords: IEP, AEP, Curriculum, CEFR, University Credit, Bridge

Procedia PDF Downloads 461
13793 In-situ Performance of Pre-applied Bonded Waterproofing Membranes at Contaminated Test Slabs

Authors: Ulli Heinlein, Thomas Freimann

Abstract:

Pre-applied bonded membranes are used as positive-side waterproofing on concrete basements, are installed before the concrete work, and achieve a tear-resistant and waterproof bond with the subsequently placed fresh concrete. This bond increases redundancy compared to lose waterproofing membranes by preventing lateral water migrations in the event of damage. So far, the membranes have been tested in the laboratory, but it is not yet known how they behave on construction sites in the presence of dirt, soil, cement paste or moisture. This article, therefore, conducts investigations on six construction sites using 18 test slabs where the pre-applied bonded membranes are selectively contaminated or wetted. Subsequently, cores are taken, and the influence of the contaminations on the adhesive tensile strength and waterproof bond is tested. Pre-applied bonded membranes with smooth or granular but closed surfaces show no sensitivity to wetness, whereas open-pored membranes with nonwovens do not tolerate standing water. Contaminations decline the performance of all pre-applied bonded membranes since a separating layer is formed between the bonding layer and the concrete. The influence depends on the thickness of the contamination and its mechanical properties.

Keywords: waterproofing, positive-side waterproofing, basement, pre-applied bonded waterproofing membrane, In-situ testing, lateral water migrations

Procedia PDF Downloads 164
13792 Composite Behavior of Precast Concrete Coping with Internal Connector and Precast Girder

Authors: Junki Min, Heeyoung Lee, Wonseok Chung

Abstract:

Traditional marine concrete structures are difficult to construct and may cause environmental pollution. This study presents new concrete bridge system in the marine. The main feature of the proposed bridge is that precast girders and precast coping are applied to facilitate assembly and to improve constructability. In addition, the moment of the girder is reduced by continuation the joint. In this study, a full-scale joint specimen with a span of 7.0 m was fabricated and tested to evaluate the composite behavior of the joint. A finite element model was also developed and compared against the experimental results. All members of the test specimen behaved stably up to the design load. It was found that the precast joint of the proposed bridge showed the composite behavior efficiently before the failure.

Keywords: finite element analysis, full-scale test, coping, joint performance, marine structure, precast

Procedia PDF Downloads 183
13791 Experimental and Analytical Study on the Bending Behavior of Concrete-GFRP Hybrid Beams

Authors: Alaa Koaik, Bruno Jurkiewiez, Sylvain Bel

Abstract:

Recently, the use of GFRP pultruded profiles increased in the domain of civil engineering especially in the construction of sandwiched slabs and footbridges. However, under heavy loads, the risk of using these profiles increases due to their high deformability and instability as a result of their weak stiffness and orthotropic nature. A practical solution proposes the assembly of these profiles with concrete slabs to create a stiffer hybrid element to support higher loads. The connection of these two elements is established either by traditional means of steel studs (bolting in our case) or bonding technique. These two techniques have their advantages and disadvantages regarding the mechanical behavior and in-situ implementation. This paper presents experimental results of interface characterization and bending behavior of two hybrid beams, PB7 and PB8, designed and constructed using both connection techniques. The results obtained are exploited to design and build a hybrid footbridge BPBP1 which is tested within service limits (elastic domain). Analytical methods are also developed to analyze the behavior of these structures in the elastic range and the ultimate phase. Comparisons show acceptable differences mainly due to the sensitivity of the GFRP moduli as well as the non-linearity of concrete elements.

Keywords: analytical model, concrete, flexural behavior, GFRP pultruded profile, hybrid structure, interconnection slip, push-out

Procedia PDF Downloads 206
13790 Comparative Study of Concrete Filled Steel I-Girder Bridge with Conventional Type of Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura, Abdul Habib Ghaforzai

Abstract:

Steel and concrete composite bridge with concrete filled steel I-girder (CFIG) was proposed and FEM and laboratory tests were conducted to analysis bending and shear behavior. The proposed form of structural steel I-section is mainly used at the intermediate support zone by placing infilled concrete into the top and bottom flanges of steel I-section to resist negative bending moment. The bending and shear tests were carried out to find out the significance of CFIG section. The result for test showing that the bending and shear capacity of proposed CFIG is at least 3 times and 2 times greater than conventional steel I-section (IG) respectively. Finite element study was also carried out to ensure the result for laboratory tests due to bending and shear behavior and load transfer behavior of proposed structural form. Finite element result result agreed the test result. A design example was carried out for a four-span continuous highway bridge and design method was established.

Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength

Procedia PDF Downloads 104
13789 Dealing with the Spaces: Ultra Conservative Approach from Childhood to Adulthood

Authors: Maryam Firouzmandi, Moosa Miri

Abstract:

Common reasons for early tooth loss are trauma, extraction due to caries or periodontal disease and congenital missing. The remaining space after tooth loss may cause functional and esthetic problems. Therefore restorative dentists should attempt to manage these spaces using conservative methods. The goal is to restore the lost esthetic and function, prevent phonetic, self-esteem and personality problems and tongue habits. Preserving alveolar bone is also of great importance during the growth stage. Purpose: When deciding about the management of the missing tooth, space implants are contradicted until the completion of dentoalveolar development. Even in adulthood, due to systemic or periodontal problems or biological and economic issues, the implant might not be indicated. In this article, the alternative conservative restorative methods of space maintenance are going to be discussed. Essix retainers are made chair-side as easy as forming a custom bleaching tray with some modifications. They are esthetically acceptable and not expensive. These temporaries provide support for the lips but could not be used during function. Mini-screw-supported temporaries are another option for maintaining the space, especially after orthodontic treatment when there is a time lag between the termination of orthodontic treatment and definitive restoration. Two techniques will be presented for this kind of restoration: Denture tooth pontic or a composite crown. The benefits are alveolar bone preservation, Physiologic pressure on the alveolar ridge to increase its density and even can be retained until the completion of the definitive treatment. Bonded fixed partial denture includes Maryland bridge, fiber-reinforced composite bridge, resin-bonded bridge, and ceramic bonded bridge. These types of bridges are recommended to be used after a pubertal growth spurt and a recent meta-analysis considered their clinical success similar to conventional FDPs and implant-supported crowns. However, they have several advantages that are going to be discussed by presenting some clinical examples. Practical instruction on how to construct an FRC bridge and a novel chair-side Maryland bridge will be given by means of clinical cases. Clinical relevance: minimally invasive options should always be considered and destruction of healthy enamel and dentin during the preparation phase should be avoided as much as possible.

Keywords: tooth missing, fiber-reinforced composite, Maryland, Essix retainers, screw-retained restoration

Procedia PDF Downloads 174
13788 Scour Damaged Detection of Bridge Piers Using Vibration Analysis - Numerical Study of a Bridge

Authors: Solaine Hachem, Frédéric Bourquin, Dominique Siegert

Abstract:

The brutal collapse of bridges is mainly due to scour. Indeed, the soil erosion in the riverbed around a pier modifies the embedding conditions of the structure, reduces its overall stiffness and threatens its stability. Hence, finding an efficient technique that allows early scour detection becomes mandatory. Vibration analysis is an indirect method for scour detection that relies on real-time monitoring of the bridge. It tends to indicate the presence of a scour based on its consequences on the stability of the structure and its dynamic response. Most of the research in this field has focused on the dynamic behavior of a single pile and has examined the depth of the scour. In this paper, a bridge is fully modeled with all piles and spans and the scour is represented by a reduction in the foundation's stiffnesses. This work aims to identify the vibration modes sensitive to the rigidity’s loss in the foundations so that their variations can be considered as a scour indicator: the decrease in soil-structure interaction rigidity leads to a decrease in the natural frequencies’ values. By using the first-order perturbation method, the expression of sensitivity, which depends only on the selected vibration modes, is established to determine the deficiency of foundations stiffnesses. The solutions are obtained by using the singular value decomposition method for the regularization of the inverse problem. The propagation of uncertainties is also calculated to verify the efficiency of the inverse problem method. Numerical simulations describing different scenarios of scour are investigated on a simplified model of a real composite steel-concrete bridge located in France. The results of the modal analysis show that the modes corresponding to in-plane and out-of-plane piers vibrations are sensitive to the loss of foundation stiffness. While the deck bending modes are not affected by this damage.

Keywords: bridge’s piers, inverse problems, modal sensitivity, scour detection, vibration analysis

Procedia PDF Downloads 72
13787 Expert System for Road Bridge Constructions

Authors: Michael Dimmer, Holger Flederer

Abstract:

The basis of realizing a construction project is a technically flawless concept which satisfies conditions regarding environment and costs, as well as static-constructional terms. The presented software system actively supports civil engineers during the setup of optimal designs, by giving advice regarding durability, life-cycle costs, sustainability and much more. A major part of the surrounding conditions of a design process is gathered and assimilated by experienced engineers subconsciously. It is a question about eligible building techniques and their practicability by considering emerging costs. Planning engineers have acquired many of this experience during their professional life and use them for their daily work. Occasionally, the planning engineer should disassociate himself from his experience to be open for new and better solutions which meet the functional demands, as well. The developed expert system gives planning engineers recommendations for preferred design options of new constructions as well as for existing bridge constructions. It is possible to analyze construction elements and techniques regarding sustainability and life-cycle costs. This way the software provides recommendations for future constructions. Furthermore, there is an option to design existing road bridges especially for heavy duty transport. This implies a route planning tool to get quick and reliable information as to whether the bridge support structures of a transport route have been measured sufficiently for a certain heavy duty transport. The use of this expert system in bridge planning companies and building authorities will save costs massively for new and existent bridge constructions. This is achieved by consequently considering parameters like life-cycle costs and sustainability for its planning recommendations.

Keywords: expert system, planning process, road bridges, software system

Procedia PDF Downloads 256
13786 Photocatalytic Eco-Active Ceramic Slabs to Abate Air Pollution under LED Light

Authors: Claudia L. Bianchi, Giuseppina Cerrato, Federico Galli, Federica Minozzi, Valentino Capucci

Abstract:

At the beginning of the industrial productions, porcelain gres tiles were considered as just a technical material, aesthetically not very beautiful. Today thanks to new industrial production methods, both properties, and beauty of these materials completely fit the market requests. In particular, the possibility to prepare slabs of large sizes is the new frontier of building materials. Beside these noteworthy architectural features, new surface properties have been introduced in the last generation of these materials. In particular, deposition of TiO₂ transforms the traditional ceramic into a photocatalytic eco-active material able to reduce polluting molecules present in air and water, to eliminate bacteria and to reduce the surface dirt thanks to the self-cleaning property. The problem of photocatalytic materials resides in the fact that it is necessary a UV light source to activate the oxidation processes on the surface of the material, processes that are turned off inexorably when the material is illuminated by LED lights and, even more so, when we are in darkness. First, it was necessary a thorough study change the existing plants to deposit the photocatalyst very evenly and this has been done thanks to the advent of digital printing and the development of an ink custom-made that stabilizes the powdered TiO₂ in its formulation. In addition, the commercial TiO₂, which is used for the traditional photocatalytic coating, has been doped with metals in order to activate it even in the visible region and thus in the presence of sunlight or LED. Thanks to this active coating, ceramic slabs are able to purify air eliminating odors and VOCs, and also can be cleaned with very soft detergents due to the self-cleaning properties given by the TiO₂ present at the ceramic surface. Moreover, the presence of dopant metals (patent WO2016157155) also allows the material to work as well as antibacterial in the dark, by eliminating one of the negative features of photocatalytic building materials that have so far limited its use on a large scale. Considering that we are constantly in contact with bacteria, some of which are dangerous for health. Active tiles are 99,99% efficient on all bacteria, from the most common such as Escherichia coli to the most dangerous such as Staphilococcus aureus Methicillin-resistant (MRSA). DIGITALIFE project LIFE13 ENV/IT/000140 – award for best project of October 2017.

Keywords: Ag-doped microsized TiO₂, eco-active ceramic, photocatalysis, digital coating

Procedia PDF Downloads 199
13785 FEM and Experimental Studies on the Filled Steel I-Girder Bridge

Authors: Waheed Ahmad Safi, Shunichi Nakamura

Abstract:

Steel/concrete composite bridge with the concrete filled steel I-girder (CFIG) was proposed, and the bending and shear strength was studied by experiments and FEM analysis. The area surrounded by the upper and lower flanges and the web is filled with concrete in CFIG, which is used at the intermediate support of a continuous girder. The bending and shear tests of the CFIG were carried out, showing that the bending strength of CFIG was 2.8 times of the conventional steel I-girder and the shear strength was 3.0 times of the steel I-girder. Finite element models were established to clarify bending and shear behaviors and the load transfer mechanism of CFIG. FEM result agreed very well with the test results. The FEM model was also applied to simulate the shear tests of the CFIG specimens. A trail design was carried out for a four-span continuous highway bridge and the design method was established.

Keywords: bending strength, concrete filled steel I-girder, steel I-girder, FEM, limit states design and shear strength

Procedia PDF Downloads 239
13784 Development a Forecasting System and Reliable Sensors for River Bed Degradation and Bridge Pier Scouring

Authors: Fong-Zuo Lee, Jihn-Sung Lai, Yung-Bin Lin, Xiaoqin Liu, Kuo-Chun Chang, Zhi-Xian Yang, Wen-Dar Guo, Jian-Hao Hong

Abstract:

In recent years, climate change is a major factor to increase rainfall intensity and extreme rainfall frequency. The increased rainfall intensity and extreme rainfall frequency will increase the probability of flash flood with abundant sediment transport in a river basin. The floods caused by heavy rainfall may cause damages to the bridge, embankment, hydraulic works, and the other disasters. Therefore, the foundation scouring of bridge pier, embankment and spur dike caused by floods has been a severe problem in the worldwide. This severe problem has happened in many East Asian countries such as Taiwan and Japan because of these areas are suffered in typhoons, earthquakes, and flood events every year. Results from the complex interaction between fluid flow patterns caused by hydraulic works and the sediment transportation leading to the formation of river morphology, it is extremely difficult to develop a reliable and durable sensor to measure river bed degradation and bridge pier scouring. Therefore, an innovative scour monitoring sensor using vibration-based Micro-Electro Mechanical Systems (MEMS) was developed. This vibration-based MEMS sensor was packaged inside a stainless sphere with the proper protection of the full-filled resin, which can measure free vibration signals to detect scouring/deposition processes at the bridge pier. In addition, a friendly operational system includes rainfall runoff model, one-dimensional and two-dimensional numerical model, and the applicability of sediment transport equation and local scour formulas of bridge pier are included in this research. The friendly operational system carries out the simulation results of flood events that includes the elevation changes of river bed erosion near the specified bridge pier and the erosion depth around bridge piers. In addition, the system is developed with easy operation and integrated interface, the system can supplies users to calibrate and verify numerical model and display simulation results through the interface comparing to the scour monitoring sensors. To achieve the forecast of the erosion depth of river bed and main bridge pier in the study area, the system also connects the rainfall forecast data from Taiwan Typhoon and Flood Research Institute. The results can be provided available information for the management unit of river and bridge engineering in advance.

Keywords: flash flood, river bed degradation, bridge pier scouring, a friendly operational system

Procedia PDF Downloads 168
13783 Dynamic Behaviors of a Floating Bridge with Mooring Lines under Wind and Wave Excitations

Authors: Chungkuk Jin, Moohyun Kim, Woo Chul Chung

Abstract:

This paper presents global performance and dynamic behaviors of a discrete-pontoon-type floating bridge with mooring lines in time domain under wind and wave excitations. The structure is designed for long-distance and deep-water crossing and consists of the girder, columns, pontoons, and mooring lines. Their functionality and behaviors are investigated by using elastic-floater/mooring fully-coupled dynamic simulation computer program. Dynamic wind, first- and second-order wave forces, and current loads are considered as environmental loads. Girder’s dynamic responses and mooring tensions are analyzed under different analysis methods and environmental conditions. Girder’s lateral responses are highly influenced by the second-order wave and wind loads while the first-order wave load mainly influences its vertical responses.

Keywords: floating bridge, mooring line, pontoon, wave excitation

Procedia PDF Downloads 110
13782 Evaluation System of Spatial Potential Under Bridges in High Density Urban Areas of Chongqing Municipality and Applied Research on Suitability

Authors: Xvelian Qin

Abstract:

Urban "organic renewal" based on the development of existing resources in high-density urban areas has become the mainstream of urban development in the new era. As an important stock resource of public space in high-density urban areas, promoting its value remodeling is an effective way to alleviate the shortage of public space resources. However, due to the lack of evaluation links in the process of underpass space renewal, a large number of underpass space resources have been left idle, facing the problems of low space conversion efficiency, lack of accuracy in development decision-making, and low adaptability of functional positioning to citizens' needs. Therefore, it is of great practical significance to construct the evaluation system of under-bridge space renewal potential and explore the renewal mode. In this paper, some of the under-bridge spaces in the main urban area of Chongqing are selected as the research object. Through the questionnaire interviews with the users of the built excellent space under the bridge, three types of six levels and twenty-two potential evaluation indexes of "objective demand factor, construction feasibility factor and construction suitability factor" are selected, including six levels of land resources, infrastructure, accessibility, safety, space quality and ecological environment. The analytical hierarchy process and expert scoring method are used to determine the index weight, construct the potential evaluation system of the space under the bridge in high-density urban areas of Chongqing, and explore the direction of renewal and utilization of its suitability.

Keywords: space under bridge, potential evaluation, high density urban area, updated using

Procedia PDF Downloads 45
13781 Ponticuli of Atlas Vertebra: A Study in South Coastal Region of Andhra Pradesh

Authors: Hema Lattupalli

Abstract:

Introduction: A bony bridge extends from the lateral mass of the atlas to postero medial margin of vertebral artery groove, termed as a posterior bridge of atlas or posterior ponticulus. The foramen formed by the bridge is called as arcuate foramen or retroarticulare superior. Another bony bridge sometimes extends laterally from lateral mass to posterior root of transverse foramen forming and additional groove for vertebral artery, above and behind foramen transversarium called Lateral bridge or ponticulus lateralis. When both posterior and lateral are present together it is called as Posterolateral ponticuli. Aim and Objectives: The aim of the present study is to detect the presence of such Bridge or Ponticuli called as Lateral, Posterior and Posterolateral reported by earlier investigators in atlas vertebrae. Material and Methods: The study was done on 100 Atlas vertebrae from the Department of Anatomy Narayana Medical College Nellore, and also from SVIMS Tirupati was collected over a period of 2 years. The parameters that were studied include the presence of ponticuli, complete and incomplete and right and left side ponticuli. They were observed for all these parameters and the results were documented and photographed. Results: Ponticuli were observed in 25 (25%) of atlas vertebrae. Posterior ponticuli were found in 16 (16%), Lateral in 01 (01%) and Posterolateral in 08(08%) of the atlas vertebrae. Complete ponticuli were present in 09 (09%) and incomplete ponticuli in 16 (16%) of the atlas vertebrae. Bilateral ponticuli were seen in 10 (10%) and unilateral ponticuli were seen in 15 (15%) of the atlas vertebrae. Right side ponticuli were seen in 04 (04%) and Left side ponticuli in 05 (05%) of the atlas vertebrae respectively. Interpretation and Conclusion: In the present study posterior complete ponticuli were said to be more than the lateral complete ponticuli. The presence of Bilateral Incomplete Posterior ponticuli is higher and also Atlantic ponticuli. The present study is to say that knowledge of normal anatomy and variations in the atlas vertebra is very much essential to the neurosurgeons giving a message that utmost care is needed to perform surgeries related to craniovertebral regions. This is additional information to the Anatomists, Neurosurgeons and Radiologist. This adds an extra page to the literature.

Keywords: atlas vertebra, ponticuli, posterior arch, arcuate foramen

Procedia PDF Downloads 349
13780 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 160
13779 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge

Authors: Heng Han, Zhilei Liang, Xiangong Zhou

Abstract:

In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.

Keywords: suspension bridge, main cable, temperature field, finite element

Procedia PDF Downloads 128
13778 Seismic Retrofit of Existing Bridge Foundations with Micropiles: 3D Finite Element Analysis

Authors: Mohanad Talal Alfach

Abstract:

This paper concerns the seismic behaviour of soil-piles-bridge reinforced by additional micropiles. The analysis carried out by three-dimensional finite element modelling using the FE software ABAQUS. The soil behaviour is assumed to be elastic with Rayleigh damping, while the micropiles are modeled as 3D elastic beam elements. The bridge deck slab was represented by a concentrated mass at the top of the pier column. The interaction between the added micropiles and the existing piles as well as the performance of the retrofitted soil-pile-superstructure system were investigated for different configurations of additional micropiles (number, position, inclination). Numerical simulation results show that additional micropiles constitute an efficient retrofitting solution. Analysis of results also shows that spacing between existing piles and retrofitting micropiles has little effect; while it is observed a substantial improvement (in case of weak piles/micropiles - soil interface) with reducing the inclination angle of retrofitting micropiles.

Keywords: retrofitting, seismic, finite element, micropiles, elastic

Procedia PDF Downloads 125
13777 Experiential Learning for Upholding Entrepreneurship Education: A Case Study from Egypt

Authors: Randa El Bedawy

Abstract:

Exchanging best practices in the scope of entrepreneurship education and the use of experiential learning approaches are growing lately at a very fast pace. Educators should be challenged to promote such a learning approach to bridge the gap between entrepreneurship students and the actual business work environment. The study aims to share best practices, experiences, and knowledge to support entrepreneurship education. The study is exploratory qualitative research based on a case study approach to demonstrate how experiential learning can be used for supporting learning effectiveness in entrepreneurship education through demonstrating a set of fourteen tasks that were used to engage practically the students who were studying a course of entrepreneurship at the American University in Cairo. The study sheds the light on the rational process of using experiential learning to endorse entrepreneurship education through the illustration of each task along with its learning outcomes. The study explores the benefits and obstacles that educators may face when implementing such an experiential approach. The results of the study confirm that developing an experiential learning approach based on constructing a set of well designed practical tasks that complement the overall intended learning outcomes has proven very effective for promoting the students’ learning of entrepreneurship education. However, good preparation for both educators and students is needed primarily to ensure the effective implementation of such an experiential learning approach.

Keywords: business education, entrepreneurship, entrepreneurship education, experiential learning

Procedia PDF Downloads 135
13776 Development of a Value Evaluation Model of Highway Box-Girder Bridge

Authors: Hao Hsi Tseng

Abstract:

Taiwan’s infrastructure is gradually deteriorating, while resources for maintenance and replacement are increasingly limited, raising the urgent need for methods for maintaining existing infrastructure within constrained budgets. Infrastructure value evaluation is used to enhance the efficiency of infrastructure maintenance work, allowing administrators to quickly assess the maintenance needs and performance by observing variation in infrastructure value. This research establishes a value evaluation model for Taiwan’s highway box girder bridges. The operating mechanism and process of the model are illustrated in a practical case.

Keywords: box girder bridge, deterioration, infrastructure, maintenance, value evaluation

Procedia PDF Downloads 165
13775 Selection of Intensity Measure in Probabilistic Seismic Risk Assessment of a Turkish Railway Bridge

Authors: M. F. Yilmaz, B. Ö. Çağlayan

Abstract:

Fragility curve is an effective common used tool to determine the earthquake performance of structural and nonstructural components. Also, it is used to determine the nonlinear behavior of bridges. There are many historical bridges in the Turkish railway network; the earthquake performances of these bridges are needed to be investigated. To derive fragility curve Intensity measures (IMs) and Engineering demand parameters (EDP) are needed to be determined. And the relation between IMs and EDP are needed to be derived. In this study, a typical simply supported steel girder riveted railway bridge is studied. Fragility curves of this bridge are derived by two parameters lognormal distribution. Time history analyses are done for selected 60 real earthquake data to determine the relation between IMs and EDP. Moreover, efficiency, practicality, and sufficiency of three different IMs are discussed. PGA, Sa(0.2s) and Sa(1s), the most common used IMs parameters for fragility curve in the literature, are taken into consideration in terms of efficiency, practicality and sufficiency.

Keywords: railway bridges, earthquake performance, fragility analyses, selection of intensity measures

Procedia PDF Downloads 334
13774 Pushover Analysis of a Typical Bridge Built in Central Zone of Mexico

Authors: Arturo Galvan, Jatziri Y. Moreno-Martinez, Daniel Arroyo-Montoya, Jose M. Gutierrez-Villalobos

Abstract:

Bridges are one of the most seismically vulnerable structures on highway transportation systems. The general process for assessing the seismic vulnerability of a bridge involves the evaluation of its overall capacity and demand. One of the most common procedures to obtain this capacity is by means of pushover analysis of the structure. Typically, the bridge capacity is assessed using non-linear static methods or non-linear dynamic analyses. The non-linear dynamic approaches use step by step numerical solutions for assessing the capacity with the consuming computer time inconvenience. In this study, a nonlinear static analysis (‘pushover analysis’) was performed to predict the collapse mechanism of a typical bridge built in the central zone of Mexico (Celaya, Guanajuato). The bridge superstructure consists of three simple supported spans with a total length of 76 m: 22 m of the length of extreme spans and 32 m of length of the central span. The deck width is of 14 m and the concrete slab depth is of 18 cm. The bridge is built by means of frames of five piers with hollow box-shaped sections. The dimensions of these piers are 7.05 m height and 1.20 m diameter. The numerical model was created using a commercial software considering linear and non-linear elements. In all cases, the piers were represented by frame type elements with geometrical properties obtained from the structural project and construction drawings of the bridge. The deck was modeled with a mesh of rectangular thin shell (plate bending and stretching) finite elements. The moment-curvature analysis was performed for the sections of the piers of the bridge considering in each pier the effect of confined concrete and its reinforcing steel. In this way, plastic hinges were defined on the base of the piers to carry out the pushover analysis. In addition, time history analyses were performed using 19 accelerograms of real earthquakes that have been registered in Guanajuato. In this way, the displacements produced by the bridge were determined. Finally, pushover analysis was applied through the control of displacements in the piers to obtain the overall capacity of the bridge before the failure occurs. It was concluded that the lateral deformation of the piers due to a critical earthquake occurred in this zone is almost imperceptible due to the geometry and reinforcement demanded by the current design standards and compared to its displacement capacity, they were excessive. According to the analysis, it was found that the frames built with five piers increase the rigidity in the transverse direction of the bridge. Hence it is proposed to reduce these frames of five piers to three piers, maintaining the same geometrical characteristics and the same reinforcement in each pier. Also, the mechanical properties of materials (concrete and reinforcing steel) were maintained. Once a pushover analysis was performed considering this configuration, it was concluded that the bridge would continue having a “correct” seismic behavior, at least for the 19 accelerograms considered in this study. In this way, costs in material, construction, time and labor would be reduced in this study case.

Keywords: collapse mechanism, moment-curvature analysis, overall capacity, push-over analysis

Procedia PDF Downloads 128
13773 Investigation of Cost Effective Double Layered Slab for γ-Ray Shielding

Authors: Kulwinder Singh Mann, Manmohan Singh Heer, Asha Rani

Abstract:

The safe storage of radioactive materials has become an important issue. Nuclear engineering necessitates the safe handling of radioactive materials emitting high energy gamma-rays. Hazards involved in handling radioactive materials insist suitable shielded enclosures. With overgrowing use of nuclear energy for meeting the increasing demand of power, there is a need to investigate the shielding behavior of cost effective shielded enclosure (CESE) made from clay-bricks (CB) and fire-bricks (FB). In comparison to the lead-bricks (conventional-shielding), the CESE are the preferred choice in nuclear waste management. The objective behind the present investigation is to evaluate the double layered transmission exposure buildup factors (DLEBF) for gamma-rays for CESE in energy range 0.5-3MeV. For necessary computations of shielding parameters, using existing huge data regarding gamma-rays interaction parameters of all periodic table elements, two computer programs (GRIC-toolkit and BUF-toolkit) have been designed. It has been found that two-layered slabs show effective shielding for gamma-rays in orientation CB followed by FB than the reverse. It has been concluded that the arrangement, FB followed by CB reduces the leakage of scattered gamma-rays from the radioactive source.

Keywords: buildup factor, clay bricks, fire bricks, nuclear wastage management, radiation protective double layered slabs

Procedia PDF Downloads 379
13772 Bridge Members Segmentation Algorithm of Terrestrial Laser Scanner Point Clouds Using Fuzzy Clustering Method

Authors: Donghwan Lee, Gichun Cha, Jooyoung Park, Junkyeong Kim, Seunghee Park

Abstract:

3D shape models of the existing structure are required for many purposes such as safety and operation management. The traditional 3D modeling methods are based on manual or semi-automatic reconstruction from close-range images. It occasions great expense and time consuming. The Terrestrial Laser Scanner (TLS) is a common survey technique to measure quickly and accurately a 3D shape model. This TLS is used to a construction site and cultural heritage management. However there are many limits to process a TLS point cloud, because the raw point cloud is massive volume data. So the capability of carrying out useful analyses is also limited with unstructured 3-D point. Thus, segmentation becomes an essential step whenever grouping of points with common attributes is required. In this paper, members segmentation algorithm was presented to separate a raw point cloud which includes only 3D coordinates. This paper presents a clustering approach based on a fuzzy method for this objective. The Fuzzy C-Means (FCM) is reviewed and used in combination with a similarity-driven cluster merging method. It is applied to the point cloud acquired with Lecia Scan Station C10/C5 at the test bed. The test-bed was a bridge which connects between 1st and 2nd engineering building in Sungkyunkwan University in Korea. It is about 32m long and 2m wide. This bridge was used as pedestrian between two buildings. The 3D point cloud of the test-bed was constructed by a measurement of the TLS. This data was divided by segmentation algorithm for each member. Experimental analyses of the results from the proposed unsupervised segmentation process are shown to be promising. It can be processed to manage configuration each member, because of the segmentation process of point cloud.

Keywords: fuzzy c-means (FCM), point cloud, segmentation, terrestrial laser scanner (TLS)

Procedia PDF Downloads 208
13771 Bridge Health Monitoring: A Review

Authors: Mohammad Bakhshandeh

Abstract:

Structural Health Monitoring (SHM) is a crucial and necessary practice that plays a vital role in ensuring the safety and integrity of critical structures, and in particular, bridges. The continuous monitoring of bridges for signs of damage or degradation through Bridge Health Monitoring (BHM) enables early detection of potential problems, allowing for prompt corrective action to be taken before significant damage occurs. Although all monitoring techniques aim to provide accurate and decisive information regarding the remaining useful life, safety, integrity, and serviceability of bridges, understanding the development and propagation of damage is vital for maintaining uninterrupted bridge operation. Over the years, extensive research has been conducted on BHM methods, and experts in the field have increasingly adopted new methodologies. In this article, we provide a comprehensive exploration of the various BHM approaches, including sensor-based, non-destructive testing (NDT), model-based, and artificial intelligence (AI)-based methods. We also discuss the challenges associated with BHM, including sensor placement and data acquisition, data analysis and interpretation, cost and complexity, and environmental effects, through an extensive review of relevant literature and research studies. Additionally, we examine potential solutions to these challenges and propose future research ideas to address critical gaps in BHM.

Keywords: structural health monitoring (SHM), bridge health monitoring (BHM), sensor-based methods, machine-learning algorithms, and model-based techniques, sensor placement, data acquisition, data analysis

Procedia PDF Downloads 68
13770 Comparison of High Speed Railway Bride Foundation Design

Authors: Hussein Yousif Aziz

Abstract:

This paper discussed the design and analysis of bridge foundation subjected to load of train with three codes, namely AASHTO code, British Standard BS Code 8004 (1986), and Chinese code (TB10002.5-2005).The study focused on the design and analysis of bridge’s foundation manually with the three codes and found which code is better for design and controls the problem of high settlement due to the applied loads. The results showed the Chinese codes are costly that the number of reinforcement bars in the pile cap and piles is more than those with AASHTO code and BS code with the same dimensions. Settlement of the bridge was calculated depending on the data collected from the project site. The vertical ultimate bearing capacity of single pile for three codes is also discussed. Other analyses by using the two-dimensional Plaxis program and other programs like SAP2000 14, PROKON many parameters are calculated. The maximum values of the vertical displacement are close to the calculated ones. The results indicate that the AASHTO code is economics and safer in the bearing capacity of single pile. The purpose of this project is to study out the pier on the basis of the design of the pile foundation. There is a 32m simply supported beam of box section on top of the structure. The pier of bridge is round-type. The main component of the design is to calculate pile foundation and the settlement. According to the related data, we choose 1.0m in diameter bored pile of 48m. The pile is laid out in the rectangular pile cap. The dimension of the cap is 12m 9 m. Because of the interaction factors of pile groups, the load-bearing capacity of simple pile must be checked, the punching resistance of pile cap, the shearing strength of pile cap, and the part in bending of pile cap, all of them are very important to the structure stability. Also, checking soft sub-bearing capacity is necessary under the pile foundation. This project provides a deeper analysis and comparison about pile foundation design schemes. Firstly, here are brief instructions of the construction situation about the Bridge. With the actual construction geological features and the upper load on the Bridge, this paper analyzes the bearing capacity and settlement of single pile. In the paper the Equivalent Pier Method is used to calculate and analyze settlements of the piles.

Keywords: pile foundation, settlement, bearing capacity, civil engineering

Procedia PDF Downloads 392
13769 Reliability Estimation of Bridge Structures with Updated Finite Element Models

Authors: Ekin Ozer

Abstract:

Assessment of structural reliability is essential for efficient use of civil infrastructure which is subjected hazardous events. Dynamic analysis of finite element models is a commonly used tool to simulate structural behavior and estimate its performance accordingly. However, theoretical models purely based on preliminary assumptions and design drawings may deviate from the actual behavior of the structure. This study proposes up-to-date reliability estimation procedures which engages actual bridge vibration data modifying finite element models for finite element model updating and performing reliability estimation, accordingly. The proposed method utilizes vibration response measurements of bridge structures to identify modal parameters, then uses these parameters to calibrate finite element models which are originally based on design drawings. The proposed method does not only show that reliability estimation based on updated models differs from the original models, but also infer that non-updated models may overestimate the structural capacity.

Keywords: earthquake engineering, engineering vibrations, reliability estimation, structural health monitoring

Procedia PDF Downloads 190
13768 Examination of Corrosion Durability Related to Installed Environments of Steel Bridges

Authors: Jin-Hee Ahn, Seok-Hyeon Jeon, Young-Bin Lee, Min-Gyun Ha, Yu-Chan Hong

Abstract:

Corrosion durability of steel bridges can be generally affected by atmospheric environments of bridge installation, since corrosion problem is related to environmental factors such as humidity, temperature, airborne salt, chemical components as SO₂, chlorides, etc. Thus, atmospheric environment condition should be measured to estimate corrosion condition of steel bridges as well as measurement of actual corrosion damage of structural members of steel bridge. Even in the same atmospheric environment, the corrosion environment may be different depending on the installation direction of structural members. In this study, therefore, atmospheric corrosion monitoring was conducted using atmospheric corrosion monitoring sensor, hygrometer, thermometer and airborne salt collection device to examine the corrosion durability of steel bridges. As a target steel bridge for corrosion durability monitoring, a cable-stayed bridge with truss steel members was selected. This cable-stayed bridge was located on the coast to connect the islands with the islands. Especially, atmospheric corrosion monitoring was carried out depending on structural direction of a cable-stayed bridge with truss type girders since it consists of structural members with various directions. For atmospheric corrosion monitoring, daily average electricity (corrosion current) was measured at each monitoring members to evaluate corrosion environments and corrosion level depending on structural members with various direction which have different corrosion environment in the same installed area. To compare corrosion durability connected with monitoring data depending on corrosion monitoring members, monitoring steel plate was additionally installed in same monitoring members. Monitoring steel plates of carbon steel was fabricated with dimension of 60mm width and 3mm thickness. And its surface was cleaned for removing rust on the surface by blasting, and its weight was measured before its installation on each structural members. After a 3 month exposure period on real atmospheric corrosion environment at bridge, surface condition of atmospheric corrosion monitoring sensors and monitoring steel plates were observed for corrosion damage. When severe deterioration of atmospheric corrosion monitoring sensors or corrosion damage of monitoring steel plates were found, they were replaced or collected. From 3month exposure tests in the actual steel bridge with various structural member with various direction, the rust on the surface of monitoring steel plate was found, and the difference in the corrosion rate was found depending on the direction of structural member from their visual inspection. And daily average electricity (corrosion current) was changed depending on the direction of structural member. However, it is difficult to identify the relative differences in corrosion durability of steel structural members using short-term monitoring results. After long exposure tests in this corrosion environments, it can be clearly evaluated the difference in corrosion durability depending on installed conditions of steel bridges. Acknowledgements: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1B03028755).

Keywords: corrosion, atmospheric environments, steel bridge, monitoring

Procedia PDF Downloads 331
13767 Bridge Damage Detection and Stiffness Reduction Using Vibration Data: Experimental Investigation on a Small Scale Steel Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

The design of planning maintenance of civil structures often requires the evaluation of their level of safety in order to be able to choose which structure, and in which measure, it needs a structural retrofit. This work deals with the evaluation of the stiffness reduction of a scaled steel deck due to the presence of localized damages. The dynamic tests performed on it have shown the variability of its main frequencies linked to the gradual reduction of its rigidity. This deck consists in a steel grillage of four secondary beams and three main beams linked to a concrete slab. This steel deck is 6 m long and 3 m wide and it rests on two abutments made of concrete. By processing the signals of the accelerations due to a random excitation of the deck, the main natural frequencies of this bridge have been extracted. In order to assign more reliable parameters to the numerical model of the deck, some load tests have been performed and the mechanical property of the materials and the supports have been obtained. The two external beams have been cut at one third of their length and the structural strength has been restored by the design of a bolted plate. The gradual loss of the bolts and the plates removal have made the simulation of localized damage possible. In order to define the relationship between frequency variation and loss in stiffness, the identification of its natural frequencies has been performed, before and after the occurrence of the damage, corresponding to each step. The study of the relationship between stiffness losses and frequency shifts has been reported in this paper: the square of the frequency variation due to the presence of the damage is proportional to the ratio between the rigidities. This relationship can be used to quantify the loss in stiffness of a real scale bridge in an efficient way.

Keywords: damage detection, dynamic test, frequency shifts, operational modal analysis, steel bridge

Procedia PDF Downloads 140
13766 Culture and Commodification: A Study of William Gibson's the Bridge Trilogy

Authors: Aruna Bhat

Abstract:

Culture can be placed within the social structure that embodies both the creation of social groups, and the manner in which they interact with each other. As many critics have pointed out, culture in the Postmodern context has often been considered a commodity, and indeed it shares many attributes with commercial products. Popular culture follows many patterns of behavior derived from Economics, from the simple principle of supply and demand, to the creation of marketable demographics which fit certain criterion. This trend is exemplary visible in contemporary fiction, especially in contemporary science fiction; Cyberpunk fiction in particular which is an off shoot of pure science fiction. William Gibson is one such author who in his works portrays such a scenario, and in his The Bridge Trilogy he adds another level of interpretation to this state of affairs, by describing a world that is centered on industrialization of a new kind – that focuses around data in the cyberspace. In this new world, data has become the most important commodity, and man has become nothing but a nodal point in a vast ocean of raw data resulting into commodification of each thing including Culture. This paper will attempt to study the presence of above mentioned elements in William Gibson’s The Bridge Trilogy. The theories applied will be Postmodernism and Cultural studies.

Keywords: culture, commodity, cyberpunk, data, postmodern

Procedia PDF Downloads 473