Search results for: algebraic geometric imaging approach
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15080

Search results for: algebraic geometric imaging approach

14900 Procedure to Use Quantitative Bone-Specific SPECT/CT in North Karelia Central Hospital

Authors: L. Korpinen, P. Taskinen, P. Rautio

Abstract:

This study aimed to describe procedures that we developed to use in the quantitative, bone-specific SPECT/CT at our hospital. Our procedures included the following questions for choosing imaging protocols, which were based on a clinical doctor's referral: (1) Is she/he a cancer patient or not? (2) Are there any indications of inflammatory rheumatoid arthritis? We performed about 1,106 skeletal scintigraphies over two years. About 394 patients were studied with quantitative bone-specific single-photon emission computed tomography/computerized tomography (SPECT/CT) (i.e., about 36% of all bone scintigraphies). Approximately 64% of the patients were studied using the conventional Anterior-Posterior/Posterior-Anterior imaging. Our procedure has improved efficiency and decreased cycle times.

Keywords: skeletal scintigraphy, SPECT/CT, imaging, procedure

Procedia PDF Downloads 139
14899 Theoretical Analysis of Mechanical Vibration for Offshore Platform Structures

Authors: Saeed Asiri, Yousuf Z. AL-Zahrani

Abstract:

A new class of support structures, called periodic structures, is introduced in this paper as a viable means for isolating the vibration transmitted from the sea waves to offshore platform structures through its legs. A passive approach to reduce transmitted vibration generated by waves is presented. The approach utilizes the property of periodic structural components that creates stop and pass bands. The stop band regions can be tailored to correspond to regions of the frequency spectra that contain harmonics of the wave frequency, attenuating the response in those regions. A periodic structural component is comprised of a repeating array of cells, which are themselves an assembly of elements. The elements may have differing material properties as well as geometric variations. For the purpose of this research, only geometric and material variations are considered and each cell is assumed to be identical. A periodic leg is designed in order to reduce transmitted vibration of sea waves. The effectiveness of the periodicity on the vibration levels of platform will be demonstrated theoretically. The theory governing the operation of this class of periodic structures is introduced using the transfer matrix method. The unique filtering characteristics of periodic structures are demonstrated as functions of their design parameters for structures with geometrical and material discontinuities; and determine the propagation factor by using the spectral finite element analysis and the effectiveness of design on the leg structure by changing the ratio of step length and area interface between the materials is demonstrated in order to find the propagation factor and frequency response.

Keywords: vibrations, periodic structures, offshore, platforms, transfer matrix method

Procedia PDF Downloads 277
14898 Research on Carbon Fiber Tow Spreading Technique with Multi-Rolls

Authors: Soon Ok Jo, Han Kyu Jeung, Si Woo Park

Abstract:

With the process of consistent expansion of carbon fiber in width (Carbon Fiber Tow Spreading Technique), it can be expected that such process can enhance the production of carbon fiber reinforced composite material and quality of the product. In this research, the method of mechanically expanding carbon fiber and increasing its width was investigated by using various geometric rolls. In addition, experimental type of carbon fiber expansion device was developed and tested using 12K carbon fiber. As a result, the effects of expansion of such fiber under optimized operating conditions and geometric structure of an elliptical roll, were analyzed.

Keywords: carbon fiber, tow spreading fiber, pre-preg, roll structure

Procedia PDF Downloads 334
14897 Parametrical Simulation of Sheet Metal Forming Process to Control the Localized Thinning

Authors: Hatem Mrad, Alban Notin, Mohamed Bouazara

Abstract:

Sheet metal forming process has a multiple successive steps starting from sheets fixation to sheets evacuation. Often after forming operation, the sheet has defects requiring additional corrections steps. For example, in the drawing process, the formed sheet may have several defects such as springback, localized thinning and bends. All these defects are directly dependent on process, geometric and material parameters. The prediction and elimination of these defects requires the control of most sensitive parameters. The present study is concerned with a reliable parametric study of deep forming process in order to control the localized thinning. The proposed approach will be based on stochastic finite element method. Especially, the polynomial Chaos development will be used to establish a reliable relationship between input (process, geometric and material parameters) and output variables (sheet thickness). The commercial software Abaqus is used to conduct numerical finite elements simulations. The automatized parametrical modification is provided by coupling a FORTRAN routine, a PYTHON script and input Abaqus files.

Keywords: sheet metal forming, reliability, localized thinning, parametric simulation

Procedia PDF Downloads 407
14896 Small Fixed-Wing UAV Physical Based Modeling, Simulation, and Validation

Authors: Ebrahim H. Kapeel, Ehab Safwat, Hossam Hendy, Ahmed M. Kamel, Yehia Z. Elhalwagy

Abstract:

Motivated by the problem of the availability of high-fidelity flight simulation models for small unmanned aerial vehicles (UAVs). This paper focuses on the geometric-mass inertia modeling and the actuation system modeling for the small fixed-wing UAVs. The UAV geometric parameters for the body, wing, horizontal and vertical tail are physically measured. Pendulum experiment with high-grade sensors and data analysis using MATLAB is used to estimate the airplane moment of inertia (MOI) model. Finally, UAV’s actuation system is modeled by estimating each servo transfer function by using the system identification, which uses experimental measurement for input and output angles through using field-programmable gate array (FPGA). Experimental results for the designed models are given to illustrate the effectiveness of the methodology. It also gives a very promising result to finalize the open-loop flight simulation model through modeling the propulsion system and the aerodynamic system.

Keywords: unmanned aerial vehicle, geometric-mass inertia model, system identification, Simulink

Procedia PDF Downloads 166
14895 A Study of Families of Bistar and Corona Product of Graph: Reverse Topological Indices

Authors: Gowtham Kalkere Jayanna, Mohamad Nazri Husin

Abstract:

Graph theory, chemistry, and technology are all combined in cheminformatics. The structure and physiochemical properties of organic substances are linked using some useful graph invariants and the corresponding molecular graph. In this paper, we study specific reverse topological indices such as the reverse sum-connectivity index, the reverse Zagreb index, the reverse arithmetic-geometric, and the geometric-arithmetic, the reverse Sombor, the reverse Nirmala indices for the bistar graphs B (n: m) and the corona product Kₘ∘Kₙ', where Kₙ' Represent the complement of a complete graph Kₙ.

Keywords: reverse topological indices, bistar graph, the corona product, graph

Procedia PDF Downloads 85
14894 Immobilized Iron Oxide Nanoparticles for Stem Cell Reconstruction in Magnetic Particle Imaging

Authors: Kolja Them, Johannes Salamon, Harald Ittrich, Michael Kaul, Tobias Knopp

Abstract:

Superparamagnetic iron oxide nanoparticles (SPIONs) are nanoscale magnets which can be biologically functionalized for biomedical applications. Stem cell therapies to repair damaged tissue, magnetic fluid hyperthermia for cancer therapy and targeted drug delivery based on SPIONs are prominent examples where the visualization of a preferably low concentrated SPION distribution is essential. In 2005 a new method for tomographic SPION imaging has been introduced. The method named magnetic particle imaging (MPI) takes advantage of the nanoparticles magnetization change caused by an oscillating, external magnetic field and allows to directly image the time-dependent nanoparticle distribution. The SPION magnetization can be changed by the electron spin dynamics as well as by a mechanical rotation of the nanoparticle. In this work different calibration methods in MPI are investigated for image reconstruction of magnetically labeled stem cells. It is shown that a calibration using rotationally immobilized SPIONs provides a higher quality of stem cell images with fewer artifacts than a calibration using mobile SPIONs. The enhancement of the image quality and the reduction of artifacts enables the localization and identification of a smaller number of magnetically labeled stem cells. This is important for future medical applications where low concentrations of functionalized SPIONs interacting with biological matter have to be localized.

Keywords: biomedical imaging, iron oxide nanoparticles, magnetic particle imaging, stem cell imaging

Procedia PDF Downloads 449
14893 Numerical Solution of Space Fractional Order Linear/Nonlinear Reaction-Advection Diffusion Equation Using Jacobi Polynomial

Authors: Shubham Jaiswal

Abstract:

During modelling of many physical problems and engineering processes, fractional calculus plays an important role. Those are greatly described by fractional differential equations (FDEs). So a reliable and efficient technique to solve such types of FDEs is needed. In this article, a numerical solution of a class of fractional differential equations namely space fractional order reaction-advection dispersion equations subject to initial and boundary conditions is derived. In the proposed approach shifted Jacobi polynomials are used to approximate the solutions together with shifted Jacobi operational matrix of fractional order and spectral collocation method. The main advantage of this approach is that it converts such problems in the systems of algebraic equations which are easier to be solved. The proposed approach is effective to solve the linear as well as non-linear FDEs. To show the reliability, validity and high accuracy of proposed approach, the numerical results of some illustrative examples are reported, which are compared with the existing analytical results already reported in the literature. The error analysis for each case exhibited through graphs and tables confirms the exponential convergence rate of the proposed method.

Keywords: space fractional order linear/nonlinear reaction-advection diffusion equation, shifted Jacobi polynomials, operational matrix, collocation method, Caputo derivative

Procedia PDF Downloads 434
14892 Radio-Frequency Technologies for Sensing and Imaging

Authors: Cam Nguyen

Abstract:

Rapid, accurate, and safe sensing and imaging of physical quantities or structures finds many applications and is of significant interest to society. Sensing and imaging using radio-frequency (RF) techniques, particularly, has gone through significant development and subsequently established itself as a unique territory in the sensing world. RF sensing and imaging has played a critical role in providing us many sensing and imaging abilities beyond our human capabilities, benefiting both civilian and military applications - for example, from sensing abnormal conditions underneath some structures’ surfaces to detection and classification of concealed items, hidden activities, and buried objects. We present the developments of several sensing and imaging systems implementing RF technologies like ultra-wide band (UWB), synthetic-pulse, and interferometry. These systems are fabricated completely using RF integrated circuits. The UWB impulse system operates over multiple pulse durations from 450 to 1170 ps with 5.5-GHz RF bandwidth. It performs well through tests of various samples, demonstrating its usefulness for subsurface sensing. The synthetic-pulse system operating from 0.6 to 5.6 GHz can assess accurately subsurface structures. The synthetic-pulse system operating from 29.72-37.7 GHz demonstrates abilities for various surface and near-surface sensing such as profile mapping, liquid-level monitoring, and anti-personnel mine locating. The interferometric system operating at 35.6 GHz demonstrates its multi-functional capability for measurement of displacements and slow velocities. These RF sensors are attractive and useful for various surface and subsurface sensing applications. This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: RF sensors, radars, surface sensing, subsurface sensing

Procedia PDF Downloads 300
14891 Synthesis and Surface Engineering of Lanthanide Nanoparticles for NIR Luminescence Imaging and Photodynamic Therapy

Authors: Syue-Liang Lin, C. Allen Chang

Abstract:

Luminescence imaging is an important technique used in biomedical research and clinical diagnostic applications in recent years. Concurrently, the development of NIR luminescence probes / imaging contrast agents has helped the understanding of the structural and functional properties of cells and animals. Photodynamic therapy (PDT) is used clinically to treat a wide range of medical conditions, but the therapeutic efficacy of general PDT for deeper tumor was limited by the penetration of excitation source. The tumor targeting biomedical nanomaterials UCNP@PS (upconversion nanoparticle conjugated with photosensitizer) for photodynamic therapy and near-infrared imaging of cancer will be developed in our study. Synthesis and characterization of biomedical nanomaterials were completed in this studies. The spectrum of UCNP was characterized by photoluminescence spectroscopy and the morphology was characterized by Transmission Electron Microscope (TEM). TEM and XRD analyses indicated that these nanoparticles are about 20~50 nm with hexagonal phase. NaYF₄:Ln³⁺ (Ln= Yb, Nd, Er) upconversion nanoparticles (UCNPs) with core / shell structure, synthesized by thermal decomposition method in 300°C, have the ability to emit visible light (upconversion: 540 nm, 660 nm) and near-infrared with longer wavelength (downconversion: NIR: 980 nm, 1525 nm) by absorbing 800 nm NIR laser. The information obtained from these studies would be very useful for applications of these nanomaterials for bio-luminescence imaging and photodynamic therapy of deep tumor tissue in the future.

Keywords: Near Infrared (NIR), lanthanide, core-shell structure, upconversion, theranostics

Procedia PDF Downloads 226
14890 Aeroelastic Analysis of Engine Nacelle Strake Considering Geometric Nonlinear Behavior

Authors: N. Manoj

Abstract:

The aeroelastic behavior of engine nacelle strake when subjected to unsteady aerodynamic flows is investigated in this paper. Geometric nonlinear characteristics and modal parameters of nacelle strake are studied when it is under dynamic loading condition. Here, an N-S based Finite Volume solver is coupled with Finite Element (FE) based nonlinear structural solver to investigate the nonlinear characteristics of nacelle strake over a range of dynamic pressures at various phases of flight like takeoff, climb, and cruise conditions. The combination of high fidelity models for both aerodynamics and structural dynamics is used to predict the nonlinearities of strake (chine). The methodology adopted for present aeroelastic analysis is partitioned-based time domain coupled CFD and CSD solvers and it is validated by the consideration of experimental and numerical comparison of aeroelastic data for a cropped delta wing model which has a proven record. The present strake geometry is derived from theoretical formulation. The amplitude and frequency obtained from the coupled solver at various dynamic pressures is discussed, which gives a better understanding of its impact on aerodynamic design-sizing of strake.

Keywords: aeroelasticity, finite volume, geometric nonlinearity, limit cycle oscillations, strake

Procedia PDF Downloads 279
14889 Parametric Estimation of U-Turn Vehicles

Authors: Yonas Masresha Aymeku

Abstract:

The purpose of capacity modelling at U-turns is to develop a relationship between capacity and its geometric characteristics. In fact, the few models available for the estimation of capacity at different transportation facilities do not provide specific guidelines for median openings. For this reason, an effort is made to estimate the capacity by collecting the data sets from median openings at different lane roads in Hyderabad City, India. Wide difference (43% -59%) among the capacity values estimated by the existing models shows the limitation to consider for mixed traffic situations. Thus, a distinct model is proposed for the estimation of the capacity of U-turn vehicles at median openings considering mixed traffic conditions, which would further prompt to investigate the effect of different factors that might affect the capacity.

Keywords: geometric, guiddelines, median, vehicles

Procedia PDF Downloads 50
14888 On the Cyclic Property of Groups of Prime Order

Authors: Ying Yi Wu

Abstract:

The study of finite groups is a central topic in algebraic structures, and one of the most fundamental questions in this field is the classification of finite groups up to isomorphism. In this paper, we investigate the cyclic property of groups of prime order, which is a crucial result in the classification of finite abelian groups. We prove the following statement: If p is a prime, then every group G of order p is cyclic. Our proof utilizes the properties of group actions and the class equation, which provide a powerful tool for studying the structure of finite groups. In particular, we first show that any non-identity element of G generates a cyclic subgroup of G. Then, we establish the existence of an element of order p, which implies that G is generated by a single element. Finally, we demonstrate that any two generators of G are conjugate, which shows that G is a cyclic group. Our result has significant implications in the classification of finite groups, as it implies that any group of prime order is isomorphic to the cyclic group of the same order. Moreover, it provides a useful tool for understanding the structure of more complicated finite groups, as any finite abelian group can be decomposed into a direct product of cyclic groups. Our proof technique can also be extended to other areas of group theory, such as the classification of finite p-groups, where p is a prime. Therefore, our work has implications beyond the specific result we prove and can contribute to further research in algebraic structures.

Keywords: group theory, finite groups, cyclic groups, prime order, classification.

Procedia PDF Downloads 76
14887 A Numerical Computational Method of MRI Static Magnetic Field for an Ergonomic Facility Design Guidelines

Authors: Sherine Farrag

Abstract:

Magnetic resonance imaging (MRI) presents safety hazards, with the general physical environment. The principal hazard of the MRI is the presence of static magnetic fields. Proper architectural design of MRI’s room ensure environment and health care staff safety. This research paper presents an easy approach for numerical computation of fringe static magnetic fields. Iso-gauss line of different MR intensities (0.3, 0.5, 1, 1.5 Tesla) was mapped and a polynomial function of the 7th degree was generated and tested. Matlab script was successfully applied for MRI SMF mapping. This method can be valid for any kind of commercial scanner because it requires only the knowledge of the MR scanner room map with iso-gauss lines. Results help to develop guidelines to guide healthcare architects to design of a safer Magnetic resonance imaging suite.

Keywords: designing MRI suite, MRI safety, radiology occupational exposure, static magnetic fields

Procedia PDF Downloads 477
14886 Use of a Laparoscopic Approach in Urgent Adhesive Small Bowel Obstructions

Authors: Nuhi Arslani, Aleks Brumec

Abstract:

Adhesive small bowel obstruction (ASBO) accounts for 20% of emergency surgical procedures and intraabdominal adhesions account for 65% of such cases. In a 10-year post-operative period of abdominal surgery patients, around 35% of them will be readmitted because of ASBO. The first step in approaching ASBOs is using the Bologna guidelines, which include a thorough initial evaluation to diagnose or rule out an ASBO and then proceed with either further imaging studies or emergency surgery, which can be either open or laparoscopic. The contraindications for a laparoscopic approach include hemodynamic instability of the patient and infections in the peritoneum or port sites. Studies have shown that a laparoscopic approach to adhesiolysis is linked with a significantly smaller risk of readmissions and reoperations as well as with faster recovery time and fewer postoperative infections, but has a higher risk of bowel injuries, so a careful selection of patients is required. Although studies favor a laparoscopic approach, many countries still prefer a laparotomy, often because a laparoscopic approach requires surgeons to be highly skilled in the procedure. In the US and UK, between 50 and 60% of surgeons would approach an ASBO with laparoscopy, while in Italy, this number is around 15% and it is most likely similar in Slovenia. We believe that in the right cases and in the right patients, a laparoscopic approach can be equally feasible for treating ASBOs and is associated with fewer intraoperative and postoperative complications.

Keywords: adhesive small bowel obstruction, laparoscopy, adhesions, adhesiolysis

Procedia PDF Downloads 78
14885 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Ima, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know growth rate of brain tumors before surgery because it influences treatment planning including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without administration of contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients and WHO grade 4 in 2 patients), meningioma WHO grade1 in 2 patients and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW-signals than that in low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW-signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 128
14884 Network Conditioning and Transfer Learning for Peripheral Nerve Segmentation in Ultrasound Images

Authors: Harold Mauricio Díaz-Vargas, Cristian Alfonso Jimenez-Castaño, David Augusto Cárdenas-Peña, Guillermo Alberto Ortiz-Gómez, Alvaro Angel Orozco-Gutierrez

Abstract:

Precise identification of the nerves is a crucial task performed by anesthesiologists for an effective Peripheral Nerve Blocking (PNB). Now, anesthesiologists use ultrasound imaging equipment to guide the PNB and detect nervous structures. However, visual identification of the nerves from ultrasound images is difficult, even for trained specialists, due to artifacts and low contrast. The recent advances in deep learning make neural networks a potential tool for accurate nerve segmentation systems, so addressing the above issues from raw data. The most widely spread U-Net network yields pixel-by-pixel segmentation by encoding the input image and decoding the attained feature vector into a semantic image. This work proposes a conditioning approach and encoder pre-training to enhance the nerve segmentation of traditional U-Nets. Conditioning is achieved by the one-hot encoding of the kind of target nerve a the network input, while the pre-training considers five well-known deep networks for image classification. The proposed approach is tested in a collection of 619 US images, where the best C-UNet architecture yields an 81% Dice coefficient, outperforming the 74% of the best traditional U-Net. Results prove that pre-trained models with the conditional approach outperform their equivalent baseline by supporting learning new features and enriching the discriminant capability of the tested networks.

Keywords: nerve segmentation, U-Net, deep learning, ultrasound imaging, peripheral nerve blocking

Procedia PDF Downloads 89
14883 Clinical Applications of Amide Proton Transfer Magnetic Resonance Imaging: Detection of Brain Tumor Proliferative Activity

Authors: Fumihiro Imai, Shinichi Watanabe, Shingo Maeda, Haruna Imai, Hiroki Niimi

Abstract:

It is important to know the growth rate of brain tumors before surgery because it influences treatment planning, including not only surgical resection strategy but also adjuvant therapy after surgery. Amide proton transfer (APT) imaging is an emerging molecular magnetic resonance imaging (MRI) technique based on chemical exchange saturation transfer without the administration of a contrast medium. The underlying assumption in APT imaging of tumors is that there is a close relationship between the proliferative activity of the tumor and mobile protein synthesis. We aimed to evaluate the diagnostic performance of APT imaging of pre-and post-treatment brain tumors. Ten patients with brain tumor underwent conventional and APT-weighted sequences on a 3.0 Tesla MRI before clinical intervention. The maximum and the minimum APT-weighted signals (APTWmax and APTWmin) in each solid tumor region were obtained and compared before and after a clinical intervention. All surgical specimens were examined for histopathological diagnosis. Eight of ten patients underwent adjuvant therapy after surgery. Histopathological diagnosis was glioma in 7 patients (WHO grade 2 in 2 patients, WHO grade 3 in 3 patients, and WHO grade 4 in 2 patients), meningioma WHO grade 1 in 2 patients, and primary lymphoma of the brain in 1 patient. High-grade gliomas showed significantly higher APTW signals than that low-grade gliomas. APTWmax in one huge parasagittal meningioma infiltrating into the skull bone was higher than that in glioma WHO grade 4. On the other hand, APTWmax in another convexity meningioma was the same as that in glioma WHO grade 3. Diagnosis of primary lymphoma of the brain was possible with APT imaging before pathological confirmation. APTW signals in residual tumors decreased dramatically within one year after adjuvant therapy in all patients. APT imaging demonstrated excellent diagnostic performance for the planning of surgery and adjuvant therapy of brain tumors.

Keywords: amides, magnetic resonance imaging, brain tumors, cell proliferation

Procedia PDF Downloads 77
14882 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 310
14881 Irradion: Portable Small Animal Imaging and Irradiation Unit

Authors: Josef Uher, Jana Boháčová, Richard Kadeřábek

Abstract:

In this paper, we present a multi-robot imaging and irradiation research platform referred to as Irradion, with full capabilities of portable arbitrary path computed tomography (CT). Irradion is an imaging and irradiation unit entirely based on robotic arms for research on cancer treatment with ion beams on small animals (mice or rats). The platform comprises two subsystems that combine several imaging modalities, such as 2D X-ray imaging, CT, and particle tracking, with precise positioning of a small animal for imaging and irradiation. Computed Tomography: The CT subsystem of the Irradion platform is equipped with two 6-joint robotic arms that position a photon counting detector and an X-ray tube independently and freely around the scanned specimen and allow image acquisition utilizing computed tomography. Irradiation measures nearly all conventional 2D and 3D trajectories of X-ray imaging with precisely calibrated and repeatable geometrical accuracy leading to a spatial resolution of up to 50 µm. In addition, the photon counting detectors allow X-ray photon energy discrimination, which can suppress scattered radiation, thus improving image contrast. It can also measure absorption spectra and recognize different materials (tissue) types. X-ray video recording and real-time imaging options can be applied for studies of dynamic processes, including in vivo specimens. Moreover, Irradion opens the door to exploring new 2D and 3D X-ray imaging approaches. We demonstrate in this publication various novel scan trajectories and their benefits. Proton Imaging and Particle Tracking: The Irradion platform allows combining several imaging modules with any required number of robots. The proton tracking module comprises another two robots, each holding particle tracking detectors with position, energy, and time-sensitive sensors Timepix3. Timepix3 detectors can track particles entering and exiting the specimen and allow accurate guiding of photon/ion beams for irradiation. In addition, quantifying the energy losses before and after the specimen brings essential information for precise irradiation planning and verification. Work on the small animal research platform Irradion involved advanced software and hardware development that will offer researchers a novel way to investigate new approaches in (i) radiotherapy, (ii) spectral CT, (iii) arbitrary path CT, (iv) particle tracking. The robotic platform for imaging and radiation research developed for the project is an entirely new product on the market. Preclinical research systems with precision robotic irradiation with photon/ion beams combined with multimodality high-resolution imaging do not exist currently. The researched technology can potentially cause a significant leap forward compared to the current, first-generation primary devices.

Keywords: arbitrary path CT, robotic CT, modular, multi-robot, small animal imaging

Procedia PDF Downloads 77
14880 Optimizing Detection Methods for THz Bio-imaging Applications

Authors: C. Bolakis, I. S. Karanasiou, D. Grbovic, G. Karunasiri, N. Uzunoglu

Abstract:

A new approach for efficient detection of THz radiation in biomedical imaging applications is proposed. A double-layered absorber consisting of a 32 nm thick aluminum (Al) metallic layer, located on a glass medium (SiO2) of 1 mm thickness, was fabricated and used to design a fine-tuned absorber through a theoretical and finite element modeling process. The results indicate that the proposed low-cost, double-layered absorber can be tuned based on the metal layer sheet resistance and the thickness of various glass media taking advantage of the diversity of the absorption of the metal films in the desired THz domain (6 to 10 THz). It was found that the composite absorber could absorb up to 86% (a percentage exceeding the 50%, previously shown to be the highest achievable when using single thin metal layer) and reflect less than 1% of the incident THz power. This approach will enable monitoring of the transmission coefficient (THz transmission ‘’fingerprint’’) of the biosample with high accuracy, while also making the proposed double-layered absorber a good candidate for a microbolometer pixel’s active element. Based on the aforementioned promising results, a more sophisticated and effective double-layered absorber is under development. The glass medium has been substituted by diluted poly-si and the results were twofold: An absorption factor of 96% was reached and high TCR properties acquired. In addition, a generalization of these results and properties over the active frequency spectrum was achieved. Specifically, through the development of a theoretical equation having as input any arbitrary frequency in the IR spectrum (0.3 to 405.4 THz) and as output the appropriate thickness of the poly-si medium, the double-layered absorber retains the ability to absorb the 96% and reflects less than 1% of the incident power. As a result, through that post-optimization process and the spread spectrum frequency adjustment, the microbolometer detector efficiency could be further improved.

Keywords: bio-imaging, fine-tuned absorber, fingerprint, microbolometer

Procedia PDF Downloads 335
14879 Real-Time Observation of Concentration Distribution for Mix Liquids including Water in Micro Fluid Channel with Near-Infrared Spectroscopic Imaging Method

Authors: Hiroki Takiguchi, Masahiro Furuya, Takahiro Arai

Abstract:

In order to quantitatively comprehend thermal flow for some industrial applications such as nuclear and chemical reactors, detailed measurements for temperature and abundance (concentration) of materials at high temporal and spatial resolution are required. Additionally, rigorous evaluation of the size effect is also important for practical realization. This paper introduces a real-time spectroscopic imaging method in micro scale field, which visualizes temperature and concentration distribution of a liquid or mix liquids with near-infrared (NIR) wavelength region. This imaging principle is based on absorption of pre-selected narrow band from absorption spectrum peak or its dependence property of target liquid in NIR region. For example, water has a positive temperature sensitivity in the wavelength at 1905 nm, therefore the temperature of water can be measured using the wavelength band. In the experiment, the real-time imaging observation of concentration distribution in micro channel was demonstrated to investigate the applicability of micro-scale diffusion coefficient and temperature measurement technique using this proposed method. The effect of thermal diffusion and binary mutual diffusion was evaluated with the time-series visualizations of concentration distribution.

Keywords: near-infrared spectroscopic imaging, micro fluid channel, concentration distribution, diffusion phenomenon

Procedia PDF Downloads 150
14878 Improvement of Cross Range Resolution in Through Wall Radar Imaging Using Bilateral Backprojection

Authors: Rashmi Yadawad, Disha Narayanan, Ravi Gautam

Abstract:

Through Wall Radar Imaging is gaining increasing importance now a days in the field of Defense and one of the most important criteria that forms the basis for the image quality obtained is the Cross-Range resolution of the image. In this research paper, the Bilateral Back projection algorithm has been implemented for Through Wall Radar Imaging. The sole purpose is to enhance the resolution in the cross range direction of the obtained Back projection image. Synthetic Data is generated for two targets which are placed at various locations in a room of dimensions 8 m by 6m. Two algorithms namely, simple back projection and Bilateral Back projection have been implemented, images are obtained and the obtained images are compared. Numerical simulations have been coded in MATLAB and experimental results of the two algorithms have been shown. Based on the comparison between the two images, it can be clearly seen that the ringing effect and chess board effect have been heavily reduced in the bilaterally back projected image and hence promising results are obtained giving a relatively sharper image with relatively well defined edges.

Keywords: through wall radar imaging, bilateral back projection, cross range resolution, synthetic data

Procedia PDF Downloads 328
14877 Review of Ultrasound Image Processing Techniques for Speckle Noise Reduction

Authors: Kwazikwenkosi Sikhakhane, Suvendi Rimer, Mpho Gololo, Khmaies Oahada, Adnan Abu-Mahfouz

Abstract:

Medical ultrasound imaging is a crucial diagnostic technique due to its affordability and non-invasiveness compared to other imaging methods. However, the presence of speckle noise, which is a form of multiplicative noise, poses a significant obstacle to obtaining clear and accurate images in ultrasound imaging. Speckle noise reduces image quality by decreasing contrast, resolution, and signal-to-noise ratio (SNR). This makes it difficult for medical professionals to interpret ultrasound images accurately. To address this issue, various techniques have been developed to reduce speckle noise in ultrasound images, which improves image quality. This paper aims to review some of these techniques, highlighting the advantages and disadvantages of each algorithm and identifying the scenarios in which they work most effectively.

Keywords: image processing, noise, speckle, ultrasound

Procedia PDF Downloads 90
14876 Impact of 99mTc-MDP Bone SPECT/CT Imaging in Failed Back Surgery Syndrome

Authors: Ching-Yuan Chen, Lung-Kwang Pan

Abstract:

Objective: Back pain is a major health problem costing billions of health budgets annually in Taiwan. Thousands of back pain surgeries are performed annually with up to 40% of patients complaining of back pain at time of post-surgery causing failed back surgery syndrome (FBSS), although diagnosis in these patients may be complex. The aim of study is to assess the feasibility of using bone SPECT-CT imaging to localize the active lesions causing persistent, recurrent or new backache after spine surgery. Materials and Methods: Bone SPECT-CT imaging was performed after the intravenous injection of 20 mCi of 99mTc-MDP for all the patients with diagnosis of FBSS. Patients were evaluated using status of subjectively pain relief, functional improvement and degree of satisfaction by reviewing the medical records and questionnaires in a 2 more years’ follow-up. Results: We enrolled a total of 16 patients were surveyed in our hospital from Jan. 2015 to Dec. 2016. Four people on SPEC/CT imaging ensured significant lesions were undergone a revised surgery (surgical treatment group). The mean visual analogue scale (VAS) decreased 5.3 points and mean Oswestry disability index (ODI) improved 38 points in the surgical group. The remaining 12 on SPECT/CT imaging were diagnosed as no significant lesions then received drug treatment (medical treatment group). The mean VAS only decreased 2 .1 point and mean ODI improved 12.6 points in the medical treatment group. In the posttherapeutic evaluation, the pain of the surgical treatment group showed a satisfactory improvement. In the medical treatment group, 10 of the 12 were also satisfied with the symptom relief while the other 2 did not improve significantly. Conclusions: Findings on SPECT-CT imaging appears to be easily explained the patients' pain. We recommended that SPECT/CT imaging was a feasible and useful clinical tool to improve diagnostic confidence or specificity when evaluating patients with FBSS.

Keywords: failed back surgery syndrome, oswestry disability index, SPECT-CT imaging, 99mTc-MDP, visual analogue scale

Procedia PDF Downloads 158
14875 Effect of Delay on Supply Side on Market Behavior: A System Dynamic Approach

Authors: M. Khoshab, M. J. Sedigh

Abstract:

Dynamic systems, which in mathematical point of view are those governed by differential equations, are much more difficult to study and to predict their behavior in comparison with static systems which are governed by algebraic equations. Economical systems such as market are among complicated dynamic systems. This paper tries to adopt a very simple mathematical model for market and to study effect of supply and demand function on behavior of the market while the supply side experiences a lag due to production restrictions.

Keywords: dynamic system, lag on supply demand, market stability, supply demand model

Procedia PDF Downloads 285
14874 Gadolinium-Based Polymer Nanostructures as Magnetic Resonance Imaging Contrast Agents

Authors: Franca De Sarno, Alfonso Maria Ponsiglione, Enza Torino

Abstract:

Recent advances in diagnostic imaging technology have significantly contributed to a better understanding of specific changes associated with diseases progression. Among different imaging modalities, Magnetic Resonance Imaging (MRI) represents a noninvasive medical diagnostic technique, which shows low sensitivity and long acquisition time and it can discriminate between healthy and diseased tissues by providing 3D data. In order to improve the enhancement of MRI signals, some imaging exams require intravenous administration of contrast agents (CAs). Recently, emerging research reports a progressive deposition of these drugs, in particular, gadolinium-based contrast agents (GBCAs), in the body many years after multiple MRI scans. These discoveries confirm the need to have a biocompatible system able to boost a clinical relevant Gd-chelate. To this aim, several approaches based on engineered nanostructures have been proposed to overcome the common limitations of conventional CAs, such as the insufficient signal-to-noise ratios due to relaxivity and poor safety profile. In particular, nanocarriers, labeling or loading with CAs, capable of carrying high payloads of CAs have been developed. Currently, there’s no a comprehensive understanding of the thermodynamic contributions enable of boosting the efficacy of conventional CAs by using biopolymers matrix. Thus, considering the importance of MRI in diagnosing diseases, here it is reported a successful example of the next generation of these drugs where the commercial gadolinium chelate is incorporate into a biopolymer nanostructure, formed by cross-linked hyaluronic acid (HA), with improved relaxation properties. In addition, they are highlighted the basic principles ruling biopolymer-CA interactions in the perspective of their influence on the relaxometric properties of the CA by adopting a multidisciplinary experimental approach. On the basis of these discoveries, it is clear that the main point consists in increasing the rigidification of readily-available Gd-CAs within the biopolymer matrix by controlling the water dynamics, the physicochemical interactions, and the polymer conformations. In the end, the acquired knowledge about polymer-CA systems has been applied to develop of Gd-based HA nanoparticles with enhanced relaxometric properties.

Keywords: biopolymers, MRI, nanoparticles, contrast agent

Procedia PDF Downloads 143
14873 A Fuzzy Approach to Liver Tumor Segmentation with Zernike Moments

Authors: Abder-Rahman Ali, Antoine Vacavant, Manuel Grand-Brochier, Adélaïde Albouy-Kissi, Jean-Yves Boire

Abstract:

In this paper, we present a new segmentation approach for liver lesions in regions of interest within MRI (Magnetic Resonance Imaging). This approach, based on a two-cluster Fuzzy C-Means methodology, considers the parameter variable compactness to handle uncertainty. Fine boundaries are detected by a local recursive merging of ambiguous pixels with a sequential forward floating selection with Zernike moments. The method has been tested on both synthetic and real images. When applied on synthetic images, the proposed approach provides good performance, segmentations obtained are accurate, their shape is consistent with the ground truth, and the extracted information is reliable. The results obtained on MR images confirm such observations. Our approach allows, even for difficult cases of MR images, to extract a segmentation with good performance in terms of accuracy and shape, which implies that the geometry of the tumor is preserved for further clinical activities (such as automatic extraction of pharmaco-kinetics properties, lesion characterization, etc).

Keywords: defuzzification, floating search, fuzzy clustering, Zernike moments

Procedia PDF Downloads 443
14872 A pH-Activatable Nanoparticle Self-Assembly Triggered by 7-Amino Actinomycin D Demonstrating Superior Tumor Fluorescence Imaging and Anticancer Performance

Authors: Han Xiao

Abstract:

The development of nanomedicines has recently achieved several breakthroughs in the field of cancer treatment; however, the biocompatibility and targeted burst release of these medications remain a limitation, which leads to serious side effects and significantly narrows the scope of their applications. The self-assembly of intermediate filament protein (IFP) peptides was triggered by a hydrophobic cation drug 7-amino actinomycin D (7-AAD) to synthesize pH-activatable nanoparticles (NPs) that could simultaneously locate tumors and produce antitumor effects. The designed IFP peptide included a target peptide (arginine–glycine–aspartate), a negatively charged region, and an α-helix sequence. It also possessed the ability to encapsulate 7-AAD molecules through the formation of hydrogen bonds and hydrophobic interactions by a one-step method. 7-AAD molecules with excellent near-infrared fluorescence properties could be target delivered into tumor cells by NPs and released immediately in the acidic environments of tumors and endosome/lysosomes, ultimately inducing cytotoxicity by arresting the tumor cell cycle with inserted DNA. It is noteworthy that the IFP/7-AAD NPs tail vein injection approach demonstrated not only high tumor-targeted imaging potential, but also strong antitumor therapeutic effects in vivo. The proposed strategy may be used in the delivery of cationic antitumor drugs for precise imaging and cancer therapy.

Keywords: 7-amino actinomycin D, intermediate filament protein, nanoparticle, tumor image

Procedia PDF Downloads 128
14871 Hyperspectral Imaging and Nonlinear Fukunaga-Koontz Transform Based Food Inspection

Authors: Hamidullah Binol, Abdullah Bal

Abstract:

Nowadays, food safety is a great public concern; therefore, robust and effective techniques are required for detecting the safety situation of goods. Hyperspectral Imaging (HSI) is an attractive material for researchers to inspect food quality and safety estimation such as meat quality assessment, automated poultry carcass inspection, quality evaluation of fish, bruise detection of apples, quality analysis and grading of citrus fruits, bruise detection of strawberry, visualization of sugar distribution of melons, measuring ripening of tomatoes, defect detection of pickling cucumber, and classification of wheat kernels. HSI can be used to concurrently collect large amounts of spatial and spectral data on the objects being observed. This technique yields with exceptional detection skills, which otherwise cannot be achieved with either imaging or spectroscopy alone. This paper presents a nonlinear technique based on kernel Fukunaga-Koontz transform (KFKT) for detection of fat content in ground meat using HSI. The KFKT which is the nonlinear version of FKT is one of the most effective techniques for solving problems involving two-pattern nature. The conventional FKT method has been improved with kernel machines for increasing the nonlinear discrimination ability and capturing higher order of statistics of data. The proposed approach in this paper aims to segment the fat content of the ground meat by regarding the fat as target class which is tried to be separated from the remaining classes (as clutter). We have applied the KFKT on visible and nearinfrared (VNIR) hyperspectral images of ground meat to determine fat percentage. The experimental studies indicate that the proposed technique produces high detection performance for fat ratio in ground meat.

Keywords: food (ground meat) inspection, Fukunaga-Koontz transform, hyperspectral imaging, kernel methods

Procedia PDF Downloads 419