Search results for: Bayesian multilevel model
16838 A Bayesian Population Model to Estimate Reference Points of Bombay-Duck (Harpadon nehereus) in Bay of Bengal, Bangladesh Using CMSY and BSM
Authors: Ahmad Rabby
Abstract:
The demographic trend analyses of Bombay-duck from time series catch data using CMSY and BSM for the first time in Bangladesh. During 2000-2018, CMSY indicates average lowest production in 2000 and highest in 2018. This has been used in the estimation of prior biomass by the default rules. Possible 31030 viable trajectories for 3422 r-k pairs were found by the CMSY analysis and the final estimates for intrinsic rate of population increase (r) was 1.19 year-1 with 95% CL= 0.957-1.48 year-1. The carrying capacity(k) of Bombay-duck was 283×103 tons with 95% CL=173×103 - 464×103 tons and MSY was 84.3×103tons year-1, 95% CL=49.1×103-145×103 tons year-1. Results from Bayesian state-space implementation of the Schaefer production model (BSM) using catch & CPUE data, found catchabilitiy coefficient(q) was 1.63 ×10-6 from lcl=1.27×10-6 to ucl=2.10×10-6 and r= 1.06 year-1 with 95% CL= 0.727 - 1.55 year-1, k was 226×103 tons with 95% CL=170×103-301×103 tons and MSY was 60×103 tons year-1 with 95% CL=49.9 ×103- 72.2 ×103 tons year-1. Results for Bombay-duck fishery management based on BSM assessment from time series catch data illustrated that, Fmsy=0.531 with 95% CL =0.364 - 0.775 (if B > 1/2 Bmsy then Fmsy =0.5r); Fmsy=0.531 with 95% CL =0.364-0.775 (r and Fmsy are linearly reduced if B < 1/2Bmsy). Biomass in 2018 was 110×103 tons with 2.5th to 97.5th percentile=82.3-155×103 tons. Relative biomass (B/Bmsy) in last year was 0.972 from 2.5th percentile to 97.5th percentile=0.728 -1.37. Fishing mortality in last year was 0.738 with 2.5th-97.5th percentile=0.525-1.37. Exploitation F/Fmsy was 1.39, from 2.5th to 97.5th percentile it was 0.988 -1.86. The biological reference points of B/BMSY was smaller than 1.0, while F/FMSY was higher than 1.0 revealed an over-exploitation of the fishery, indicating that more conservative management strategies are required for Bombay-duck fishery.Keywords: biological reference points, catchability coefficient, carrying capacity, intrinsic rate of population increase
Procedia PDF Downloads 12416837 Assessment of Incomplete Childhood Immunization Determinants in Ethiopia: A Nationwide Multilevel Study
Authors: Mastewal Endeshaw Getnet
Abstract:
Imunization is one of the most cost-effective and extensively adopted public health strategies for preventing child disability and mortality. Expanded Program on Immunization (EPI) was launched in 1974 with the goal of providing life-saving vaccines to all children in all and building on the success of the global smallpox eradication program. According to World Health Organization report, by 2020, all countries should have achieved 90% vaccination coverage. Many developing countries still have not achieved the goal. Ethiopia is one of Africa's developing countries. The Ethiopian Ministry of health (MoH) launched the EPI program in 1980, with the goal of achieving 90% coverage among children under the age of 1 year by 1990. Among children aged 12-23 months, complete immunization coverage was 47% based on the Ethiopian Demographic and Health Survey (EDAS) 2019 report. The coverage varies depending on the administrative region, ranging from 21% in Afar region to 89% in Amhara region, Ethiopia. Therefore, identifying risk factors for incomplete immunization among children is a key challenge, particularly in Ethiopia, which has a large geographical diversity and a predicted with 119.96 million projected population size in the year 2022. Despite its critical and challenging issue, this issue is still open and has not yet been fully investigated. Recently, a few previous studies have been conducted on the assessment of incomplete children immunization determinants. However, the majority of the studies were cross-sectional surveys that assessed only EPI coverage. Motivated by the above investigation, this study focuses on investigating determinants associated with incomplete immunization among Ethiopian children to facilitate the rate of full immunization coverage. Moreover, we consider both individual immunization and service performance-related factors to investigate incomplete children's determinants. Consequently, we adopted an ecological model in this study. Individual and environmental factors are combined in the Ecological model, which provides multilevel framework for exploring different determinants related with health behaviors. The Ethiopian Demographic and Health Survey will be used as a source of data from 2021 to achieve the objective of this study. The findings of this study will be useful to the Ethiopian government and other public health institutes to improve the coverage score of childhood immunization based on the identified risk determinants.Keywords: incomplete immunization, children, ethiopia, ecological model
Procedia PDF Downloads 3816836 A Novel Approach to Design and Implement Context Aware Mobile Phone
Authors: G. S. Thyagaraju, U. P. Kulkarni
Abstract:
Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability
Procedia PDF Downloads 36416835 A Survey on Taxpayer's Compliance in Prospect Theory Structure Using Hierarchical Bayesian Approach
Authors: Sahar Dehghan, Yeganeh Mousavi Jahromi, Ghahraman Abdoli
Abstract:
Since tax revenues are one of the most important sources of government revenue, it is essential to consider increasing taxpayers' compliance. One of the factors that can affect the taxpayers' compliance is the structure of the crimes and incentives envisaged in the tax law. In this research, by using the 'prospect theory', the effects of changes in the rate of crimes and the tax incentive in the direct tax law on the taxpayer’s compliance behavior have been investigated. To determine the preferences and preferences of taxpayer’s in the business sector and their degree of sensitivity to fines and incentives, a questionnaire with mixed gamble structure is designed. Estimated results using the Hierarchical Bayesian method indicate that the taxpayer’s that have been tested in this study are more sensitive to the incentives in the direct tax law, and the tax administration can use this to increase the level of collected tax and increase the level of compliance.Keywords: tax compliance, prospect theory, value function, mixed gamble
Procedia PDF Downloads 17316834 A Posterior Predictive Model-Based Control Chart for Monitoring Healthcare
Authors: Yi-Fan Lin, Peter P. Howley, Frank A. Tuyl
Abstract:
Quality measurement and reporting systems are used in healthcare internationally. In Australia, the Australian Council on Healthcare Standards records and reports hundreds of clinical indicators (CIs) nationally across the healthcare system. These CIs are measures of performance in the clinical setting, and are used as a screening tool to help assess whether a standard of care is being met. Existing analysis and reporting of these CIs incorporate Bayesian methods to address sampling variation; however, such assessments are retrospective in nature, reporting upon the previous six or twelve months of data. The use of Bayesian methods within statistical process control for monitoring systems is an important pursuit to support more timely decision-making. Our research has developed and assessed a new graphical monitoring tool, similar to a control chart, based on the beta-binomial posterior predictive (BBPP) distribution to facilitate the real-time assessment of health care organizational performance via CIs. The BBPP charts have been compared with the traditional Bernoulli CUSUM (BC) chart by simulation. The more traditional “central” and “highest posterior density” (HPD) interval approaches were each considered to define the limits, and the multiple charts were compared via in-control and out-of-control average run lengths (ARLs), assuming that the parameter representing the underlying CI rate (proportion of cases with an event of interest) required estimation. Preliminary results have identified that the BBPP chart with HPD-based control limits provides better out-of-control run length performance than the central interval-based and BC charts. Further, the BC chart’s performance may be improved by using Bayesian parameter estimation of the underlying CI rate.Keywords: average run length (ARL), bernoulli cusum (BC) chart, beta binomial posterior predictive (BBPP) distribution, clinical indicator (CI), healthcare organization (HCO), highest posterior density (HPD) interval
Procedia PDF Downloads 20016833 A New PWM Command for Cascaded H-Bridge Multilevel Increasing the Quality and Reducing Harmonics
Authors: Youssef Babkrani, S. Hiyani, A. Naddami, K. Choukri, M. Hilal
Abstract:
Power Quality has been a problem ever since electrical power was invented and in recent years, it has become the main interest of researchers who are still concerned about finding ways to reduce its negative influence on electrical devices. In this paper we aim to improve the power quality output for H- bridge multilevel inverter used with solar Photovoltaic (PV) panels, we propose a new switching technique that uses a pulse width modulation method (PWM) aiming to reduce the harmonics. This new method introduces a sinusoidal wave compared with modified trapezoidal carriers used to generate the pulses. This new trapezoid carrier waveform is being implemented with different sinusoidal PWM dispositions such as phase disposition (PWM PD), phase opposition disposition (PWM POD), and (PWM APOD) alternative phase opposition disposition and compared with the conventional ones. Using Matlab Simulink R2014a the line voltage and total harmonic distortions (THD) simulated and the quality are increased in spite of variations of DC introduced.Keywords: carrier waveform, phase disposition (PD), phase opposition disposition (POD), alternative phase opposition disposition (APOD), total harmonics distortion (THD)
Procedia PDF Downloads 28216832 Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model
Authors: Aid Abdelkrim
Abstract:
A method of fatigue damage accumulation based upon application of energy parameters of the fatigue process is proposed in the paper. Using this model is simple, it has no parameter to be determined, it requires only the knowledge of the curve W–N (W: strain energy density N: number of cycles at failure) determined from the experimental Wöhler curve. To examine the performance of nonlinear models proposed in the estimation of fatigue damage and fatigue life of components under random loading, a batch of specimens made of 6082 T 6 aluminium alloy has been studied and some of the results are reported in the present paper. The paper describes an algorithm and suggests a fatigue cumulative damage model, especially when random loading is considered. This work contains the results of uni-axial random load fatigue tests with different mean and amplitude values performed on 6082T6 aluminium alloy specimens. The proposed model has been formulated to take into account the damage evolution at different load levels and it allows the effect of the loading sequence to be included by means of a recurrence formula derived for multilevel loading, considering complex load sequences. It is concluded that a ‘damaged stress interaction damage rule’ proposed here allows a better fatigue damage prediction than the widely used Palmgren–Miner rule, and a formula derived in random fatigue could be used to predict the fatigue damage and fatigue lifetime very easily. The results obtained by the model are compared with the experimental results and those calculated by the most fatigue damage model used in fatigue (Miner’s model). The comparison shows that the proposed model, presents a good estimation of the experimental results. Moreover, the error is minimized in comparison to the Miner’s model.Keywords: damage accumulation, energy model, damage indicator, variable loading, random loading
Procedia PDF Downloads 39516831 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 11616830 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method
Authors: Ofosuhene O. Apenteng, Noor Azina Ismail
Abstract:
Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.Keywords: epidemic model, HIV, MCMC, parameter estimation
Procedia PDF Downloads 59816829 Environmental Radioactivity Analysis by a Sequential Approach
Authors: G. Medkour Ishak-Boushaki, A. Taibi, M. Allab
Abstract:
Quantitative environmental radioactivity measurements are needed to determine the level of exposure of a population to ionizing radiations and for the assessment of the associated risks. Gamma spectrometry remains a very powerful tool for the analysis of radionuclides present in an environmental sample but the basic problem in such measurements is the low rate of detected events. Using large environmental samples could help to get around this difficulty but, unfortunately, new issues are raised by gamma rays attenuation and self-absorption. Recently, a new method has been suggested, to detect and identify without quantification, in a short time, a gamma ray of a low count source. This method does not require, as usually adopted in gamma spectrometry measurements, a pulse height spectrum acquisition. It is based on a chronological record of each detected photon by simultaneous measurements of its energy ε and its arrival time τ on the detector, the pair parameters [ε,τ] defining an event mode sequence (EMS). The EMS serials are analyzed sequentially by a Bayesian approach to detect the presence of a given radioactive source. The main object of the present work is to test the applicability of this sequential approach in radioactive environmental materials detection. Moreover, for an appropriate health oversight of the public and of the concerned workers, the analysis has been extended to get a reliable quantification of the radionuclides present in environmental samples. For illustration, we consider as an example, the problem of detection and quantification of 238U. Monte Carlo simulated experience is carried out consisting in the detection, by a Ge(Hp) semiconductor junction, of gamma rays of 63 keV emitted by 234Th (progeny of 238U). The generated EMS serials are analyzed by a Bayesian inference. The application of the sequential Bayesian approach, in environmental radioactivity analysis, offers the possibility of reducing the measurements time without requiring large environmental samples and consequently avoids the attached inconvenient. The work is still in progress.Keywords: Bayesian approach, event mode sequence, gamma spectrometry, Monte Carlo method
Procedia PDF Downloads 49516828 Estimation and Forecasting with a Quantile AR Model for Financial Returns
Authors: Yuzhi Cai
Abstract:
This talk presents a Bayesian approach to quantile autoregressive (QAR) time series model estimation and forecasting. We establish that the joint posterior distribution of the model parameters and future values is well defined. The associated MCMC algorithm for parameter estimation and forecasting converges to the posterior distribution quickly. We also present a combining forecasts technique to produce more accurate out-of-sample forecasts by using a weighted sequence of fitted QAR models. A moving window method to check the quality of the estimated conditional quantiles is developed. We verify our methodology using simulation studies and then apply it to currency exchange rate data. An application of the method to the USD to GBP daily currency exchange rates will also be discussed. The results obtained show that an unequally weighted combining method performs better than other forecasting methodology.Keywords: combining forecasts, MCMC, quantile modelling, quantile forecasting, predictive density functions
Procedia PDF Downloads 34516827 Sub-Optimum Safety Performance of a Construction Project: A Multilevel Exploration
Authors: Tas Yong Koh, Steve Rowlinson, Yuzhong Shen
Abstract:
In construction safety management, safety climate has long been linked to workers' safety behaviors and performance. For this reason, safety climate concept and tools have been used as heuristics to diagnose a range of safety-related issues by some progressive contractors in Hong Kong and elsewhere. However, as a diagnostic tool, safety climate tends to treat the different components of the climate construct in a linear fashion. Safety management in construction projects, in reality, is a multi-faceted and multilevel phenomenon that resembles a complex system. Hence, understanding safety management in construction projects requires not only the understanding of safety climate but also the organizational-systemic nature of the phenomenon. Our involvement, diagnoses, and interpretations of a range of safety climate-related issues which culminated in the project’s sub-optimum safety performance in an infrastructure construction project have brought about such revelation. In this study, a range of data types had been collected from various hierarchies of the project site organization. These include the frontline workers and supervisors from the main and sub-contractors, and the client supervisory personnel. Data collection was performed through the administration of safety climate questionnaire, interviews, observation, and document study. The findings collectively indicate that what had emerged in parallel of the seemingly linear climate-based exploration is the exposition of the organization-systemic nature of the phenomenon. The results indicate the negative impacts of climate perceptions mismatch, insufficient work planning, and risk management, mixed safety leadership, workforce negative attributes, lapsed safety enforcement and resources shortages collectively give rise to the project sub-optimum safety performance. From the dynamic causation and multilevel perspective, the analyses show that the individual, group, and organizational levels issues are interrelated and these interrelationships are linked to negative safety climate. Hence the adoption of both perspectives has enabled a fuller understanding of the phenomenon of safety management that point to the need for an organizational-systemic intervention strategy. The core message points to the fact that intervention at an individual level will only meet with limited success if the risks embedded in the higher levels in group and project organization are not addressed. The findings can be used to guide the effective development of safety infrastructure by linking different levels of systems in a construction project organization.Keywords: construction safety management, dynamic causation, multilevel analysis, safety climate
Procedia PDF Downloads 17416826 Cascaded Multi-Level Single-Phase Switched Boost Inverter
Authors: Van-Thuan Tran, Minh-Khai Nguyen, Geum-Bae Cho
Abstract:
Recently, multilevel inverters have become more attractive for researchers due to low total harmonic distortion (THD) in the output voltage and low electromagnetic interference (EMI). This paper proposes a single-phase cascaded H-bridge quasi switched boost inverter (CHB-qSBI) for renewable energy sources applications. The proposed inverter has the advantage over the cascaded H-bridge quasi-Z-source inverter (CHB-qZSI) in reducing two capacitors and two inductors. As a result, cost, weight, and size are reduced. Furthermore, the dc-link voltage of each module is controlled by individual shoot-through duty cycle to get the same values. Therefore, the proposed inverter solves the imbalance problem of dc-link voltage in traditional CHB inverter. This paper shows the operating principles and analysis of the single-phase cascaded H-bridge quasi switched boost inverter. Also, a control strategy for the proposed inverter is shown. Experimental and simulation results are shown to verify the operating principle of the proposed inverter.Keywords: renewable energy sources, cascaded h-bridge inverter, quasi switched boost inverter, quasi z-source inverter, multilevel inverter
Procedia PDF Downloads 33216825 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling
Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast
Abstract:
Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela
Procedia PDF Downloads 13516824 Prevalence and Spatial Distribution of Anaemia in Ethiopia using 2011 EDHS
Authors: Bedilu A. Ejigu, Eshetu Wencheko, Kiros Berhane
Abstract:
Anaemia is a condition in which the haemoglobin concentration falls below an established cut-off value due to a decrease in the number and size of red blood cells. The current study aimed to assess the spatial pattern and identify predictors related to anaemia using the third Ethiopian demographic health survey which was conducted in 2010. To achieve this objective, this study took into account the clustered nature of the data. As a result, multilevel modeling has been used in the statistical analysis. For analysis purpose, only complete cases from 15,909 females, and 13,903 males were considered. Among all subjects who agreed for haemoglobin test, 5.49 %males, and 19.86% females were anaemic. In both binary and ordinal outcome modeling approaches, educational level, age, wealth index, BMI and HIV status were identified to be significant predictors for anaemia prevalence. Furthermore, it was noted that pregnant women were more anaemic than non-pregnant women. As revealed by Moran's I test, significant spatial autocorrelation was noted across clusters. The risk of anaemia was found to vary across different regions, and higher prevalence was observed in Somali and Affar region.Keywords: anaemia, Moran's I test, multilevel models, spatial pattern
Procedia PDF Downloads 42316823 Multi-Agent Searching Adaptation Using Levy Flight and Inferential Reasoning
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
In this paper, we describe how to achieve knowledge understanding and prediction (Situation Awareness (SA)) for multiple-agents conducting searching activity using Bayesian inferential reasoning and learning. Bayesian Belief Network was used to monitor agents' knowledge about their environment, and cases are recorded for the network training using expectation-maximisation or gradient descent algorithm. The well trained network will be used for decision making and environmental situation prediction. Forest fire searching by multiple UAVs was the use case. UAVs are tasked to explore a forest and find a fire for urgent actions by the fire wardens. The paper focused on two problems: (i) effective agents’ path planning strategy and (ii) knowledge understanding and prediction (SA). The path planning problem by inspiring animal mode of foraging using Lévy distribution augmented with Bayesian reasoning was fully described in this paper. Results proof that the Lévy flight strategy performs better than the previous fixed-pattern (e.g., parallel sweeps) approaches in terms of energy and time utilisation. We also introduced a waypoint assessment strategy called k-previous waypoints assessment. It improves the performance of the ordinary levy flight by saving agent’s resources and mission time through redundant search avoidance. The agents (UAVs) are to report their mission knowledge at the central server for interpretation and prediction purposes. Bayesian reasoning and learning were used for the SA and results proof effectiveness in different environments scenario in terms of prediction and effective knowledge representation. The prediction accuracy was measured using learning error rate, logarithm loss, and Brier score and the result proves that little agents mission that can be used for prediction within the same or different environment. Finally, we described a situation-based knowledge visualization and prediction technique for heterogeneous multi-UAV mission. While this paper proves linkage of Bayesian reasoning and learning with SA and effective searching strategy, future works is focusing on simplifying the architecture.Keywords: Levy flight, distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 14216822 Implications of Optimisation Algorithm on the Forecast Performance of Artificial Neural Network for Streamflow Modelling
Authors: Martins Y. Otache, John J. Musa, Abayomi I. Kuti, Mustapha Mohammed
Abstract:
The performance of an artificial neural network (ANN) is contingent on a host of factors, for instance, the network optimisation scheme. In view of this, the study examined the general implications of the ANN training optimisation algorithm on its forecast performance. To this end, the Bayesian regularisation (Br), Levenberg-Marquardt (LM), and the adaptive learning gradient descent: GDM (with momentum) algorithms were employed under different ANN structural configurations: (1) single-hidden layer, and (2) double-hidden layer feedforward back propagation network. Results obtained revealed generally that the gradient descent with momentum (GDM) optimisation algorithm, with its adaptive learning capability, used a relatively shorter time in both training and validation phases as compared to the Levenberg- Marquardt (LM) and Bayesian Regularisation (Br) algorithms though learning may not be consummated; i.e., in all instances considering also the prediction of extreme flow conditions for 1-day and 5-day ahead, respectively especially using the ANN model. In specific statistical terms on the average, model performance efficiency using the coefficient of efficiency (CE) statistic were Br: 98%, 94%; LM: 98 %, 95 %, and GDM: 96 %, 96% respectively for training and validation phases. However, on the basis of relative error distribution statistics (MAE, MAPE, and MSRE), GDM performed better than the others overall. Based on the findings, it is imperative to state that the adoption of ANN for real-time forecasting should employ training algorithms that do not have computational overhead like the case of LM that requires the computation of the Hessian matrix, protracted time, and sensitivity to initial conditions; to this end, Br and other forms of the gradient descent with momentum should be adopted considering overall time expenditure and quality of the forecast as well as mitigation of network overfitting. On the whole, it is recommended that evaluation should consider implications of (i) data quality and quantity and (ii) transfer functions on the overall network forecast performance.Keywords: streamflow, neural network, optimisation, algorithm
Procedia PDF Downloads 15116821 Multiscale Syntheses of Knee Collateral Ligament Stresses: Aggregate Mechanics as a Function of Molecular Properties
Authors: Raouf Mbarki, Fadi Al Khatib, Malek Adouni
Abstract:
Knee collateral ligaments play a significant role in restraining excessive frontal motion (varus/valgus rotations). In this investigation, a multiscale frame was developed based on structural hierarchies of the collateral ligaments starting from the bottom (tropocollagen molecule) to up where the fibred reinforced structure established. Experimental data of failure tensile test were considered as the principal driver of the developed model. This model was calibrated statistically using Bayesian calibration due to the high number of unknown parameters. Then the model is scaled up to fit the real structure of the collateral ligaments and simulated under realistic boundary conditions. Predications have been successful in describing the observed transient response of the collateral ligaments during tensile test under pre- and post-damage loading conditions. Collateral ligaments maximum stresses and strengths were observed near to the femoral insertions, a results that is in good agreement with experimental investigations. Also for the first time, damage initiation and propagation were documented with this model as a function of the cross-link density between tropocollagen molecules.Keywords: multiscale model, tropocollagen, fibrils, ligaments commas
Procedia PDF Downloads 15716820 Estimation of Transition and Emission Probabilities
Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi
Abstract:
Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics
Procedia PDF Downloads 47916819 Smart Web Services in the Web of Things
Authors: Sekkal Nawel
Abstract:
The Web of Things (WoT), integration of smart technologies from the Internet or network to Web architecture or application, is becoming more complex, larger, and dynamic. The WoT is associated with various elements such as sensors, devices, networks, protocols, data, functionalities, and architectures to perform services for stakeholders. These services operate in the context of the interaction of stakeholders and the WoT elements. Such context is becoming a key information source from which data are of various nature and uncertain, thus leading to complex situations. In this paper, we take interest in the development of intelligent Web services. The key ingredients of this “intelligent” notion are the context diversity, the necessity of a semantic representation to manage complex situations and the capacity to reason with uncertain data. In this perspective, we introduce a multi-layered architecture based on a generic intelligent Web service model dealing with various contexts, which proactively predict future situations and reactively respond to real-time situations in order to support decision-making. For semantic context data representation, we use PR-OWL, which is a probabilistic ontology based on Multi-Entity Bayesian Networks (MEBN). PR-OWL is flexible enough to represent complex, dynamic, and uncertain contexts, the key requirements of the development for the intelligent Web services. A case study was carried out using the proposed architecture for intelligent plant watering to show the role of proactive and reactive contextual reasoning in terms of WoT.Keywords: smart web service, the web of things, context reasoning, proactive, reactive, multi-entity bayesian networks, PR-OWL
Procedia PDF Downloads 6916818 Integrated Nested Laplace Approximations For Quantile Regression
Authors: Kajingulu Malandala, Ranganai Edmore
Abstract:
The asymmetric Laplace distribution (ADL) is commonly used as the likelihood function of the Bayesian quantile regression, and it offers different families of likelihood method for quantile regression. Notwithstanding their popularity and practicality, ADL is not smooth and thus making it difficult to maximize its likelihood. Furthermore, Bayesian inference is time consuming and the selection of likelihood may mislead the inference, as the Bayes theorem does not automatically establish the posterior inference. Furthermore, ADL does not account for greater skewness and Kurtosis. This paper develops a new aspect of quantile regression approach for count data based on inverse of the cumulative density function of the Poisson, binomial and Delaporte distributions using the integrated nested Laplace Approximations. Our result validates the benefit of using the integrated nested Laplace Approximations and support the approach for count data.Keywords: quantile regression, Delaporte distribution, count data, integrated nested Laplace approximation
Procedia PDF Downloads 16116817 Hyperspectral Image Classification Using Tree Search Algorithm
Authors: Shreya Pare, Parvin Akhter
Abstract:
Remotely sensing image classification becomes a very challenging task owing to the high dimensionality of hyperspectral images. The pixel-wise classification methods fail to take the spatial structure information of an image. Therefore, to improve the performance of classification, spatial information can be integrated into the classification process. In this paper, the multilevel thresholding algorithm based on a modified fuzzy entropy function is used to perform the segmentation of hyperspectral images. The fuzzy parameters of the MFE function have been optimized by using a new meta-heuristic algorithm based on the Tree-Search algorithm. The segmented image is classified by a large distribution machine (LDM) classifier. Experimental results are shown on a hyperspectral image dataset. The experimental outputs indicate that the proposed technique (MFE-TSA-LDM) achieves much higher classification accuracy for hyperspectral images when compared to state-of-art classification techniques. The proposed algorithm provides accurate segmentation and classification maps, thus becoming more suitable for image classification with large spatial structures.Keywords: classification, hyperspectral images, large distribution margin, modified fuzzy entropy function, multilevel thresholding, tree search algorithm, hyperspectral image classification using tree search algorithm
Procedia PDF Downloads 17516816 Facility Anomaly Detection with Gaussian Mixture Model
Authors: Sunghoon Park, Hank Kim, Jinwon An, Sungzoon Cho
Abstract:
Internet of Things allows one to collect data from facilities which are then used to monitor them and even predict malfunctions in advance. Conventional quality control methods focus on setting a normal range on a sensor value defined between a lower control limit and an upper control limit, and declaring as an anomaly anything falling outside it. However, interactions among sensor values are ignored, thus leading to suboptimal performance. We propose a multivariate approach which takes into account many sensor values at the same time. In particular Gaussian Mixture Model is used which is trained to maximize likelihood value using Expectation-Maximization algorithm. The number of Gaussian component distributions is determined by Bayesian Information Criterion. The negative Log likelihood value is used as an anomaly score. The actual usage scenario goes like a following. For each instance of sensor values from a facility, an anomaly score is computed. If it is larger than a threshold, an alarm will go off and a human expert intervenes and checks the system. A real world data from Building energy system was used to test the model.Keywords: facility anomaly detection, gaussian mixture model, anomaly score, expectation maximization algorithm
Procedia PDF Downloads 27016815 Data Driven Infrastructure Planning for Offshore Wind farms
Authors: Isha Saxena, Behzad Kazemtabrizi, Matthias C. M. Troffaes, Christopher Crabtree
Abstract:
The calculations done at the beginning of the life of a wind farm are rarely reliable, which makes it important to conduct research and study the failure and repair rates of the wind turbines under various conditions. This miscalculation happens because the current models make a simplifying assumption that the failure/repair rate remains constant over time. This means that the reliability function is exponential in nature. This research aims to create a more accurate model using sensory data and a data-driven approach. The data cleaning and data processing is done by comparing the Power Curve data of the wind turbines with SCADA data. This is then converted to times to repair and times to failure timeseries data. Several different mathematical functions are fitted to the times to failure and times to repair data of the wind turbine components using Maximum Likelihood Estimation and the Posterior expectation method for Bayesian Parameter Estimation. Initial results indicate that two parameter Weibull function and exponential function produce almost identical results. Further analysis is being done using the complex system analysis considering the failures of each electrical and mechanical component of the wind turbine. The aim of this project is to perform a more accurate reliability analysis that can be helpful for the engineers to schedule maintenance and repairs to decrease the downtime of the turbine.Keywords: reliability, bayesian parameter inference, maximum likelihood estimation, weibull function, SCADA data
Procedia PDF Downloads 8516814 The Impact of Nurse-Physician Interprofessional Relationship on Nurses' Willingness to Engage in Leadership Roles: A Multilevel Modelling Approach
Authors: Sulaiman D. Al Sabei, Amy M. Ross, Christopher S. Lee
Abstract:
Nurse leaders play a fundamental role in transforming healthcare system and improving quality of patient care. Several healthcare organizations have called to increase the number of nurse leaders across all levels and in every practice setting. Identification of factors influencing nurses’ willingness to lead can inform healthcare leaders and policy makers of potentially illuminating strategies for establishing favorable work environments that motivate nurses to engage in leadership roles. The aim of this study was to investigate determinants of nurses’ willingness to engage in future leadership roles. The study was conducted at a public hospital in the Sultanate of Oman. A total of 171 registered nurses participated. A multilevel modeling was conducted. Findings revealed that 80% of nurses were likely to seek out opportunities to engage in leadership roles. The quality of the nurse-physician collegial relationships was a significant predictor of nurses’ willingness to lead. Establishing a work environment’s culture of positive nurse-physician relationships is critical to enhance nurses’ work attitude and engage them in leadership roles.Keywords: interprofessional relationship, leadership, motivation, nurses
Procedia PDF Downloads 19116813 Harnessing Train-Induced Airflows in Underground Metro Stations for Renewable Energy Generation: A Feasibility Study Using Bayesian Modeling and RETScreen
Authors: Lisha Tan, Yunbo Nie, Mohammad Rahnama
Abstract:
This study investigates the feasibility of harnessing train-induced airflows in underground metro stations as a source of renewable energy. Field measurements were conducted at multiple SkyTrain stations to assess wind speed distributions caused by passing trains. The data revealed significant airflow velocities with multimodal characteristics driven by varying train operations. These airflow velocities represent substantial kinetic energy that can be converted into usable power. Calculations showed that wind power densities within the underground tunnels ranged from 0.97 W/m² to 3.46 W/m², based on average cubed wind speeds, indicating considerable energy content available for harvesting. A Bayesian method was utilized to model these wind speed distributions, effectively capturing the complex airflow patterns. Further analysis using RETScreen evaluated the cost-benefit and environmental impact of implementing energy harvesting systems. Preliminary results suggest that the proposed system could result in substantial energy savings, reduce CO₂ emissions, and provide a favorable payback period, highlighting the economic and environmental viability of integrating wind turbines into metro stations.Keywords: train-induced airflows, renewable energy generation, wind power density, RETScreen
Procedia PDF Downloads 1316812 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 1616811 Modern Machine Learning Conniptions for Automatic Speech Recognition
Authors: S. Jagadeesh Kumar
Abstract:
This expose presents a luculent of recent machine learning practices as employed in the modern and as pertinent to prospective automatic speech recognition schemes. The aspiration is to promote additional traverse ablution among the machine learning and automatic speech recognition factions that have transpired in the precedent. The manuscript is structured according to the chief machine learning archetypes that are furthermore trendy by now or have latency for building momentous hand-outs to automatic speech recognition expertise. The standards offered and convoluted in this article embraces adaptive and multi-task learning, active learning, Bayesian learning, discriminative learning, generative learning, supervised and unsupervised learning. These learning archetypes are aggravated and conferred in the perspective of automatic speech recognition tools and functions. This manuscript bequeaths and surveys topical advances of deep learning and learning with sparse depictions; further limelight is on their incessant significance in the evolution of automatic speech recognition.Keywords: automatic speech recognition, deep learning methods, machine learning archetypes, Bayesian learning, supervised and unsupervised learning
Procedia PDF Downloads 44516810 Analyzing the Performance of Different Cost-Based Methods for the Corrective Maintenance of a System in Thermal Power Plants
Authors: Demet Ozgur-Unluakin, Busenur Turkali, S. Caglar Aksezer
Abstract:
Since the age of industrialization, maintenance has always been a very crucial element for all kinds of factories and plants. With today’s increasingly developing technology, the system structure of such facilities has become more complicated, and even a small operational disruption may return huge losses in profits for the companies. In order to reduce these costs, effective maintenance planning is crucial, but at the same time, it is a difficult task because of the complexity of systems. The most important aspect of correct maintenance planning is to understand the structure of the system, not to ignore the dependencies among the components and as a result, to model the system correctly. In this way, it will be better to understand which component improves the system more when it is maintained. Undoubtedly, proactive maintenance at a scheduled time reduces costs because the scheduled maintenance prohibits high losses in profits. But the necessity of corrective maintenance, which directly affects the situation of the system and provides direct intervention when the system fails, should not be ignored. When a fault occurs in the system, if the problem is not solved immediately and proactive maintenance time is awaited, this may result in increased costs. This study proposes various maintenance methods with different efficiency measures under corrective maintenance strategy on a subsystem of a thermal power plant. To model the dependencies between the components, dynamic Bayesian Network approach is employed. The proposed maintenance methods aim to minimize the total maintenance cost in a planning horizon, as well as to find the most appropriate component to be attacked on, which improves the system reliability utmost. Performances of the methods are compared under corrective maintenance strategy. Furthermore, sensitivity analysis is also applied under different cost values. Results show that all fault effect methods perform better than the replacement effect methods and this conclusion is also valid under different downtime cost values.Keywords: dynamic Bayesian networks, maintenance, multi-component systems, reliability
Procedia PDF Downloads 12816809 Computational Identification of Signalling Pathways in Protein Interaction Networks
Authors: Angela U. Makolo, Temitayo A. Olagunju
Abstract:
The knowledge of signaling pathways is central to understanding the biological mechanisms of organisms since it has been identified that in eukaryotic organisms, the number of signaling pathways determines the number of ways the organism will react to external stimuli. Signaling pathways are studied using protein interaction networks constructed from protein-protein interaction data obtained using high throughput experimental procedures. However, these high throughput methods are known to produce very high rates of false positive and negative interactions. In order to construct a useful protein interaction network from this noisy data, computational methods are applied to validate the protein-protein interactions. In this study, a computational technique to identify signaling pathways from a protein interaction network constructed using validated protein-protein interaction data was designed. A weighted interaction graph of the Saccharomyces cerevisiae (Baker’s Yeast) organism using the proteins as the nodes and interactions between them as edges was constructed. The weights were obtained using Bayesian probabilistic network to estimate the posterior probability of interaction between two proteins given the gene expression measurement as biological evidence. Only interactions above a threshold were accepted for the network model. A pathway was formalized as a simple path in the interaction network from a starting protein and an ending protein of interest. We were able to identify some pathway segments, one of which is a segment of the pathway that signals the start of the process of meiosis in S. cerevisiae.Keywords: Bayesian networks, protein interaction networks, Saccharomyces cerevisiae, signalling pathways
Procedia PDF Downloads 540