Search results for: nuclear fuel cycle technology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11242

Search results for: nuclear fuel cycle technology

9232 The Environmental and Economic Analysis of Extended Input-Output Table for Thailand’s Biomass Pellet Industry

Authors: Prangvalai Buasan, Boonrod Sajjakulnukit, Thongchart Bowonthumrongchai

Abstract:

The demand for biomass pellets in the industrial sector has significantly increased since 2020. The revised version of Thailand’s power development plan as well as the Alternative Energy Development Plan, aims to promote biomass fuel consumption by around 485 MW by 2030. The replacement of solid fossil fuel with biomass pellets will affect medium-term and long-term national benefits for all industries throughout the supply chain. Therefore, the evaluation of environmental and economic impacts throughout the biomass pellet supply chain needs to be performed to provide better insight into the goods and financial flow of this activity. This study extended the national input-output table for the biomass pellet industry and applied the input-output analysis (IOA) method, a sort of macroeconomic analysis, to interpret the result of transactions between industries in the monetary unit when the revised national power development plan was adopted and enforced. Greenhouse gas emissions from consuming energy and raw material through the supply chain are also evaluated. The total intermediate transactions of all economic sectors, which included the biomass pellets sector (CASE 2), increased by 0.02% when compared with the conservative case (CASE 1). The control total, which is the sum of total intermediate transactions and value-added, the control total of CASE 2 is increased by 0.07% when compared with CASE 1. The pellet production process emitted 432.26 MtCO2e per year. The major sharing of the GHG is from the plantation process of raw biomass.

Keywords: input-output analysis, environmental extended input-output analysis, macroeconomic planning, biomass pellets, renewable energy

Procedia PDF Downloads 85
9231 Fuzzy-Genetic Algorithm Multi-Objective Optimization Methodology for Cylindrical Stiffened Tanks Conceptual Design

Authors: H. Naseh, M. Mirshams, M. Mirdamadian, H. R. Fazeley

Abstract:

This paper presents an extension of fuzzy-genetic algorithm multi-objective optimization methodology that could effectively be used to find the overall satisfaction of objective functions (selecting the design variables) in the early stages of design process. The coupling of objective functions due to design variables in an engineering design process will result in difficulties in design optimization problems. In many cases, decision making on design variables conflicts with more than one discipline in system design. In space launch system conceptual design, decision making on some design variable (e.g. oxidizer to fuel mass flow rate O/F) in early stages of the design process is related to objective of liquid propellant engine (specific impulse) and Tanks (structure weight). Then, the primary application of this methodology is the design of a liquid propellant engine with the maximum specific impulse and cylindrical stiffened tank with the minimum weight. To this end, the design problem is established the fuzzy rule set based on designer's expert knowledge with a holistic approach. The independent design variables in this model are oxidizer to fuel mass flow rate, thickness of stringers, thickness of rings, shell thickness. To handle the mentioned problems, a fuzzy-genetic algorithm multi-objective optimization methodology is developed based on Pareto optimal set. Consequently, this methodology is modeled with the one stage of space launch system to illustrate accuracy and efficiency of proposed methodology.

Keywords: cylindrical stiffened tanks, multi-objective, genetic algorithm, fuzzy approach

Procedia PDF Downloads 640
9230 Simulation of Cure Kinetics and Process-Induced Stresses in Carbon Fibre Composite Laminate Manufactured by a Liquid Composite Molding Technique

Authors: Jayaraman Muniyappan, Bachchan Kr Mishra, Gautam Salkar, Swetha Manian Sridhar

Abstract:

Vacuum Assisted Resin Transfer Molding (VARTM), a cost effective method of Liquid Composite Molding (LCM), is a single step process where the resin, at atmospheric pressure, is infused through a preform that is maintained under vacuum. This hydrodynamic pressure gradient is responsible for the flow of resin through the dry fabric preform. The current study has a slight variation to traditional VARTM, wherein, the resin infuses through the fabric placed on a heated mold to reduce its viscosity. The saturated preform is subjected to a cure cycle where the resin hardens as it undergoes curing. During this cycle, an uneven temperature distribution through the thickness of the composite and excess exothermic heat released due to different cure rates result in non-uniform curing. Additionally, there is a difference in thermal expansion coefficient between fiber and resin in a given plane and between adjacent plies. All these effects coupled with orthotropic coefficient of thermal expansion of the composite give rise to process-induced stresses in the laminate. Such stresses lead to part deformation when the laminate tries to relieve them as the part is released off the mold. The current study looks at simulating resin infusion, cure kinetics and the structural response of composite laminate subject to process-induced stresses.

Keywords: cure kinetics, process-induced stresses, thermal expansion coefficient, vacuum assisted resin transfer molding

Procedia PDF Downloads 227
9229 Localized and Time-Resolved Velocity Measurements of Pulsatile Flow in a Rectangular Channel

Authors: R. Blythman, N. Jeffers, T. Persoons, D. B. Murray

Abstract:

The exploitation of flow pulsation in micro- and mini-channels is a potentially useful technique for enhancing cooling of high-end photonics and electronics systems. It is thought that pulsation alters the thickness of the hydrodynamic and thermal boundary layers, and hence affects the overall thermal resistance of the heat sink. Although the fluid mechanics and heat transfer are inextricably linked, it can be useful to decouple the parameters to better understand the mechanisms underlying any heat transfer enhancement. Using two-dimensional, two-component particle image velocimetry, the current work intends to characterize the heat transfer mechanisms in pulsating flow with a mean Reynolds number of 48 by experimentally quantifying the hydrodynamics of a generic liquid-cooled channel geometry. Flows circulated through the test section by a gear pump are modulated using a controller to achieve sinusoidal flow pulsations with Womersley numbers of 7.45 and 2.36 and an amplitude ratio of 0.75. It is found that the transient characteristics of the measured velocity profiles are dependent on the speed of oscillation, in accordance with the analytical solution for flow in a rectangular channel. A large velocity overshoot is observed close to the wall at high frequencies, resulting from the interaction of near-wall viscous stresses and inertial effects of the main fluid body. The steep velocity gradients at the wall are indicative of augmented heat transfer, although the local flow reversal may reduce the upstream temperature difference in heat transfer applications. While unsteady effects remain evident at the lower frequency, the annular effect subsides and retreats from the wall. The shear rate at the wall is increased during the accelerating half-cycle and decreased during deceleration compared to steady flow, suggesting that the flow may experience both enhanced and diminished heat transfer during a single period. Hence, the thickness of the hydrodynamic boundary layer is reduced for positively moving flow during one half of the pulsation cycle at the investigated frequencies. It is expected that the size of the thermal boundary layer is similarly reduced during the cycle, leading to intervals of heat transfer enhancement.

Keywords: Heat transfer enhancement, particle image velocimetry, localized and time-resolved velocity, photonics and electronics cooling, pulsating flow, Richardson’s annular effect

Procedia PDF Downloads 335
9228 A Study of Impact of Changing Fuel Practices on Organic Carbon and Elemental Carbon Levels in Indoor Air in Two States of India

Authors: Kopal Verma, Umesh C. Kulshrestha

Abstract:

India is a rural major country and majority of rural population is dependent on burning of biomass as fuel for domestic cooking on traditional stoves (Chullahs) and heating purposes. This results into indoor air pollution and ultimately affects health of the residents. Still, a very small fraction of rural population has been benefitted by the facilities of Liquefied Petroleum Gas (LPG) cylinders. Different regions of country follow different methods and use different type of biomass for cooking. So in order to study the differences in cooking practices and resulting indoor air pollution, this study was carried out in two rural areas of India viz. Budhwada, Madhya Pradesh and Baggi, Himachal Pradesh. Both the regions have significant differences in terms of topography, culture and daily practices. Budhwada lies in plain area and Baggi belongs to hilly terrain. The study of carbonaceous aerosols was carried out in four different houses of each village. The residents were asked to bring slight change in their practices by cooking only with biomass (BB) then with a mix of biomass and LPG (BL) and then finally only with LPG (LP). It was found that in BB, average values of organic carbon (OC) and elemental carbon (EC) were 28% and 44% lower in Budhwada than in Baggi whereas a reverse trend was found where OC and EC was respectively more by 56% and 26% with BL and by 54% and 29% with LP in Budhwada than in Baggi. Although, a significant reduction was found both in Budhwada (OC by 49% and EC by 34%) as well as in Baggi (OC by 84% and EC by 73%) when cooking was shifted from BB to LP. The OC/EC ratio was much higher for Budhwada (BB=9.9; BL=2.5; LP=6.1) than for Baggi (BB=1.7; BL=1.6; LP=1.3). The correlation in OC and EC was found to be excellent in Baggi (r²=0.93) and relatively poor in Budhwada (r²=0.65). A questionnaire filled by the residents suggested that they agree to the health benefits of using LPG over biomass burning but the challenges of supply of LPG and changing the prevailing tradition of cooking on Chullah are making it difficult for them to make this shift.

Keywords: biomass burning, elemental carbon, liquefied petroluem gas, organic carbon

Procedia PDF Downloads 178
9227 Measuring the Embodied Energy of Construction Materials and Their Associated Cost Through Building Information Modelling

Authors: Ahmad Odeh, Ahmad Jrade

Abstract:

Energy assessment is an evidently significant factor when evaluating the sustainability of structures especially at the early design stage. Today design practices revolve around the selection of material that reduces the operational energy and yet meets their displinary need. Operational energy represents a substantial part of the building lifecycle energy usage but the fact remains that embodied energy is an important aspect unaccounted for in the carbon footprint. At the moment, little or no consideration is given to embodied energy mainly due to the complexity of calculation and the various factors involved. The equipment used, the fuel needed, and electricity required for each material vary with location and thus the embodied energy will differ for each project. Moreover, the method and the technique used in manufacturing, transporting and putting in place will have a significant influence on the materials’ embodied energy. This anomaly has made it difficult to calculate or even bench mark the usage of such energies. This paper presents a model aimed at helping designers select the construction materials based on their embodied energy. Moreover, this paper presents a systematic approach that uses an efficient method of calculation and ultimately provides new insight into construction material selection. The model is developed in a BIM environment targeting the quantification of embodied energy for construction materials through the three main stages of their life: manufacturing, transportation and placement. The model contains three major databases each of which contains a set of the most commonly used construction materials. The first dataset holds information about the energy required to manufacture any type of materials, the second includes information about the energy required for transporting the materials while the third stores information about the energy required by tools and cranes needed to place an item in its intended location. The model provides designers with sets of all available construction materials and their associated embodied energies to use for the selection during the design process. Through geospatial data and dimensional material analysis, the model will also be able to automatically calculate the distance between the factories and the construction site. To remain within the sustainability criteria set by LEED, a final database is created and used to calculate the overall construction cost based on R.M.S. means cost data and then automatically recalculate the costs for any modifications. Design criteria including both operational and embodied energies will cause designers to revaluate the current material selection for cost, energy, and most importantly sustainability.

Keywords: building information modelling, energy, life cycle analysis, sustainablity

Procedia PDF Downloads 258
9226 Work-Home Interference and Emotional Exhaustion: The Role of Psychological Detachment, Relaxation and Technology-Assisted Supplemental Work

Authors: Nidhi S. Bisht

Abstract:

The study examines the role of work-home interference, on enhancing emotional exhaustion in the branch officers of private MFIs in India. Additionally, the moderating role of recovery experiences and technology-assisted supplemental work (TASW) were studied. With the increasing expectations to perform job related tasks at home, technology-assisted supplemental work (TASW) was hypothesized to positively moderate the relationship between work-home interference and emotional exhaustion. Further, it was expected that recovery experiences-psychological detachment, relaxation will help to recover and unwind from work and negatively moderate the relationship between work-home interference and emotional exhaustion. Results of SEM-analyses largely offered support for the hypotheses. These findings increase our insight in the processes leading to increased emotional exhaustion and suggest that employees can protect themselves from emotional exhaustion by keeping a tab on technology-assisted supplemental work and facilitating recovery experiences.

Keywords: emotional exhaustion, India, microfinance institutions (MFIs), work-home interference

Procedia PDF Downloads 211
9225 The Evaluation for Interfacial Adhesion between SOFC and Metal Adhesive in the High Temperature Environment

Authors: Sang Koo Jeon, Seung Hoon Nahm, Oh Heon Kwon

Abstract:

The unit cell of solid oxide fuel cell (SOFC) must be stacked as several layers type to obtain the high power. The most of researcher have concerned about the performance of stacked SOFC rather than the structural stability of stacked SOFC and especially interested how to design for reducing the electrical loss and improving the high efficiency. Consequently, the stacked SOFC able to produce the electrical high power and related parts like as manifold, gas seal, bipolar plate were developed to optimize the stack design. However, the unit cell of SOFC was just layered on the interconnector without the adhesion and the hydrogen and oxygen were injected to the interfacial layer in the high temperature. On the operating condition, the interfacial layer can be the one of the weak point in the stacked SOFC. Therefore the evaluation of the structural safety for the failure is essentially needed. In this study, interfacial adhesion between SOFC and metal adhesive was estimated in the high temperature environment. The metal adhesive was used to strongly connect the unit cell of SOFC with interconnector and provide the electrical conductivity between them. The four point bending test was performed to measure the interfacial adhesion. The unit cell of SOFC and SiO2 wafer were diced and then attached by metal adhesive. The SiO2 wafer had the center notch to initiate a crack from the tip of the notch. The modified stereomicroscope combined with the CCD camera and system for measuring the length was used to observe the fracture behavior. Additionally, the interfacial adhesion was evaluated in the high temperature condition because the metal adhesive was affected by high temperature. Also the specimen was exposed in the furnace during several hours and then the interfacial adhesion was evaluated. Finally, the interfacial adhesion energy was quantitatively determined and compared in the each condition.

Keywords: solid oxide fuel cell (SOFC), metal adhesive, adhesion, high temperature

Procedia PDF Downloads 510
9224 Cognitive Theory and the Design of Integrate Curriculum

Authors: Bijan Gillani, Roya Gillani

Abstract:

The purpose of this paper is to propose a pedagogical model where engineering provides the interconnection to integrate the other topics of science, technology, engineering, and mathematics. The author(s) will first present a brief discussion of cognitive theory and then derive an integrated pedagogy to use engineering and technology, such as drones, sensors, camera, iPhone, radio waves as the nexus to an integrated curriculum development for the other topics of STEM. Based on this pedagogy, one example developed by the author(s) called “Drones and Environmental Science,” will be presented that uses a drone and related technology as an appropriate instructional delivery medium to apply Piaget’s cognitive theory to create environments that promote the integration of different STEM subjects that relate to environmental science.

Keywords: cogntive theories, drone, environmental science, pedagogy

Procedia PDF Downloads 562
9223 Female Athlete Triad: How Much Is Known

Authors: Nadine Abuqtaish

Abstract:

Females’ participation in athletic sports events has increased in the last decades, and the discovery of eating disorders and menstrual dysfunction has been evident since the early 1980s. The term “Female athlete triad” was initially defined by the Task Force on Women’s Issues of the American College of Sports Medicine (ACSM) in 1992. Menstrual irregularities have been prevalent in competitive female athletes, especially in their adolescence and early adulthood age. Nutritional restrictions to maintain a certain physique and lean look are sought to be advantageous in female athletes such as gymnastics, cheerleading, or weight-sensitive sports such as endurance sports (cycling and marathoners). This stress places the female at risk of irregularities in their menstrual cycle which can lead them to lose their circadian estrogen levels. Estrogen is an important female reproductive hormone that plays a role in maintaining bone mass. Bone mineral density peaks by the age 25. Inadequate estrogen due to missed menstrual cycle or amenorrhea has been estimated to cause a yearly loss of 2% of bone mass, increasing the risk of osteoporosis in the postmenopausal phase. This paper is intended to have a better depth understanding of whether female athletes are being monitored by their official entities or coaches. A qualitative research method through online search engines and keywords “females, athletes, triad, amenorrhea, anorexia, osteoporosis” were used to collect the available primary sources from official public library databases. The latest consensus was published in 2014 by the Female Athlete Triad Coalition and the need for further research and emphasis on this issue is still lacking.

Keywords: female, athlete, triad, amenorrhea, anorexia, bone loss

Procedia PDF Downloads 47
9222 Effects of Using Alternative Energy Sources and Technologies to Reduce Energy Consumption and Expenditure of a Single Detached House

Authors: Gul Nihal Gugul, Merih Aydinalp-Koksal

Abstract:

In this study, hourly energy consumption model of a single detached house in Ankara, Turkey is developed using ESP-r building energy simulation software. Natural gas is used for space heating, cooking, and domestic water heating in this two story 4500 square feet four-bedroom home. Hourly electricity consumption of the home is monitored by an automated meter reading system, and daily natural gas consumption is recorded by the owners during 2013. Climate data of the region and building envelope data are used to develop the model. The heating energy consumption of the house that is estimated by the ESP-r model is then compared with the actual heating demand to determine the performance of the model. Scenarios are applied to the model to determine the amount of reduction in the total energy consumption of the house. The scenarios are using photovoltaic panels to generate electricity, ground source heat pumps for space heating and solar panels for domestic hot water generation. Alternative scenarios such as improving wall and roof insulations and window glazing are also applied. These scenarios are evaluated based on annual energy, associated CO2 emissions, and fuel expenditure savings. The pay-back periods for each scenario are also calculated to determine best alternative energy source or technology option for this home to reduce annual energy use and CO2 emission.

Keywords: ESP-r, building energy simulation, residential energy saving, CO2 reduction

Procedia PDF Downloads 181
9221 Information Technology and Professional Behavior: An Empirical Examination of Auditing and Accounting Tasks

Authors: Michael C. Nwaohia

Abstract:

Whereas anecdotal evidence supports the notion that increase in information technology (IT) know-how may enhance output of professionals in the accounting sector, this has not been systematically explored in the Nigerian context. Against this background, this paper examines the correlation between knowledgeability of IT and level of performance at everyday auditing and accounting tasks. It utilizes primary and secondary data from selected business organizations in Lagos, Nigeria. Accounting staff were administered structured questionnaires which, amongst other things, sought to examine knowledge and exposure to information technology prior to joining the firms and current level of performance based on self-reporting and supervisor comments. In addition, exposure to on-the-job IT training and current level of performance was examined. The statistical analysis of the data was done using the SPSS package. The results strongly suggest that prior exposure to IT skills enabled accounting professionals to better flexibly fit into the dynamic environment in which contemporary business takes place. Ultimately, the paper attempts to explicate some of the implications of these findings for individuals and business firms.

Keywords: accounting, firms, information technology, professional behavior

Procedia PDF Downloads 217
9220 Power and Wear Reduction Using Composite Links of Crank-Rocker Mechanism with Optimum Transmission Angle

Authors: Khaled M. Khader, Mamdouh I. Elimy

Abstract:

Reducing energy consumption became the major concern for all countries of the world during the recent decades. In general, power saving is currently the nominal goal of most industrial countries. It is well known that fossil fuels are the main pillar of development of world countries. Unfortunately, the increased rate of fossil fuel consumption will lead to serious problems caused by an expected depletion of fuels. Moreover, dangerous gases and vapors emission lead to severe environmental problems during fuel burning. Consequently, most engineering sectors especially the mechanical sectors are looking for improving any machine accompanied by reducing its energy consumption. Crank-Rocker planar mechanism is the most applied in mechanical systems. Besides, it is one of the most significant parts of the machines for obtaining the oscillatory motion. The transmission angle of this mechanism can be considered as an optimum value when its extreme values are equally varied around 90°. In addition, the transmission angle plays an important role in decreasing the required driving power and improving the dynamic properties of the mechanism. Hence, appropriate selection of mechanism links lengthens, which assures optimum transmission angle leads to decreasing the driving power. Moreover, mechanism's links manufactured from composite materials afford link's lightweight, which decreases the required driving torque. Furthermore, wear and corrosion problems can be treated through using composite links instead of using metal ones. This paper is dealing with improving the performance of crank-rocker mechanism using composite links due to their flexural elastic modulus values and stiffness in addition to high damping of composite materials.

Keywords: Composite Material, Crank-Rocker Mechanism, Transmission angle, Design techniques, Power Saving

Procedia PDF Downloads 290
9219 Design of Low-Emission Catalytically Stabilized Combustion Chamber Concept

Authors: Annapurna Basavaraju, Andreas Marn, Franz Heitmeir

Abstract:

The Advisory Council for Aeronautics Research in Europe (ACARE) is cognizant for the overall reduction of NOx emissions by 80% in its vision 2020. Moreover small turbo engines have higher fuel specific emissions compared to large engines due to their limited combustion chamber size. In order to fulfill these requirements, novel combustion concepts are essential. This motivates to carry out the research on the current state of art, catalytic stabilized combustion chamber using hydrogen in small jet engines which are designed and investigated both numerically and experimentally during this project. Catalytic combustion concepts can also be adopted for low caloric fuels and are therefore not constrained to only hydrogen. However, hydrogen has high heating value and has the major advantage of producing only the nitrogen oxides as pollutants during the combustion, thus eliminating the interest on other emissions such as Carbon monoxides etc. In the present work, the combustion chamber is designed based on the ‘Rich catalytic Lean burn’ concept. The experiments are conducted for the characteristic operating range of an existing engine. This engine has been tested successfully at Institute of Thermal Turbomachinery and Machine Dynamics (ITTM), Technical University Graz. One of the facts that the efficient combustion is a result of proper mixing of fuel-air mixture, considerable significance is given to the selection of appropriate mixer. This led to the design of three diverse configurations of mixers and is investigated experimentally and numerically. Subsequently the best mixer would be equipped in the main combustion chamber and used throughout the experimentation. Furthermore, temperatures and pressures would be recorded at various locations inside the combustion chamber and the exhaust emissions will also be analyzed. The instrumented combustion chamber would be inspected at the engine relevant inlet conditions for nine different sets of catalysts at the Hot Flow Test Facility (HFTF) of the institute.

Keywords: catalytic combustion, gas turbine, hydrogen, mixer, NOx emissions

Procedia PDF Downloads 295
9218 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 58
9217 Crude Extracts of Medicinal Plants Can Inhibit Some Bacteria of Clinical Importance in Minced Meat

Authors: Chika C. Ogueke, Ijeoma M. Agunwah

Abstract:

The antimicrobial activities and preservative potentials of crude extracts of Alstonia boonei stem bark and Euphorbia hirta leaves were studied. Soxhlet extraction and cold ethanol extraction methods were used for the extraction of the dried and ground plant samples. Well in agar diffusion method was used for the antimicrobial screening at different concentrations of 25mg/ml, 50mg/ml, 100mg/ml and 200mg/ml on E.coli and B.subtilis. The preservative effects of the extracts at 0.1%, 0.2% and 0.3% singly and in combination were determined in minced meat using E. coli and B. subtilis as test isolates. Phytochemical analysis was also conducted on the extracts using standard analytical methods. E.hirta cold and A.boonei cold extracts gave the highest zone of growth inhibition on E. coli and B.substilis with 20mm zone diameter at 200mg/ml concentration. Phytochemical analysis revealed the presence of alkaloids, flavonoids, tannins, saponins and cardiac glycosides. A.boonei at 0.1, 0.2 and 0.3% produced a log cycle reduction on the growth of E.coli. Mixture of A. boonei and E. hirta extracts (1:1) at 0.1% and 0.2% also produced a log cycle reduction on the growth of E.coli and B. subtilis, however the A. boonei extracts had more significant effect on the isolates. The observed antimicrobial activities are attributed to the phytochemicals identified in the extracts. The results reveal the potentials of plant extracts as natural antimicrobial preservatives in minced meat. Thus the crude extracts can act as inhibitors of bacteria in a food system. Upon further purification better results may be obtained.

Keywords: antimicrobial preservative, crude extracts, minced meat, test isolates

Procedia PDF Downloads 273
9216 Assessing the Adoption of Health Information Systems in a Resource-Constrained Country: A Case of Uganda

Authors: Lubowa Samuel

Abstract:

Health information systems, often known as HIS, are critical components of the healthcare system to improve health policies and promote global health development. In a broader sense, HIS as a system integrates data collecting, processing, reporting, and making use of various types of data to improve healthcare efficacy and efficiency through better management at all levels of healthcare delivery. The aim of this study is to assess the adoption of health information systems (HIS) in a resource-constrained country drawing from the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) model. The results indicate that the user's perception of the technology and the poor information technology infrastructures contribute a lot to the low adoption of HIS in resource-constrained countries.

Keywords: health information systems, resource-constrained countries, health information systems

Procedia PDF Downloads 104
9215 How to Use Big Data in Logistics Issues

Authors: Mehmet Akif Aslan, Mehmet Simsek, Eyup Sensoy

Abstract:

Big Data stands for today’s cutting-edge technology. As the technology becomes widespread, so does Data. Utilizing massive data sets enable companies to get competitive advantages over their adversaries. Out of many area of Big Data usage, logistics has significance role in both commercial sector and military. This paper lays out what big data is and how it is used in both military and commercial logistics.

Keywords: big data, logistics, operational efficiency, risk management

Procedia PDF Downloads 628
9214 Prospection of Technology Production in Physiotherapy in Brazil

Authors: C. M. Priesnitz, G. Zanandrea, J. P. Fabris, S. L. Russo, M. E. Camargo

Abstract:

This study aimed to the prospection the physiotherapy area technological production registered with the National Intellectual Property Institute (INPI) in Brazil, for understand the evolution of the technological production in the country over time and visualize the distribution this production request in Brazil. There was an evolution in the technology landscape, where the average annual deposits had an increase of 102%, from 3.14 before the year 2004 to 6,33 after this date. It was found differences in the distribution of the number the deposits requested to each Brazilian region, being that of the 132 request, 68,9% were from the southeast region. The international patent classification evaluated the request deposits, and the more found numbers were A61H and A63B. So even with an improved panorama of technology production, this should still have incentives since it is an important tool for the development of the country.

Keywords: distribution, evolution, patent, physiotherapy, technological prospecting

Procedia PDF Downloads 315
9213 Augmented Reality as Enhancer of the Lean Philosophy: An Exploratory Study

Authors: P. Gil, F. Charrua-Santos, A. A. Baptista, S. Azevedo, A. Espirito-Santo, J. Páscoa

Abstract:

Lean manufacturing is a philosophy of industrial management that aims to identify and eliminate any waste that exists in the companies. The augmented reality is a new technology that stills being developed in terms of software and hardware. This technology consists of an image capture device, a device for data processing and an image visualization equipment to visualize collected and processed images. It is characterized by being a technology that merges the reality with the virtual environment, so there is an instantaneous interaction between the two environments. The present work intends to demonstrate that the use of the augmented reality will contribute to improve some tools and methods used in Lean manufacturing philosophy. Through several examples of application in industry it will be demonstrated that the technological impact of the augmented reality on the Lean Manufacturing philosophy contribute to added value improvements.

Keywords: lean manufacturing, augmented reality, case studies, value

Procedia PDF Downloads 612
9212 Awareness of Genetically Modified Products Among Malaysian Consumers

Authors: Muhamad Afiq Faisal, Yahaya, Mohd Faizal, Hamzah

Abstract:

Genetic modification technology allows scientists to alter the genetic information of a particular organism. The technology allows the production of genetically modified organism (GMO) that has the enhanced property compared to the unmodified organism. The application of such technology is not only in agriculture industry, it is now has been applied extensively in biopharmaceutical industry such as transgenic vaccines. In Malaysia, Biosafety Act 2007 has been enacted in which all GMO-based products must be labeled with adequate information before being marketed. This paper aims to determine the awareness level amongst Malaysian consumers on the GM products available in the market and the efficiency of information supplied in the GM product labeling. The result of the survey will serve as a guideline for Malaysia government agency bodies to provide comprehensive yet efficient information to consumers for the purpose of GM product labeling in the near future. In conclusion, the efficiency of information delivery plays a vital role in ensuring that the information is being conveyed clearly to Malaysian consumers during the selection process of GM products available in the market.

Keywords: genetic modification technology, genetically modified organisms, genetically modified organism products labeling, Biosafety Act 2007

Procedia PDF Downloads 346
9211 An Exploration of Science, Technology, Engineering, Arts, and Mathematics Competition from the Perspective of Arts

Authors: Qiao Mao

Abstract:

There is a growing number of studies concerning STEM (Science, Technology, Engineering, and Mathematics) and STEAM (Science, Technology, Engineering, Arts, and Mathematics). However, the research is little on STEAM competitions from Arts' perspective. This study takes the annual PowerTech STEAM competition in Taiwan as an example. In this activity, students are asked to make wooden bionic mechanical beasts on the spot and participate in a model and speed competition. This study aims to explore how Arts influences STEM after it involves in the making of mechanical beasts. A case study method is adopted. Through expert sampling, five prize winners in the PowerTech Youth Science and Technology Creation Competition and their supervisors are taken as the research subjects. Relevant data which are collected, sorted out, analyzed and interpreted afterwards, derive from observations, interview and document analyses, etc. The results of the study show that in the PowerTech Youth Science and Technology Creation Competition, when Arts involves in STEM, (1) it has an impact on the athletic performance, balance, stability and symmetry of mechanical beasts; (2) students become more interested and more creative in making STEAM mechanical beasts, which can promote students' learning of STEM; (3) students encounter more difficulties and problems when making STEAM mechanical beasts, and need to have more systematic thinking and design thinking to solve problems.

Keywords: PowerTech, STEAM contest, mechanical beast, arts' role

Procedia PDF Downloads 74
9210 Application of Digital Tools for Improving Learning

Authors: José L. Jiménez

Abstract:

The use of technology in the classroom is an issue that is constantly evolving. Digital age students learn differently than their teachers did, so now the teacher should be constantly evolving their methods and teaching techniques to be more in touch with the student. In this paper a case study presents how were used some of these technologies by accompanying a classroom course, this in order to provide students with a different and innovative experience as their teacher usually presented the activities to develop. As students worked in the various activities, they increased their digital skills by employing unknown tools that helped them in their professional training. The twenty-first century teacher should consider the use of Information and Communication Technologies in the classroom thinking in skills that students of the digital age should possess. It also takes a brief look at the history of distance education and it is also highlighted the importance of integrating technology as part of the student's training.

Keywords: digital tools, on-line learning, social networks, technology

Procedia PDF Downloads 383
9209 Ultra-Fast pH-Gradient Ion Exchange Chromatography for the Separation of Monoclonal Antibody Charge Variants

Authors: Robert van Ling, Alexander Schwahn, Shanhua Lin, Ken Cook, Frank Steiner, Rowan Moore, Mauro de Pra

Abstract:

Purpose: Demonstration of fast high resolution charge variant analysis for monoclonal antibody (mAb) therapeutics within 5 minutes. Methods: Three commercially available mAbs were used for all experiments. The charge variants of therapeutic mAbs (Bevacizumab, Cetuximab, Infliximab, and Trastuzumab) are analyzed on a strong cation exchange column with a linear pH gradient separation method. The linear gradient from pH 5.6 to pH 10.2 is generated over time by running a linear pump gradient from 100% Thermo Scientific™ CX-1 pH Gradient Buffer A (pH 5.6) to 100% CX-1 pH Gradient Buffer B (pH 10.2), using the Thermo Scientific™ Vanquish™ UHPLC system. Results: The pH gradient method is generally applicable to monoclonal antibody charge variant analysis. In conjunction with state-of-the-art column and UHPLC technology, ultra fast high-resolution separations are consistently achieved in under 5 minutes for all mAbs analyzed. Conclusion: The linear pH gradient method is a platform method for mAb charge variant analysis. The linear pH gradient method can be easily optimized to improve separations and shorten cycle times. Ultra-fast charge variant separation is facilitated with UHPLC that complements, and in some instances outperforms CE approaches in terms of both resolution and throughput.

Keywords: charge variants, ion exchange chromatography, monoclonal antibody, UHPLC

Procedia PDF Downloads 427
9208 A Model for Predicting Organic Compounds Concentration Change in Water Associated with Horizontal Hydraulic Fracturing

Authors: Ma Lanting, S. Eguilior, A. Hurtado, Juan F. Llamas Borrajo

Abstract:

Horizontal hydraulic fracturing is a technology to increase natural gas flow and improve productivity in the low permeability formation. During this drilling operation tons of flowback and produced water which contains many organic compounds return to the surface with a potential risk of influencing the surrounding environment and human health. A mathematical model is urgently needed to represent organic compounds in water transportation process behavior and the concentration change with time throughout the hydraulic fracturing operation life cycle. A comprehensive model combined Organic Matter Transport Dynamic Model with Two-Compartment First-order Model Constant (TFRC) Model has been established to quantify the organic compounds concentration. This algorithm model is composed of two transportation parts based on time factor. For the fast part, the curve fitting technique is applied using flowback water data from the Marcellus shale gas site fracturing and the coefficients of determination (R2) from all analyzed compounds demonstrate a high experimental feasibility of this numerical model. Furthermore, along a decade of drilling the concentration ratio curves have been estimated by the slow part of this model. The result shows that the larger value of Koc in chemicals, the later maximum concentration in water will reach, as well as all the maximum concentrations percentage would reach up to 90% of initial concentration from shale formation within a long sufficient period.

Keywords: model, shale gas, concentration, organic compounds

Procedia PDF Downloads 210
9207 Development of LSM/YSZ Composite Anode Materials for Solid Oxide Electrolysis Cells

Authors: Christian C. Vaso, Rinlee Butch M. Cervera

Abstract:

Solid oxide electrolysis cell (SOEC) is a promising technology for hydrogen production that will contribute to the sustainable energy of the future. An important component of this SOEC is the anode material and one of the promising anode material for such application is the Sr-doped LaMnO3 (LSM) and Yttrium-stabilized ZrO2 (YSZ) composite material. In this study, LSM/YSZ with different weight percent compositions of LSM and YSZ were synthesized using solid-state reaction method. The obtained samples, 60LSM/40YSZ, 50LSM/50YSZ, and 40LSM/60YSZ, were fully characterized for its microstructure using X-ray diffraction, FTIR, and SEM/EDS. EDS analysis confirmed the elemental composition and distribution of the synthesized samples. Surface morphology of the sample using SEM exhibited a well sintered and densified samples and revealed a beveled cube-like LSM morphology while the YSZ phase appeared to have a sphere-like microstructure. Density measurements using Archimedes principle showed relative densities greater than 90%. In addition, AC impedance measurement of the synthesized samples have been investigated at intermediate temperature range (400-700 °C) in an inert and oxygen gas flow environment. At pure states, LSM exhibited a high electronic conductivity while YSZ demonstrated an ionic conductivity of 3.25 x 10-4 S/cm at 700 °C under Oxygen gas environment with calculated activation energy of 0.85eV. The composite samples were also studied and revealed that as the YSZ content of the composite electrode increases, the total conductivity decreases.

Keywords: ceramic composites, fuel cells, strontium lanthanum manganite, yttria partially-stabilized zirconia

Procedia PDF Downloads 298
9206 Impact of Task Technology Fit on User Effectiveness, Efficiency and Creativity in Iranian Pharmaceutical Oraganizations

Authors: Milad Keshvardoost, Amir Khanlari, Nader Khalesi

Abstract:

Background: Any firm in the pharmaceutical industry requires efficient and effective management information systems (MIS) to support managerial functions. Purpose: The aim of this study is to investigate the impact of Task-Technology Fit on user effectiveness, efficiency, and creativity in Iranian pharmaceutical companies. Methodology: 345 reliable and validate questionnaires were distributed among selected samples, through the cluster method, to Information system users of eight leading Iranian pharmaceutical companies, based on the likert scale. The proposed model of the article is based on a model with Task technology fit, on user performance with the definition of efficiency, effectiveness, and creativity through mediation effects of perceived usefulness and ease of use. Results: This study confirmed that TTF with definitions of adequacy and compatibility has positive impacts on user performance Conclusion: We concluded that pharmaceutical users of IS, utilizing a system with a precise and intense observation of users' demands, may make facilitation for them to design an exclusive IS framework.

Keywords: information systems, user performance, pharmaceuticals, task technology fit

Procedia PDF Downloads 156
9205 Analysis of Possible Equipment in the Reduction Unit of a Low Tonnage Liquefied Natural Gas Production Plant

Authors: Pavel E. Mikriukov

Abstract:

The demand for natural gas (NG) is increasing every year around the world, so it is necessary to produce and transport NG in large quantities. To solve this problem, liquefied natural gas (LNG) plants are used, using different equipment and different technologies to achieve the required LNG quality. To determine the best efficiency of the LNG liquefaction plant, it is necessary to analyze the equipment used in this process and identify other technological solutions for LNG production using more productive and energy-efficient equipment. Based on this, mathematical models of the technological process of the LNG plant were created, which are based on a two-circuit system of heat exchange equipment and a nitrogen isolated cycle for NG cooling. The final liquefaction of natural gas is performed on the construction of the basic principle of the Joule-Thompson effect. The pressure and temperature drop are considered on different types of equipment such as throttle valve, which was used in the basic scheme; turbo expander and supersonic separator, which act as new equipment, to be compared with the efficiency of the basic scheme of the unit. New configurations of LNG plants are suggested, which can be used in almost all LNG facilities. As a result of the analysis, it turned out that the turbo expander and the supersonic separator have comparatively equal potential in comparison with the baseline scheme execution on the throttle valve. A more rational method of selecting the technology and the equipment used for natural gas liquefaction can improve the efficiency of low-tonnage plants and reduce the cost of gas for own needs.

Keywords: gas liquefaction, gas, Joule-Thompson effect, LNG, low-tonnage LNG, supersonic separator, Throttle valve, turbo expander

Procedia PDF Downloads 95
9204 The Flipped Education Case Study on Teacher Professional Learning Community in Technology and Media Implementation

Authors: Juei-Hsin Wang, Yen-Ting Chen

Abstract:

The paper examines teacher professional learning community theory and implementation by using technology and media tools in Taiwan. After literature review, the researcher concluded in five elements of teacher professional learning community theory. They are ‘sharing the vision and value', ‘collaborative cooperation’, ‘ to support the situation', ‘to share practice' and 'Pay Attention to Student Learning Effectiveness' five levels by using technology and media in flipped education. Teacher professional learning community is one kind of models for teacher professional development in flipped education. Due to Taiwan education culture, there is no summative evaluation for teachers. So, there are multiple kinds of ways and education practice in teacher professional learning community nowadays. This study used literature review and quality analysis to analyze the connection theory and practice and discussed the official and non‐official strategies on teacher professional learning community by using technology and media in flipped education. The tablet is used as a camera tool for classroom students to solve problems. The students can instantly see and enable other students to watch the whole class discussion by operating the tablet. This would allow teachers and students to focus on discussing the connotation of subjects, especially bottom‐up and non‐official cases from teachers become an important influence in Taiwan.

Keywords: professional learning community, collaborative cooperation, flipped education, technology application, media application

Procedia PDF Downloads 135
9203 Assessing Students’ Attitudinal Response towards the Use of Virtual Reality in a Mandatory English Class at a Women’s University in Japan

Authors: Felix David

Abstract:

The use of virtual reality (VR) technology is still in its infancy. This is especially true in a Japanese educational context with very little to no exposition of VR technology inside classrooms. Technology is growing and changing rapidly in America, but Japan seems to be lagging behind in integrating VR into its curriculum. The aim of this research was to expose 111 students from Hiroshima Jogakuin University (HJU) to seven classes that involved virtual reality content and assess students’ attitudinal responses toward this new technology. The students are all female, and they are taking the “Kiso Eigo/基礎英語” or “Foundation English” course, which is mandatory for all first-year and second-year students. Two surveys were given, one before the treatment and a second survey after the treatment, which in this case means the seven VR classes. These surveys first established that the technical environment could accommodate VR activities in terms of internet connection, VR headsets, and the quality of the smartphone’s screen. Based on the attitudinal responses gathered in this research, VR is perceived by students as “fun,” useful to “learn about the world,” as well as being useful to “learn about English.” This research validates VR as a worthy educational tool and should therefore continue being an integral part of the mandatory English course curriculum at HJU University.

Keywords: virtual reality, smartphone, English learning, curriculum

Procedia PDF Downloads 50