Search results for: non-formal learning contexts
5946 Evaluation of Pragmatic Information in an English Textbook: Focus on Requests
Authors: Israa A. Qari
Abstract:
Learning to request in a foreign language is a key ability within pragmatics language teaching. This paper examines how requests are taught in English Unlimited Book 3 (Cambridge University Press), an EFL textbook series employed by King Abdulaziz University in Jeddah, Saudi Arabia to teach advanced foundation year students English. The focus of analysis is the evaluation of the request linguistic strategies present in the textbook, frequency of the use of these strategies, and the contextual information provided on the use of these linguistic forms. The researcher collected all the linguistic forms which consisted of the request speech act and divided them into levels employing the CCSARP request coding manual. Findings demonstrated that simple and commonly employed request strategies are introduced. Looking closely at the exercises throughout the chapters, it was noticeable that the book exclusively employed the most direct form of requesting (the imperative) when giving learners instructions: e.g. listen, write, ask, answer, read, look, complete, choose, talk, think, etc. The book also made use of some other request strategies such as ‘hedged performatives’ and ‘query preparatory’. However, it was also found that many strategies were not dealt with in the book, specifically strategies with combined functions (e.g. possibility, ability). On a sociopragmatic level, a strong focus was found to exist on standard situations in which relations between the requester and requestee are clear. In general, contextual information was communicated implicitly only. The textbook did not seem to differentiate between formal and informal request contexts (register) which might consequently impel students to overgeneralize. The paper closes with some recommendations for textbook and curriculum designers. Findings are also contrasted with previous results from similar body of research on EFL requests.Keywords: EFL, requests, saudi, speech acts, textbook evaluation
Procedia PDF Downloads 1345945 Evaluating the Learning Outcomes of Physical Therapy Clinical Fieldwork Course
Authors: Hui-Yi Wang, Shu-Mei Chen, Mei-Fang Liu
Abstract:
Background and purpose: Providing clinical experience in medical education is an important discipline method where students can gradually apply their academic knowledge to clinical situations. The purpose of this study was to establish self-assessment questionnaires for students to assess their learning outcomes for two fields of physical therapy, orthopedic physical therapy, and pediatric physical therapy, in a clinical fieldwork course. Methods: The questionnaires were developed based on the core competence dimensions of the course. The content validity of the questionnaires was evaluated and established by expert meetings. Among the third-year undergraduate students who took the clinical fieldwork course, there were 49 students participated in this study. Teachers arranged for the students to study two professional fields, and each professional field conducted a three-week clinical lesson. The students filled out the self-assessment questionnaires before and after each three-week lesson. Results: The self-assessment questionnaires were established by expert meetings that there were six core competency dimensions in each of the two fields, with 20 and 21 item-questions, respectively. After each three-week clinical fieldwork, the self-rating scores in each core competency dimension were higher when compared to those before the course, indicating having better clinical abilities after the lessons. The best self-rating scores were the dimension of attitude and humanistic literacy, and the two lower scores were the dimensions of professional knowledge and skills and problem-solving critical thinking. Conclusions: This study developed questionnaires for clinical fieldwork courses to reflect students' learning outcomes, including the performance of professional knowledge, practice skills, and professional attitudes. The use of self-assessment of learning performance can help students build up their reflective competencies. Teachers can guide students to pay attention to the performance of abilities in each core dimension to enhance the effectiveness of learning through self-reflection and improvement.Keywords: physical therapy, clinical fieldwork course, learning outcomes assessment, medical education, self-reflection ability
Procedia PDF Downloads 1165944 Leveraging xAPI in a Corporate e-Learning Environment to Facilitate the Tracking, Modelling, and Predictive Analysis of Learner Behaviour
Authors: Libor Zachoval, Daire O Broin, Oisin Cawley
Abstract:
E-learning platforms, such as Blackboard have two major shortcomings: limited data capture as a result of the limitations of SCORM (Shareable Content Object Reference Model), and lack of incorporation of Artificial Intelligence (AI) and machine learning algorithms which could lead to better course adaptations. With the recent development of Experience Application Programming Interface (xAPI), a large amount of additional types of data can be captured and that opens a window of possibilities from which online education can benefit. In a corporate setting, where companies invest billions on the learning and development of their employees, some learner behaviours can be troublesome for they can hinder the knowledge development of a learner. Behaviours that hinder the knowledge development also raise ambiguity about learner’s knowledge mastery, specifically those related to gaming the system. Furthermore, a company receives little benefit from their investment if employees are passing courses without possessing the required knowledge and potential compliance risks may arise. Using xAPI and rules derived from a state-of-the-art review, we identified three learner behaviours, primarily related to guessing, in a corporate compliance course. The identified behaviours are: trying each option for a question, specifically for multiple-choice questions; selecting a single option for all the questions on the test; and continuously repeating tests upon failing as opposed to going over the learning material. These behaviours were detected on learners who repeated the test at least 4 times before passing the course. These findings suggest that gauging the mastery of a learner from multiple-choice questions test scores alone is a naive approach. Thus, next steps will consider the incorporation of additional data points, knowledge estimation models to model knowledge mastery of a learner more accurately, and analysis of the data for correlations between knowledge development and identified learner behaviours. Additional work could explore how learner behaviours could be utilised to make changes to a course. For example, course content may require modifications (certain sections of learning material may be shown to not be helpful to many learners to master the learning outcomes aimed at) or course design (such as the type and duration of feedback).Keywords: artificial intelligence, corporate e-learning environment, knowledge maintenance, xAPI
Procedia PDF Downloads 1215943 Doing More with Less: Passion for Entrepreneurship in the Research-Constraint Contexts of Developing and Emerging Economies
Authors: Marcel Hechler
Abstract:
Since passion is considered one of the most important motivating factors for entrepreneurship, we examined the influence of the availability of resources and information on the emergence of a harmonious passion for entrepreneurship (HPE). Drawing on self-determination theory and a cross-cultural sample of 1,085 entrepreneurs from seven developing countries, we argue that the availability of resources and information increases an entrepreneur's autonomy and, thus, promotes the emergence of HPE.Keywords: harmonious passion, access to resources and information, developing and emerging countries, self-determination theory
Procedia PDF Downloads 1645942 Individual Differences and Language Learning Strategies
Authors: Nilgun Karatas, Bihter Sakin
Abstract:
In this study, the relationships between the use of language learning strategies and English language exit exam success were investigated in the university EFL learners’ context. The study was conducted at Fatih University Prep School. To collect data 3 classes from the A1 module in English language classes completed a questionnaire known as the English Language Learning Strategy Inventory or ELLSI. The data for the present study were collected from the preparatory class students who are studying English as a second language at the School of Foreign Languages. The students were placed into four different levels of English, namely A1, A2, B1, and B2 level of English competency according to European Union Language Proficiency Standard, by means of their English placement test results. The Placement test was conveyed at the beginning of the spring semester in 2014-2015.The ELLSI consists of 30 strategy items which students are asked to rate from 1 (low frequency) to 5 (high frequency) according to how often they use them. The questionnaire and exit exam results were entered onto SPSS and analyzed for mean frequencies and statistical differences. Spearman and Pearson correlation were used in a detailed way. There were no statistically significant results between the frequency of strategy use and exit exam results. However, most questions correlate at a significant level with some of the questions.Keywords: individual differences, language learning strategies, Fatih University, English language
Procedia PDF Downloads 4915941 Advancements in AI Training and Education for a Future-Ready Healthcare System
Authors: Shamie Kumar
Abstract:
Background: Radiologists and radiographers (RR) need to educate themselves and their colleagues to ensure that AI is integrated safely, useful, and in a meaningful way with the direction it always benefits the patients. AI education and training are fundamental to the way RR work and interact with it, such that they feel confident using it as part of their clinical practice in a way they understand it. Methodology: This exploratory research will outline the current educational and training gaps for radiographers and radiologists in AI radiology diagnostics. It will review the status, skills, challenges of educating and teaching. Understanding the use of artificial intelligence within daily clinical practice, why it is fundamental, and justification on why learning about AI is essential for wider adoption. Results: The current knowledge among RR is very sparse, country dependent, and with radiologists being the majority of the end-users for AI, their targeted training and learning AI opportunities surpass the ones available to radiographers. There are many papers that suggest there is a lack of knowledge, understanding, and training of AI in radiology amongst RR, and because of this, they are unable to comprehend exactly how AI works, integrates, benefits of using it, and its limitations. There is an indication they wish to receive specific training; however, both professions need to actively engage in learning about it and develop the skills that enable them to effectively use it. There is expected variability amongst the profession on their degree of commitment to AI as most don’t understand its value; this only adds to the need to train and educate RR. Currently, there is little AI teaching in either undergraduate or postgraduate study programs, and it is not readily available. In addition to this, there are other training programs, courses, workshops, and seminars available; most of these are short and one session rather than a continuation of learning which cover a basic understanding of AI and peripheral topics such as ethics, legal, and potential of AI. There appears to be an obvious gap between the content of what the training program offers and what the RR needs and wants to learn. Due to this, there is a risk of ineffective learning outcomes and attendees feeling a lack of clarity and depth of understanding of the practicality of using AI in a clinical environment. Conclusion: Education, training, and courses need to have defined learning outcomes with relevant concepts, ensuring theory and practice are taught as a continuation of the learning process based on use cases specific to a clinical working environment. Undergraduate and postgraduate courses should be developed robustly, ensuring the delivery of it is with expertise within that field; in addition, training and other programs should be delivered as a way of continued professional development and aligned with accredited institutions for a degree of quality assurance.Keywords: artificial intelligence, training, radiology, education, learning
Procedia PDF Downloads 855940 A Machine Learning Model for Dynamic Prediction of Chronic Kidney Disease Risk Using Laboratory Data, Non-Laboratory Data, and Metabolic Indices
Authors: Amadou Wurry Jallow, Adama N. S. Bah, Karamo Bah, Shih-Ye Wang, Kuo-Chung Chu, Chien-Yeh Hsu
Abstract:
Chronic kidney disease (CKD) is a major public health challenge with high prevalence, rising incidence, and serious adverse consequences. Developing effective risk prediction models is a cost-effective approach to predicting and preventing complications of chronic kidney disease (CKD). This study aimed to develop an accurate machine learning model that can dynamically identify individuals at risk of CKD using various kinds of diagnostic data, with or without laboratory data, at different follow-up points. Creatinine is a key component used to predict CKD. These models will enable affordable and effective screening for CKD even with incomplete patient data, such as the absence of creatinine testing. This retrospective cohort study included data on 19,429 adults provided by a private research institute and screening laboratory in Taiwan, gathered between 2001 and 2015. Univariate Cox proportional hazard regression analyses were performed to determine the variables with high prognostic values for predicting CKD. We then identified interacting variables and grouped them according to diagnostic data categories. Our models used three types of data gathered at three points in time: non-laboratory, laboratory, and metabolic indices data. Next, we used subgroups of variables within each category to train two machine learning models (Random Forest and XGBoost). Our machine learning models can dynamically discriminate individuals at risk for developing CKD. All the models performed well using all three kinds of data, with or without laboratory data. Using only non-laboratory-based data (such as age, sex, body mass index (BMI), and waist circumference), both models predict chronic kidney disease as accurately as models using laboratory and metabolic indices data. Our machine learning models have demonstrated the use of different categories of diagnostic data for CKD prediction, with or without laboratory data. The machine learning models are simple to use and flexible because they work even with incomplete data and can be applied in any clinical setting, including settings where laboratory data is difficult to obtain.Keywords: chronic kidney disease, glomerular filtration rate, creatinine, novel metabolic indices, machine learning, risk prediction
Procedia PDF Downloads 1055939 Real-Time Generative Architecture for Mesh and Texture
Abstract:
In the evolving landscape of physics-based machine learning (PBML), particularly within fluid dynamics and its applications in electromechanical engineering, robot vision, and robot learning, achieving precision and alignment with researchers' specific needs presents a formidable challenge. In response, this work proposes a methodology that integrates neural transformation with a modified smoothed particle hydrodynamics model for generating transformed 3D fluid simulations. This approach is useful for nanoscale science, where the unique and complex behaviors of viscoelastic medium demand accurate neurally-transformed simulations for materials understanding and manipulation. In electromechanical engineering, the method enhances the design and functionality of fluid-operated systems, particularly microfluidic devices, contributing to advancements in nanomaterial design, drug delivery systems, and more. The proposed approach also aligns with the principles of PBML, offering advantages such as multi-fluid stylization and consistent particle attribute transfer. This capability is valuable in various fields where the interaction of multiple fluid components is significant. Moreover, the application of neurally-transformed hydrodynamical models extends to manufacturing processes, such as the production of microelectromechanical systems, enhancing efficiency and cost-effectiveness. The system's ability to perform neural transfer on 3D fluid scenes using a deep learning algorithm alongside physical models further adds a layer of flexibility, allowing researchers to tailor simulations to specific needs across scientific and engineering disciplines.Keywords: physics-based machine learning, robot vision, robot learning, hydrodynamics
Procedia PDF Downloads 665938 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 985937 Design and Construction of an Intelligent Multiplication Table for Enhanced Education and Increased Student Engagement
Authors: Zahra Alikhani Koopaei
Abstract:
In the fifth lesson of the third-grade mathematics book, students are introduced to the concept of multiplication. However, some students showed a lack of interest in learning this topic. To address this, a simple electronic multiplication table was designed with the aim of making the concept of multiplication entertaining and engaging for students. It provides them with moments of excitement during the learning process. To achieve this goal, a device was created that produced a bell sound when two wire ends were connected. Each wire end was connected to a specific number in the multiplication table, and the other end was linked to the corresponding answer. Consequently, if the answer is correct, the bell will ring. This study employs interactive and engaging methods to teach mathematics, particularly to students who have previously shown little interest in the subject. By integrating game-based learning and critical thinking, we observed an increase in understanding and interest in learning multiplication compared to before using this method. This further motivated the students. As a result, the intelligent multiplication table was successfully designed. Students, under the instructor's supervision, could easily construct the device during the lesson. Through the implementation of these operations, the concept of multiplication was firmly established in the students' minds. Engaging multiple intelligences in each student enhances a more stable and improved understanding of the concept of multiplication.Keywords: intelligent multiplication table, design, construction, education, increased interest, students
Procedia PDF Downloads 695936 Effectiveness of Visual Auditory Kinesthetic Tactile Technique on Reading Level among Dyslexic Children in Helikx Open School and Learning Centre, Salem
Authors: J. Mano Ranjini
Abstract:
Each and every child is special, born with a unique talent to explore this world. The word Dyslexia is derived from the Greek language in which “dys” meaning poor or inadequate and “lexis” meaning words or language. Dyslexia describes about a different kind of mind, which is often gifted and productive, that learns the concept differently. The main aim of the study is to bring the positive outcome of the reading level by examining the effectiveness of Visual Auditory Kinesthetic Tactile technique on Reading Level among Dyslexic Children at Helikx Open School and Learning Centre. A Quasi experimental one group pretest post test design was adopted for this study. The Reading Level was assessed by using the Schonell Graded Word Reading Test. Thirty subjects were drawn by using purposive sampling technique and the intervention Visual Auditory Kinesthetic Tactile technique was implemented to the Dyslexic Children for 30 consecutive days followed by the post Reading Level assessment revealed the improvement in the mean score value of reading level by 12%. Multi-sensory (VAKT) teaching uses all learning pathways in the brain (visual, auditory, kinesthetic-tactile) in order to enhance memory and learning and the ability in uplifting emotional, physical and societal dimensions. VAKT is an effective method to improve the reading skill of the Dyslexic Children that ensures the enormous significance of learning thereby influencing the wholesome of the child’s life.Keywords: visual auditory kinesthetic tactile technique, reading level, dyslexic children, Helikx Open School
Procedia PDF Downloads 6005935 Efficient Manageability and Intelligent Classification of Web Browsing History Using Machine Learning
Authors: Suraj Gururaj, Sumantha Udupa U.
Abstract:
Browsing the Web has emerged as the de facto activity performed on the Internet. Although browsing gets tracked, the manageability aspect of Web browsing history is very poor. In this paper, we have a workable solution implemented by using machine learning and natural language processing techniques for efficient manageability of user’s browsing history. The significance of adding such a capability to a Web browser is that it ensures efficient and quick information retrieval from browsing history, which currently is very challenging. Our solution guarantees that any important websites visited in the past can be easily accessible because of the intelligent and automatic classification. In a nutshell, our solution-based paper provides an implementation as a browser extension by intelligently classifying the browsing history into most relevant category automatically without any user’s intervention. This guarantees no information is lost and increases productivity by saving time spent revisiting websites that were of much importance.Keywords: adhoc retrieval, Chrome extension, supervised learning, tile, Web personalization
Procedia PDF Downloads 3765934 EFL Saudi Students' Use of Vocabulary via Twitter
Authors: A. Alshabeb
Abstract:
Vocabulary is one of the elements that links the four skills of reading, writing, speaking, and listening and is very critical in learning a foreign language. This study aims to determine how Saudi Arabian EFL students learn English vocabulary via Twitter. The study adopts a mixed sequential research design in collecting and analysing data. The results of the study provide several recommendations for vocabulary learning. Moreover, the study can help teachers to consider the possibilities of using Twitter further, and perhaps to develop new approaches to vocabulary teaching and to support students in their use of social media.Keywords: social media, twitter, vocabulary, web 2
Procedia PDF Downloads 4195933 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool
Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi
Abstract:
The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.Keywords: data analysis, deep learning, LSTM neural network, netflix
Procedia PDF Downloads 2505932 A Mutually Exclusive Task Generation Method Based on Data Augmentation
Authors: Haojie Wang, Xun Li, Rui Yin
Abstract:
In order to solve the memorization overfitting in the meta-learning MAML algorithm, a method of generating mutually exclusive tasks based on data augmentation is proposed. This method generates a mutex task by corresponding one feature of the data to multiple labels, so that the generated mutex task is inconsistent with the data distribution in the initial dataset. Because generating mutex tasks for all data will produce a large number of invalid data and, in the worst case, lead to exponential growth of computation, this paper also proposes a key data extraction method, that only extracts part of the data to generate the mutex task. The experiments show that the method of generating mutually exclusive tasks can effectively solve the memorization overfitting in the meta-learning MAML algorithm.Keywords: data augmentation, mutex task generation, meta-learning, text classification.
Procedia PDF Downloads 935931 Effect of Facilitation in a Problem-Based Environment on the Metacognition, Motivation and Self-Directed Learning in Nursing: A Quasi-Experimental Study among Nurse Students in Tanzania
Authors: Walter M. Millanzi, Stephen M. Kibusi
Abstract:
Background: Currently, there has been a progressive shortage not only to the number but also the quality of medical practitioners for the most of nursing. Despite that, those who are present exhibit unethical and illegal practices, under standard care and malpractices. The concern is raised in the ways they are prepared, or there might be something missing in nursing curricula or how it is delivered. There is a need for transforming or testing new teaching modalities to enhance competent health workforces. Objective: to investigate the Effect of Facilitation in a Problem-based Environment (FPBE) on metacognition, self-directed learning and learning motivation to undergraduate nurse student in Tanzanian higher learning institutions. Methods: quasi-experimental study (quantitative research approach). A purposive sampling technique was employed to select institutions and achieving a sample size of 401 participants (interventional = 134 and control = 267). Self-administered semi-structured questionnaire; was the main data collection methods and the Statistical Package for Service Solution (v. 20) software program was used for data entry, data analysis, and presentations. Results: The pre-post test results between groups indicated noticeably significant change on metacognition in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05). SDL in an intervention (M = 1.52, SD = 0.501) against the control (M = 1.40, SD = 0.490), t (399) = 2.398, p < 0.05. Motivation to learn in an intervention (M = 62.67, SD = 14.14) and the control (n = 267, M = 57.75), t (399) = 2.907, p < 0.01). A FPBE teaching pedagogy, was observed to be effective on the metacognition (AOR = 1.603, p < 0.05), SDL (OR = 1.729, p < 0.05) and Intrinsic motivation in learning (AOR = 1.720, p < 0.05) against conventional teaching pedagogy. Needless, was less likely to enhance Extrinsic motivation (AOR = 0.676, p > 0.05) and Amotivation (AOR = 0.538, p > 0.05). Conclusion and recommendation: FPBE teaching pedagogy, can improve student’s metacognition, self-directed learning and intrinsic motivation to learn among nurse students. Nursing curricula developers should incorporate it to produce 21st century competent and qualified nurses.Keywords: facilitation, metacognition, motivation, self-directed
Procedia PDF Downloads 1885930 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 1675929 Use of Machine Learning in Data Quality Assessment
Authors: Bruno Pinto Vieira, Marco Antonio Calijorne Soares, Armando Sérgio de Aguiar Filho
Abstract:
Nowadays, a massive amount of information has been produced by different data sources, including mobile devices and transactional systems. In this scenario, concerns arise on how to maintain or establish data quality, which is now treated as a product to be defined, measured, analyzed, and improved to meet consumers' needs, which is the one who uses these data in decision making and companies strategies. Information that reaches low levels of quality can lead to issues that can consume time and money, such as missed business opportunities, inadequate decisions, and bad risk management actions. The step of selecting, identifying, evaluating, and selecting data sources with significant quality according to the need has become a costly task for users since the sources do not provide information about their quality. Traditional data quality control methods are based on user experience or business rules limiting performance and slowing down the process with less than desirable accuracy. Using advanced machine learning algorithms, it is possible to take advantage of computational resources to overcome challenges and add value to companies and users. In this study, machine learning is applied to data quality analysis on different datasets, seeking to compare the performance of the techniques according to the dimensions of quality assessment. As a result, we could create a ranking of approaches used, besides a system that is able to carry out automatically, data quality assessment.Keywords: machine learning, data quality, quality dimension, quality assessment
Procedia PDF Downloads 1485928 Higher Education Institution Students’ Perception on Educational Technology
Authors: Kuek Teik Sheng, Leaw Zee Guan, Lim Wah Kien, Ting Tin Tin
Abstract:
Educational technology such as YouTube and Kahoot have arisen as an alternative to effective learning among higher education institutions. There are many researches done in carrying out experiments to test different educational technologies and received positive feedback from students. Yet, similar study is hardly found in Malaysia especially study that includes the latest educational technologies. As a developing country, it is crucial to ensure that these emerging technologies are assisting students in learning process before it is widely adopted in institutions. This paper conducted a study to explore the perception of higher education institution students on the current educational technologies in Malaysia which include online educational games, online videos/course, social media, presentation tools and resource management tool. Some of these technologies have not been looked into its potential in effective learning process. An online survey using questionnaire is conducted among a target of 300 university/college. In the survey, the result shows that majority of the target students in Malaysia agree that the current educational technologies help them in learning, understanding and manage their studies. It is necessary to discover students’ perceptions on the educational technologies in order to provide guidelines for the educators/institutions in selecting appropriate technology to conduct the lecture/tutorial efficiently and effectively.Keywords: education, educational technology, Facebook, PowerPoint, YouTube
Procedia PDF Downloads 2425927 Improving Literacy Level Through Digital Books for Deaf and Hard of Hearing Students
Authors: Majed A. Alsalem
Abstract:
In our contemporary world, literacy is an essential skill that enables students to increase their efficiency in managing the many assignments they receive that require understanding and knowledge of the world around them. In addition, literacy enhances student participation in society improving their ability to learn about the world and interact with others and facilitating the exchange of ideas and sharing of knowledge. Therefore, literacy needs to be studied and understood in its full range of contexts. It should be seen as social and cultural practices with historical, political, and economic implications. This study aims to rebuild and reorganize the instructional designs that have been used for deaf and hard-of-hearing (DHH) students to improve their literacy level. The most critical part of this process is the teachers; therefore, teachers will be the center focus of this study. Teachers’ main job is to increase students’ performance by fostering strategies through collaborative teamwork, higher-order thinking, and effective use of new information technologies. Teachers, as primary leaders in the learning process, should be aware of new strategies, approaches, methods, and frameworks of teaching in order to apply them to their instruction. Literacy from a wider view means acquisition of adequate and relevant reading skills that enable progression in one’s career and lifestyle while keeping up with current and emerging innovations and trends. Moreover, the nature of literacy is changing rapidly. The notion of new literacy changed the traditional meaning of literacy, which is the ability to read and write. New literacy refers to the ability to effectively and critically navigate, evaluate, and create information using a range of digital technologies. The term new literacy has received a lot of attention in the education field over the last few years. New literacy provides multiple ways of engagement, especially to those with disabilities and other diverse learning needs. For example, using a number of online tools in the classroom provides students with disabilities new ways to engage with the content, take in information, and express their understanding of this content. This study will provide teachers with the highest quality of training sessions to meet the needs of DHH students so as to increase their literacy levels. This study will build a platform between regular instructional designs and digital materials that students can interact with. The intervention that will be applied in this study will be to train teachers of DHH to base their instructional designs on the notion of Technology Acceptance Model (TAM) theory. Based on the power analysis that has been done for this study, 98 teachers are needed to be included in this study. This study will choose teachers randomly to increase internal and external validity and to provide a representative sample from the population that this study aims to measure and provide the base for future and further studies. This study is still in process and the initial results are promising by showing how students have engaged with digital books.Keywords: deaf and hard of hearing, digital books, literacy, technology
Procedia PDF Downloads 4895926 Performance Analysis of Traffic Classification with Machine Learning
Authors: Htay Htay Yi, Zin May Aye
Abstract:
Network security is role of the ICT environment because malicious users are continually growing that realm of education, business, and then related with ICT. The network security contravention is typically described and examined centrally based on a security event management system. The firewalls, Intrusion Detection System (IDS), and Intrusion Prevention System are becoming essential to monitor or prevent of potential violations, incidents attack, and imminent threats. In this system, the firewall rules are set only for where the system policies are needed. Dataset deployed in this system are derived from the testbed environment. The traffic as in DoS and PortScan traffics are applied in the testbed with firewall and IDS implementation. The network traffics are classified as normal or attacks in the existing testbed environment based on six machine learning classification methods applied in the system. It is required to be tested to get datasets and applied for DoS and PortScan. The dataset is based on CICIDS2017 and some features have been added. This system tested 26 features from the applied dataset. The system is to reduce false positive rates and to improve accuracy in the implemented testbed design. The system also proves good performance by selecting important features and comparing existing a dataset by machine learning classifiers.Keywords: false negative rate, intrusion detection system, machine learning methods, performance
Procedia PDF Downloads 1185925 Virtual Reality as a Method in Transformative Learning: A Strategy to Reduce Implicit Bias
Authors: Cory A. Logston
Abstract:
It is imperative researchers continue to explore every transformative strategy to increase empathy and awareness of racial bias. Racism is a social and political concept that uses stereotypical ideology to highlight racial inequities. Everyone has biases they may not be aware of toward disparate out-groups. There is some form of racism in every profession; doctors, lawyers, and teachers are not immune. There have been numerous successful and unsuccessful strategies to motivate and transform an individual’s unconscious biased attitudes. One method designed to induce a transformative experience and identify implicit bias is virtual reality (VR). VR is a technology designed to transport the user to a three-dimensional environment. In a virtual reality simulation, the viewer is immersed in a realistic interactive video taking on the perspective of a Black man. The viewer as the character experiences discrimination in various life circumstances growing up as a child into adulthood. For instance, the prejudice felt in school, as an adolescent encountering the police and false accusations in the workplace. Current research suggests that an immersive VR simulation can enhance self-awareness and become a transformative learning experience. This study uses virtual reality immersion and transformative learning theory to create empathy and identify any unintentional racial bias. Participants, White teachers, will experience a VR immersion to create awareness and identify implicit biases regarding Black students. The desired outcome provides a springboard to reconceptualize their own implicit bias. Virtual reality is gaining traction in the research world and promises to be an effective tool in the transformative learning process.Keywords: empathy, implicit bias, transformative learning, virtual reality
Procedia PDF Downloads 1945924 A Review of Teaching and Learning of Mother Tongues in Nigerian Schools; Yoruba as a Case Study
Authors: Alonge Isaac Olusola
Abstract:
Taking a cue from countries such as China and Japan, there is no doubt that the teaching and learning of Mother Tongue ( MT) or Language of Immediate Environment (LIE) is a potential source of development in every country. The engine of economic, scientific, technological and political advancement would be more functional when the language of instruction for teaching and learning in schools is in the child’s mother tongue. The purpose of this paper therefore, is to delve into the genesis of the official recognition given to the teaching and learning of Nigerian languages at national level with special focus on Yoruba language. Yoruba language and other Nigerian languages were placed on a national pedestal by a Nigerian Educational Minister, Late Professor Babatunde Fafunwa, who served under the government of General Ibrahim Babangida (1985 – 1993). Through his laudable effort, the teaching and learning of Nigerian languages in schools all over the nation was incorporated officially in the national policy of education. Among all the Nigerian languages, Hausa, Igbo and Yoruba were given foremost priorities because of the large population of their speakers. Since the Fafunwa era, Yoruba language has become a national subject taught in primary, secondary and tertiary institutions in Nigeria. However, like every new policy, its implementation has suffered several forms of criticisms and impediments from governments, policy makers, curriculum developers, school administrators, teachers and learners. This paper has been able to arrive at certain findings through oral interviews, questionnaires and evaluation of pupils/students enrolment and performances in Yoruba language with special focus on the South-west and North central regions of Nigeria. From the research carried out, some factors have been found to be responsible for the successful implementation or otherwise of Yoruba language instruction policy in some schools, colleges and higher institutions in Nigeria. In conclusion, the paper made recommendations on how the National Policy of Education would be implemented to enhance the teaching and learning of Yoruba language in all Nigerian schools.Keywords: language of immediate environment, mother tongue, national policy of education, yoruba language
Procedia PDF Downloads 5335923 Effect of Semantic Relational Cues in Action Memory Performance over School Ages
Authors: Farzaneh Badinlou, Reza Kormi-Nouri, Monika Knopf, Kamal Kharazi
Abstract:
Research into long-term memory has demonstrated that the richness of the knowledge base cues in memory tasks improves retrieval process, which in turn influences learning and memory performance. The present research investigated the idea that adding cues connected to knowledge can affect memory performance in the context of action memory in children. In action memory studies, participants are instructed to learn a series of verb–object phrases as verbal learning and experience-based learning (learning by doing and learning by observation). It is well established that executing action phrases is a more memorable way to learn than verbally repeating the phrases, a finding called enactment effect. In the present study, a total of 410 students from four grade groups—2nd, 4th, 6th, and 8th—participated in this study. During the study, participants listened to verbal action phrases (VTs), performed the phrases (SPTs: subject-performed tasks), and observed the experimenter perform the phrases (EPTs: experimenter-performed tasks). During the test phase, cued recall test was administered. Semantic relational cues (i.e., well-integrated vs. poorly integrated items) were manipulated in the present study. In that, the participants were presented two lists of action phrases with high semantic integration between verb and noun, e.g., “write with the pen” and with low semantic integration between verb and noun, e.g., “pick up the glass”. Results revealed that experience-based learning had a better results than verbal learning for both well-integrated and poorly integrated items, though manipulations of semantic relational cues can moderate the enactment effect. In addition, children of different grade groups outperformed for well- than poorly integrated items, in flavour of older children. The results were discussed in relation to the effect of knowledge-based information in facilitating retrieval process in children.Keywords: action memory, enactment effect, knowledge-based cues, school-aged children, semantic relational cues
Procedia PDF Downloads 2755922 The Interleaving Effect of Subject Matter and Perceptual Modality on Students’ Attention and Learning: A Portable EEG Study
Authors: Wen Chen
Abstract:
To investigate the interleaving effect of subject matter (mathematics vs. history) and perceptual modality (visual vs. auditory materials) on student’s attention and learning outcomes, the present study collected self-reported data on subjective cognitive load (SCL) and attention level, EEG data, and learning outcomes from micro-lectures. Eighty-one 7th grade students were randomly assigned to four learning conditions: blocked (by subject matter) micro-lectures with auditory textual information (B-A condition), blocked (by subject matter) micro-lectures with visual textual information (B-V condition), interleaved (by subject matter) micro-lectures with auditory textual information (I-A condition), and interleaved micro-lectures by both perceptual modality and subject matter (I-all condition). The results showed that although interleaved conditions may show advantages in certain indices, the I-all condition showed the best overall outcomes (best performance, low SCL, and high attention). This study suggests that interleaving by both subject matter and perceptual modality should be preferred in scheduling and planning classes.Keywords: cognitive load, interleaving effect, micro-lectures, sustained attention
Procedia PDF Downloads 1375921 Machine Learning Approach for Anomaly Detection in the Simulated Iec-60870-5-104 Traffic
Authors: Stepan Grebeniuk, Ersi Hodo, Henri Ruotsalainen, Paul Tavolato
Abstract:
Substation security plays an important role in the power delivery system. During the past years, there has been an increase in number of attacks on automation networks of the substations. In spite of that, there hasn’t been enough focus dedicated to the protection of such networks. Aiming to design a specialized anomaly detection system based on machine learning, in this paper we will discuss the IEC 60870-5-104 protocol that is used for communication between substation and control station and focus on the simulation of the substation traffic. Firstly, we will simulate the communication between substation slave and server. Secondly, we will compare the system's normal behavior and its behavior under the attack, in order to extract the right features which will be needed for building an anomaly detection system. Lastly, based on the features we will suggest the anomaly detection system for the asynchronous protocol IEC 60870-5-104.Keywords: Anomaly detection, IEC-60870-5-104, Machine learning, Man-in-the-Middle attacks, Substation security
Procedia PDF Downloads 3685920 Musical Instruments Classification Using Machine Learning Techniques
Authors: Bhalke D. G., Bormane D. S., Kharate G. K.
Abstract:
This paper presents classification of musical instrument using machine learning techniques. The classification has been carried out using temporal, spectral, cepstral and wavelet features. Detail feature analysis is carried out using separate and combined features. Further, instrument model has been developed using K-Nearest Neighbor and Support Vector Machine (SVM). Benchmarked McGill university database has been used to test the performance of the system. Experimental result shows that SVM performs better as compared to KNN classifier.Keywords: feature extraction, SVM, KNN, musical instruments
Procedia PDF Downloads 4805919 Transformer-Driven Multi-Category Classification for an Automated Academic Strand Recommendation Framework
Authors: Ma Cecilia Siva
Abstract:
This study introduces a Bidirectional Encoder Representations from Transformers (BERT)-based machine learning model aimed at improving educational counseling by automating the process of recommending academic strands for students. The framework is designed to streamline and enhance the strand selection process by analyzing students' profiles and suggesting suitable academic paths based on their interests, strengths, and goals. Data was gathered from a sample of 200 grade 10 students, which included personal essays and survey responses relevant to strand alignment. After thorough preprocessing, the text data was tokenized, label-encoded, and input into a fine-tuned BERT model set up for multi-label classification. The model was optimized for balanced accuracy and computational efficiency, featuring a multi-category classification layer with sigmoid activation for independent strand predictions. Performance metrics showed an F1 score of 88%, indicating a well-balanced model with precision at 80% and recall at 100%, demonstrating its effectiveness in providing reliable recommendations while reducing irrelevant strand suggestions. To facilitate practical use, the final deployment phase created a recommendation framework that processes new student data through the trained model and generates personalized academic strand suggestions. This automated recommendation system presents a scalable solution for academic guidance, potentially enhancing student satisfaction and alignment with educational objectives. The study's findings indicate that expanding the data set, integrating additional features, and refining the model iteratively could improve the framework's accuracy and broaden its applicability in various educational contexts.Keywords: tokenized, sigmoid activation, transformer, multi category classification
Procedia PDF Downloads 85918 Teacher Knowledge: Unbridling Teacher Agency in the Context of Professional Development for Transformative Teaching and Learning
Authors: Bernice Badal
Abstract:
This article addresses a persistent challenge related to teacher agency in knowledge acquisition in professional development (PD) workshops in contexts of educational change, given that scholarship identifies a need for more teacher involvement and amplification of teacher's voices. Theoretical concepts are drawn from Bandura’s Social cognitive theory, incorporating the triadic causation model of agency to examine the reciprocal nature of the context, teacher characteristics, and systemic influences that shape how knowledge is transmitted and acquired in PD workshops. This qualitative study, using a mix of classroom observations and interviews, explored the political, contextual, and personal characteristics of teacher agency in PD through an analysis of data extracted from a PhD study. The narratives of six teachers from three township schools are examined to show how PD efforts in South Africa have failed to take account of the holistic development of teacher agency in knowledge dissemination and how this shapes teacher self-efficacy beliefs about being able to masterfully apply the tenets of the reform. Agency, teacher voice, and contextual considerations were used as markers of the quality of the training provided to understand how knowledge is acquired and meaning is made. The findings suggest that systemic influences of institutionally imposed PD offer partial understandings of the reform, which is offered in traditional formats that do not consider teacher empowerment in knowledge production and the development of teacher agency. Common in all the participants’ responses is the need for more information and training on the prescribed approach for teaching English as a second language; however, this paper holds the view that more information may not solve teachers’ dilemmas. Accordingly, it recommends a restructuring of the programme with facilitators being more cognisant of teacher agency for the development of transformative teachers. The findings of the study contribute to the field of teacher knowledge, teacher training, and professional development in the context of educational reforms.Keywords: teacher professional development, teacher voice, teacher agency, educational reforms, teacher knowledge
Procedia PDF Downloads 705917 Managing Data from One Hundred Thousand Internet of Things Devices Globally for Mining Insights
Authors: Julian Wise
Abstract:
Newcrest Mining is one of the world’s top five gold and rare earth mining organizations by production, reserves and market capitalization in the world. This paper elaborates on the data acquisition processes employed by Newcrest in collaboration with Fortune 500 listed organization, Insight Enterprises, to standardize machine learning solutions which process data from over a hundred thousand distributed Internet of Things (IoT) devices located at mine sites globally. Through the utilization of software architecture cloud technologies and edge computing, the technological developments enable for standardized processes of machine learning applications to influence the strategic optimization of mineral processing. Target objectives of the machine learning optimizations include time savings on mineral processing, production efficiencies, risk identification, and increased production throughput. The data acquired and utilized for predictive modelling is processed through edge computing by resources collectively stored within a data lake. Being involved in the digital transformation has necessitated the standardization software architecture to manage the machine learning models submitted by vendors, to ensure effective automation and continuous improvements to the mineral process models. Operating at scale, the system processes hundreds of gigabytes of data per day from distributed mine sites across the globe, for the purposes of increased improved worker safety, and production efficiency through big data applications.Keywords: mineral technology, big data, machine learning operations, data lake
Procedia PDF Downloads 112