Search results for: high performance
26955 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications
Authors: Gema M. Rodado, Jose M. Olavarrieta
Abstract:
Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests
Procedia PDF Downloads 11526954 Acceptance of Big Data Technologies and Its Influence towards Employee’s Perception on Job Performance
Authors: Jia Yi Yap, Angela S. H. Lee
Abstract:
With the use of big data technologies, organization can get result that they are interested in. Big data technologies simply load all the data that is useful for the organizations and provide organizations a better way of analysing data. The purpose of this research is to get employees’ opinion from films in Malaysia to explore the use of big data technologies in their organization in order to provide how it may affect the perception of the employees on job performance. Therefore, in order to identify will accepting big data technologies in the organization affect the perception of the employee, questionnaire will be distributed to different employee from different Small and medium-sized enterprises (SME) organization listed in Malaysia. The conceptual model proposed will test with other variables in order to see the relationship between variables.Keywords: big data technologies, employee, job performance, questionnaire
Procedia PDF Downloads 29626953 Aerodynamic Prediction and Performance Analysis for Mars Science Laboratory Entry Vehicle
Authors: Tang Wei, Yang Xiaofeng, Gui Yewei, Du Yanxia
Abstract:
Complex lifting entry was selected for precise landing performance during the Mars Science Laboratory entry. This study aims to develop the three-dimensional numerical method for precise computation and the surface panel method for rapid engineering prediction. Detailed flow field analysis for Mars exploration mission was performed by carrying on a series of fully three-dimensional Navier-Stokes computations. The static aerodynamic performance was then discussed, including the surface pressure, lift and drag coefficient, lift-to-drag ratio with the numerical and engineering method. Computation results shown that the shock layer is thin because of lower effective specific heat ratio, and that calculated results from both methods agree well with each other, and is consistent with the reference data. Aerodynamic performance analysis shows that CG location determines trim characteristics and pitch stability, and certain radially and axially shift of the CG location can alter the capsule lifting entry performance, which is of vital significance for the aerodynamic configuration des0ign and inner instrument layout of the Mars entry capsule.Keywords: Mars entry capsule, static aerodynamics, computational fluid dynamics, hypersonic
Procedia PDF Downloads 29726952 Assessment of Image Databases Used for Human Skin Detection Methods
Authors: Saleh Alshehri
Abstract:
Human skin detection is a vital step in many applications. Some of the applications are critical especially those related to security. This leverages the importance of a high-performance detection algorithm. To validate the accuracy of the algorithm, image databases are usually used. However, the suitability of these image databases is still questionable. It is suggested that the suitability can be measured mainly by the span the database covers of the color space. This research investigates the validity of three famous image databases.Keywords: image databases, image processing, pattern recognition, neural networks
Procedia PDF Downloads 27026951 Moderating Effects of Family Ownership on the Relationship between Corporate Governance Mechanisms and Financial Performance of Publicly Listed Companies in Nigeria
Authors: Ndagi Salihu
Abstract:
Corporate governance mechanisms are the control measures for ensuring that all the interests groups are equally represented and management are working towards wealth creation in the interest of all. Therefore, there are many empirical studies during the last three decades on corporate governance and firm performance. However, little is known about the effects of family ownership on the relationship between corporate governance and firm performance, especially in the developing economy like Nigeria. This limit our understanding of the unique governance dynamics of family ownership with regards firm performance. This study examined the impact of family ownership on the relationship between governance mechanisms and financial performance of publicly listed companies in Nigeria. The study adopted quantitative research methodology using correlational ex-post factor design and secondary data from annual reports and accounts of a sample of 23 listed companies for a period of 5 years (2014-2018). The explanatory variables are the board size, board composition, board financial expertise, and board audit committee attributes. Financial performance is proxy by Return on Assets (ROA) and Return on Equity (ROE). Multiple panel regression technique of data analysis was employed in the analysis, and the study found that family ownership has a significant positive effect on the relationships between corporate governance mechanisms and financial performance of publicly listed firms in Nigeria. This finding is the same for both the ROA and ROE. However, the findings indicate that board size, board financial expertise, and board audit committee attributes have a significant positive impact on the ROA and ROE of the sample firms after the moderation. Moreover, board composition has significant positive effect on financial performance of the sample listed firms in terms of ROA and ROE. The study concludes that the use of family ownership in the control of firms in Nigeria could improve performance by reducing the opportunistic actions managers as well as agency problems. The study recommends that publicly listed companies in Nigeria should allow significant family ownership of equities and participation in management.Keywords: profitability, board characteristics, agency theory, stakeholders
Procedia PDF Downloads 13826950 The Impact of Hosting an On-Site Vocal Concert in Preschool on Music Inspiration and Learning Among Preschoolers
Authors: Meiying Liao, Poya Huang
Abstract:
The aesthetic domain is one of the six major domains in the Taiwanese preschool curriculum, encompassing visual arts, music, and dramatic play. Its primary objective is to cultivate children’s abilities in exploration and awareness, expression and creation, and response and appreciation. The purpose of this study was to explore the effects of hosting a vocal music concert on aesthetic inspiration and learning among preschoolers in a preschool setting. The primary research method employed was a case study focusing on a private preschool in Northern Taiwan that organized a school-wide event featuring two vocalists. The concert repertoires included children’s songs, folk songs, and arias performed in Mandarin, Hakka, English, German, and Italian. In addition to professional performances, preschool teachers actively participated by presenting a children’s song. A total of 5 classes, comprising approximately 150 preschoolers, along with 16 teachers and staff, participated in the event. Data collection methods included observation, interviews, and documents. Results indicated that both teachers and children thoroughly enjoyed the concert, with high levels of acceptance when the program was appropriately designed and hosted. Teachers reported that post-concert discussions with children revealed the latter’s ability to recall people, events, and elements observed during the performance, expressing their impressions of the most memorable segments. The concert effectively achieved the goals of the aesthetic domain, particularly in fostering response and appreciation. It also inspired preschoolers’ interest in music. Many teachers noted an increased desire for performance among preschoolers after exposure to the concert, with children imitating the performers and their expressions. Remarkably, one class extended this experience by incorporating it into the curriculum, autonomously organizing a high-quality concert in the music learning center. Parents also reported that preschoolers enthusiastically shared their concert experiences at home. In conclusion, despite being a single event, the positive responses from preschoolers towards the music performance suggest a meaningful impact. These experiences extended into the curriculum, as firsthand exposure to performances allowed teachers to deepen related topics, fostering a habit of autonomous learning in the designated learning centers.Keywords: concert, early childhood music education, aesthetic education, music develpment
Procedia PDF Downloads 4826949 An Expert System Designed to Be Used with MOEAs for Efficient Portfolio Selection
Authors: Kostas Metaxiotis, Kostas Liagkouras
Abstract:
This study presents an Expert System specially designed to be used with Multiobjective Evolutionary Algorithms (MOEAs) for the solution of the portfolio selection problem. The validation of the proposed hybrid System is done by using data sets from Hang Seng 31 in Hong Kong, DAX 100 in Germany and FTSE 100 in UK. The performance of the proposed system is assessed in comparison with the Non-dominated Sorting Genetic Algorithm II (NSGAII). The evaluation of the performance is based on different performance metrics that evaluate both the proximity of the solutions to the Pareto front and their dispersion on it. The results show that the proposed hybrid system is efficient for the solution of this kind of problems.Keywords: expert systems, multi-objective optimization, evolutionary algorithms, portfolio selection
Procedia PDF Downloads 43826948 Modeling and Simulation Frameworks for Cloud Computing Environment: A Critical Evaluation
Authors: Abul Bashar
Abstract:
The recent surge in the adoption of cloud computing systems by various organizations has brought forth the challenge of evaluating their performance. One of the major issues faced by the cloud service providers and customers is to assess the ability of cloud computing systems to provide the desired services in accordance to the QoS and SLA constraints. To this end, an opportunity exists to develop means to ensure that the desired performance levels of such systems are met under simulated environments. This will eventually minimize the service disruptions and performance degradation issues during the commissioning and operational phase of cloud computing infrastructure. However, it is observed that several simulators and modelers are available for simulating the cloud computing systems. Therefore, this paper presents a critical evaluation of the state-of-the-art modeling and simulation frameworks applicable to cloud computing systems. It compares the prominent simulation frameworks in terms of the API features, programming flexibility, operating system requirements, supported services, licensing needs and popularity. Subsequently, it provides recommendations regarding the choice of the most appropriate framework for researchers, administrators and managers of cloud computing systems.Keywords: cloud computing, modeling framework, performance evaluation, simulation tools
Procedia PDF Downloads 49926947 A Machine Learning Approach for Performance Prediction Based on User Behavioral Factors in E-Learning Environments
Authors: Naduni Ranasinghe
Abstract:
E-learning environments are getting more popular than any other due to the impact of COVID19. Even though e-learning is one of the best solutions for the teaching-learning process in the academic process, it’s not without major challenges. Nowadays, machine learning approaches are utilized in the analysis of how behavioral factors lead to better adoption and how they related to better performance of the students in eLearning environments. During the pandemic, we realized the academic process in the eLearning approach had a major issue, especially for the performance of the students. Therefore, an approach that investigates student behaviors in eLearning environments using a data-intensive machine learning approach is appreciated. A hybrid approach was used to understand how each previously told variables are related to the other. A more quantitative approach was used referred to literature to understand the weights of each factor for adoption and in terms of performance. The data set was collected from previously done research to help the training and testing process in ML. Special attention was made to incorporating different dimensionality of the data to understand the dependency levels of each. Five independent variables out of twelve variables were chosen based on their impact on the dependent variable, and by considering the descriptive statistics, out of three models developed (Random Forest classifier, SVM, and Decision tree classifier), random forest Classifier (Accuracy – 0.8542) gave the highest value for accuracy. Overall, this work met its goals of improving student performance by identifying students who are at-risk and dropout, emphasizing the necessity of using both static and dynamic data.Keywords: academic performance prediction, e learning, learning analytics, machine learning, predictive model
Procedia PDF Downloads 15526946 Performance Analysis in 5th Generation Massive Multiple-Input-Multiple-Output Systems
Authors: Jihad S. Daba, Jean-Pierre Dubois, Georges El Soury
Abstract:
Fifth generation wireless networks guarantee significant capacity enhancement to suit more clients and services at higher information rates with better reliability while consuming less power. The deployment of massive multiple-input-multiple-output technology guarantees broadband wireless networks with the use of base station antenna arrays to serve a large number of users on the same frequency and time-slot channels. In this work, we evaluate the performance of massive multiple-input-multiple-output systems (MIMO) systems in 5th generation cellular networks in terms of capacity and bit error rate. Several cases were considered and analyzed to compare the performance of massive MIMO systems while varying the number of antennas at both transmitting and receiving ends. We found that, unlike classical MIMO systems, reducing the number of transmit antennas while increasing the number of antennas at the receiver end provides a better solution to performance enhancement. In addition, enhanced orthogonal frequency division multiplexing and beam division multiple access schemes further improve the performance of massive MIMO systems and make them more reliable.Keywords: beam division multiple access, D2D communication, enhanced OFDM, fifth generation broadband, massive MIMO
Procedia PDF Downloads 25826945 Comparative Performance and Emission Analysis of Diesel Engine Fueled with Diesel and Bitter Apricot Kernal Oil Biodiesel Blends
Authors: Virender Singh Gurau, Akash Deep, Sarbjot S. Sandhu
Abstract:
Vegetable oils are produced from numerous oil seed crops. While all vegetable oils have high energy content, most require some processing to assure safe use in internal combustion engines. Some of these oils already have been evaluated as substitutes for diesel fuels. In the present research work Bitter Apricot kernel oil was employed as a feedstock for the production of biodiesel. The physicochemical properties of the Bitter Apricot kernel oil methyl ester were investigated as per ASTM D6751. From the series of engine testing, it is concluded that the brake thermal efficiency (BTE) with biodiesel blend was little lower than that of diesel. BSEC is slightly higher for Bitter apricot kernel oil methyl ester blends than neat diesel. For biodiesel blends, CO emission was lower than diesel fuel as B 20 reduced CO emissions by 18.75%. Approximately 11% increase in NOx emission was observed with 20% biodiesel blend. It is observed that HC emissions tend to decrease for biodiesel based fuels and Smoke opacity was found lower for biodiesel blends in comparison to diesel fuel.Keywords: biodiesel, transesterification, bitter apricot kernel oil, performance and emission testing
Procedia PDF Downloads 33426944 A Quantitative Analysis for the Correlation between Corporate Financial and Social Performance
Authors: Wafaa Salah, Mostafa A. Salama, Jane Doe
Abstract:
Recently, the corporate social performance (CSP) is not less important than the corporate financial performance (CFP). Debate still exists about the nature of the relationship between the CSP and CFP, whether it is a positive, negative or a neutral correlation. The objective of this study is to explore the relationship between corporate social responsibility (CSR) reports and CFP. The study uses the accounting-based and market-based quantitative measures to quantify the financial performance of seven organizations listed on the Egyptian Stock Exchange in 2007-2014. Then uses the information retrieval technologies to quantify the contribution of each of the three dimensions of the corporate social responsibility report (environmental, social and economic). Finally, the correlation between these two sets of variables is viewed together in a model to detect the correlations between them. This model is applied on seven firms that generate social responsibility reports. The results show a positive correlation between the Earnings per share (market based measure) and the economical dimension in the CSR report. On the other hand, total assets and property, plant and equipment (accounting-based measure) are positively correlated to the environmental and social dimensions of the CSR reports. While there is not any significant relationship between ROA, ROE, Operating income and corporate social responsibility. This study contributes to the literature by providing more clarification of the relationship between CFP and the isolated CSR activities in a developing country.Keywords: financial, social, machine learning, corporate social performance, corporate social responsibility
Procedia PDF Downloads 31026943 Modification of Carbon-Based Gas Sensors for Boosting Selectivity
Authors: D. Zhao, Y. Wang, G. Chen
Abstract:
Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials
Procedia PDF Downloads 12426942 Understanding the Lithiation/Delithiation Mechanism of Si₁₋ₓGeₓ Alloys
Authors: Laura C. Loaiza, Elodie Salager, Nicolas Louvain, Athmane Boulaoued, Antonella Iadecola, Patrik Johansson, Lorenzo Stievano, Vincent Seznec, Laure Monconduit
Abstract:
Lithium-ion batteries (LIBs) have an important place among energy storage devices due to their high capacity and good cyclability. However, the advancements in portable and transportation applications have extended the research towards new horizons, and today the development is hampered, e.g., by the capacity of the electrodes employed. Silicon and germanium are among the considered modern anode materials as they can undergo alloying reactions with lithium while delivering high capacities. It has been demonstrated that silicon in its highest lithiated state can deliver up to ten times more capacity than graphite (372 mAh/g): 4200 mAh/g for Li₂₂Si₅ and 3579 mAh/g for Li₁₅Si₄, respectively. On the other hand, germanium presents a capacity of 1384 mAh/g for Li₁₅Ge₄, and a better electronic conductivity and Li ion diffusivity as compared to Si. Nonetheless, the commercialization potential of Ge is limited by its cost. The synergetic effect of Si₁₋ₓGeₓ alloys has been proven, the capacity is increased compared to Ge-rich electrodes and the capacity retention is increased compared to Si-rich electrodes, but the exact performance of this type of electrodes will depend on factors like specific capacity, C-rates, cost, etc. There are several reports on various formulations of Si₁₋ₓGeₓ alloys with promising LIB anode performance with most work performed on complex nanostructures resulting from synthesis efforts implying high cost. In the present work, we studied the electrochemical mechanism of the Si₀.₅Ge₀.₅ alloy as a realistic micron-sized electrode formulation using carboxymethyl cellulose (CMC) as the binder. A combination of a large set of in situ and operando techniques were employed to investigate the structural evolution of Si₀.₅Ge₀.₅ during lithiation and delithiation processes: powder X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), Raman spectroscopy, and 7Li solid state nuclear magnetic resonance spectroscopy (NMR). The results have presented a whole view of the structural modifications induced by the lithiation/delithiation processes. The Si₀.₅Ge₀.₅ amorphization was observed at the beginning of discharge. Further lithiation induces the formation of a-Liₓ(Si/Ge) intermediates and the crystallization of Li₁₅(Si₀.₅Ge₀.₅)₄ at the end of the discharge. At really low voltages a reversible process of overlithiation and formation of Li₁₅₊δ(Si₀.₅Ge₀.₅)₄ was identified and related with a structural evolution of Li₁₅(Si₀.₅Ge₀.₅)₄. Upon charge, the c-Li₁₅(Si₀.₅Ge₀.₅)₄ was transformed into a-Liₓ(Si/Ge) intermediates. At the end of the process an amorphous phase assigned to a-SiₓGey was recovered. Thereby, it was demonstrated that Si and Ge are collectively active along the cycling process, upon discharge with the formation of a ternary Li₁₅(Si₀.₅Ge₀.₅)₄ phase (with a step of overlithiation) and upon charge with the rebuilding of the a-Si-Ge phase. This process is undoubtedly behind the enhanced performance of Si₀.₅Ge₀.₅ compared to a physical mixture of Si and Ge.Keywords: lithium ion battery, silicon germanium anode, in situ characterization, X-Ray diffraction
Procedia PDF Downloads 28326941 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance
Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian
Abstract:
Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation
Procedia PDF Downloads 11026940 Investigation of the Effect of Impulse Voltage to Flashover by Using Water Jet
Authors: Harun Gülan, Muhsin Tunay Gencoglu, Mehmet Cebeci
Abstract:
The main function of the insulators used in high voltage (HV) transmission lines is to insulate the energized conductor from the pole and hence from the ground. However, when the insulators fail to perform this insulation function due to various effects, failures occur. The deterioration of the insulation results either from breakdown or surface flashover. The surface flashover is caused by the layer of pollution that forms conductivity on the surface of the insulator, such as salt, carbonaceous compounds, rain, moisture, fog, dew, industrial pollution and desert dust. The source of the majority of failures and interruptions in HV lines is surface flashover. This threatens the continuity of supply and causes significant economic losses. Pollution flashover in HV insulators is still a serious problem that has not been fully resolved. In this study, a water jet test system has been established in order to investigate the behavior of insulators under dirty conditions and to determine their flashover performance. Flashover behavior of the insulators is examined by applying impulse voltages in the test system. This study aims to investigate the insulator behaviour under high impulse voltages. For this purpose, a water jet test system was installed and experimental results were obtained over a real system and analyzed. By using the water jet test system instead of the actual insulator, the damage to the insulator as a result of the flashover that would occur under impulse voltage was prevented. The results of the test system performed an important role in determining the insulator behavior and provided predictability.Keywords: insulator, pollution flashover, high impulse voltage, water jet model
Procedia PDF Downloads 10826939 Polygeneration Solar Air Drying
Authors: Binoy Chandra Sarma, S. K. Deb
Abstract:
Over 85% of industrial dryers are of the convective type with hot air or direct flue gases as the drying medium. Over 99% of the applications involve removal of water. In this study, the performance of a solar air heater with the recovery of the absorbed heat by the metallic concentrator sheet itself besides the normal heat accumulated by the receiver at the focus of the concentrator for generating drying air by convection at a low to medium temperature range is discussed. The system performance through thermal analysis & the performance of a model achieving the required temperature range is also investigate in this study. Over 85% of industrial dryers are of the convective type with hot air or direct flue gases as the drying medium. Over 99% of the applications involve removal of water. In this study, the performance of a solar air heater with the recovery of the absorbed heat by the metallic concentrator sheet itself besides the normal heat accumulated by the receiver at the focus of the concentrator for generating drying air by convection at a low to medium temperature range is discussed. The system performance through thermal analysis & the performance of a model achieving the required temperature range is also investigate in this study.Keywords: dryer, polygeneration, moisture, equilibrium, humidity
Procedia PDF Downloads 39426938 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 44326937 Verification of Satellite and Observation Measurements to Build Solar Energy Projects in North Africa
Authors: Samy A. Khalil, U. Ali Rahoma
Abstract:
The measurements of solar radiation, satellite data has been routinely utilize to estimate solar energy. However, the temporal coverage of satellite data has some limits. The reanalysis, also known as "retrospective analysis" of the atmosphere's parameters, is produce by fusing the output of NWP (Numerical Weather Prediction) models with observation data from a variety of sources, including ground, and satellite, ship, and aircraft observation. The result is a comprehensive record of the parameters affecting weather and climate. The effectiveness of reanalysis datasets (ERA-5) for North Africa was evaluate against high-quality surfaces measured using statistical analysis. Estimating the distribution of global solar radiation (GSR) over five chosen areas in North Africa through ten-years during the period time from 2011 to 2020. To investigate seasonal change in dataset performance, a seasonal statistical analysis was conduct, which showed a considerable difference in mistakes throughout the year. By altering the temporal resolution of the data used for comparison, the performance of the dataset is alter. Better performance is indicate by the data's monthly mean values, but data accuracy is degraded. Solar resource assessment and power estimation are discuses using the ERA-5 solar radiation data. The average values of mean bias error (MBE), root mean square error (RMSE) and mean absolute error (MAE) of the reanalysis data of solar radiation vary from 0.079 to 0.222, 0.055 to 0.178, and 0.0145 to 0.198 respectively during the period time in the present research. The correlation coefficient (R2) varies from 0.93 to 99% during the period time in the present research. This research's objective is to provide a reliable representation of the world's solar radiation to aid in the use of solar energy in all sectors.Keywords: solar energy, ERA-5 analysis data, global solar radiation, North Africa
Procedia PDF Downloads 9626936 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells
Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu
Abstract:
Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode
Procedia PDF Downloads 16626935 Facile Wick and Oil Flame Synthesis of High-Quality Hydrophilic Carbon Nano Onions for Flexible Binder-Free Supercapacitor
Authors: Debananda Mohapatra, Subramanya Badrayyana, Smrutiranjan Parida
Abstract:
Carbon nano-onions (CNOs) are the spherical graphitic nanostructures composed of concentric shells of graphitic carbon can be hypothesized as the intermediate state between fullerenes and graphite. These are very important members in fullerene family also known as the multi-shelled fullerenes can be envisioned as promising supercapacitor electrode with high energy & power density as they provide easy access to ions at electrode-electrolyte interface due to their curvature. There is still very sparse report concerning on CNOs as electrode despite having an excellent electrodechemical performance record due to their unavailability and lack of convenient methods for their high yield preparation and purification. Keeping all these current pressing issues in mind, we present a facile scalable and straightforward flame synthesis method of pure and highly dispersible CNOs without contaminated by any other forms of carbon; hence, a post processing purification procedure is not necessary. To the best of our knowledge, this is the very first time; we developed an extremely simple, light weight, novel inexpensive, flexible free standing pristine CNOs electrode without using any binder element. Locally available daily used cotton wipe has been used for fabrication of such an ideal electrode by ‘dipping and drying’ process providing outstanding stretchability and mechanical flexibility with strong adhesion between CNOs and porous wipe. The specific capacitance 102 F/g, energy density 3.5 Wh/kg and power density 1224 W/kg at 20 mV/s scan rate are the highest values that ever recorded and reported so far in symmetrical two electrode cell configuration with 1M Na2SO4 electrolyte; indicating a very good synthesis conditions employed with optimum pore size in agreement with electrolyte ion size. This free standing CNOs electrode also showed an excellent cyclic performance and stability retaining 95% original capacity after 5000 charge –discharge cycles. Furthermore, this unique method not only affords binder free - freestanding electrode but also provide a general way of fabricating such multifunctional promising CNOs based nanocomposites for their potential device applications in flexible solar cells and lithium-ion batteries.Keywords: binder-free, flame synthesis, flexible, carbon nano onion
Procedia PDF Downloads 20326934 Predictive Factors of Exercise Behaviors of Junior High School Students in Chonburi Province
Authors: Tanida Julvanichpong
Abstract:
Exercise has been regarded as a necessary and important aspect to enhance physical performance and psychology health. Body weight statistics of students in junior high school students in Chonburi Province beyond a standard risk of obesity. Promoting exercise among Junior high school students in Chonburi Province, essential knowledge concerning factors influencing exercise is needed. Therefore, this study aims to (1) determine the levels of perceived exercise behavior, exercise behavior in the past, perceived barriers to exercise, perceived benefits of exercise, perceived self-efficacy to exercise, feelings associated with exercise behavior, influence of the family to exercise, influence of friends to exercise, and the perceived influence of the environment on exercise. (2) examine the predicting ability of each of the above factors while including personal factors (sex, educational level) for exercise behavior. Pender’s Health Promotion Model was used as a guide for the study. Sample included 652 students in junior high schools, Chonburi Provience. The samples were selected by Multi-Stage Random Sampling. Data Collection has been done by using self-administered questionnaires. Data were analyzed using descriptive statistics, Pearson’s product moment correlation coefficient, Eta, and stepwise multiple regression analysis. The research results showed that: 1. Perceived benefits of exercise, influence of teacher, influence of environmental, feelings associated with exercise behavior were at a high level. Influence of the family to exercise, exercise behavior, exercise behavior in the past, perceived self-efficacy to exercise and influence of friends were at a moderate level. Perceived barriers to exercise were at a low level. 2. Exercise behavior was positively significant related to perceived benefits of exercise, influence of the family to exercise, exercise behavior in the past, perceived self-efficacy to exercise, influence of friends, influence of teacher, influence of environmental and feelings associated with exercise behavior (p < .01, respectively) and was negatively significant related to educational level and perceived barriers to exercise (p < .01, respectively). Exercise behavior was significant related to sex (Eta = 0.243, p=.000). 3. Exercise behavior in the past, influence of the family to exercise significantly contributed 60.10 percent of the variance to the prediction of exercise behavior in male students (p < .01). Exercise behavior in the past, perceived self-efficacy to exercise, perceived barriers to exercise, and educational level significantly contributed 52.60 percent of the variance to the prediction of exercise behavior in female students (p < .01).Keywords: predictive factors, exercise behaviors, Junior high school, Chonburi Province
Procedia PDF Downloads 61326933 Sustainable Membranes Based on 2D Materials for H₂ Separation and Purification
Authors: Juan A. G. Carrio, Prasad Talluri, Sergio G. Echeverrigaray, Antonio H. Castro Neto
Abstract:
Hydrogen as a fuel and environmentally pleasant energy carrier is part of this transition towards low-carbon systems. The extensive deployment of hydrogen production, purification and transport infrastructures still represents significant challenges. Independent of the production process, the hydrogen generally is mixed with light hydrocarbons and other undesirable gases that need to be removed to obtain H₂ with the required purity for end applications. In this context, membranes are one of the simplest, most attractive, sustainable, and performant technologies enabling hydrogen separation and purification. They demonstrate high separation efficiencies and low energy consumption levels in operation, which is a significant leap compared to current energy-intensive options technologies. The unique characteristics of 2D laminates have given rise to a diversity of research on their potential applications in separation systems. Specifically, it is already known in the scientific literature that graphene oxide-based membranes present the highest reported selectivity of H₂ over other gases. This work explores the potential of a new type of 2D materials-based membranes in separating H₂ from CO₂ and CH₄. We have developed nanostructured composites based on 2D materials that have been applied in the fabrication of membranes to maximise H₂ selectivity and permeability, for different gas mixtures, by adjusting the membranes' characteristics. Our proprietary technology does not depend on specific porous substrates, which allows its integration in diverse separation modules with different geometries and configurations, looking to address the technical performance required for industrial applications and economic viability. The tuning and precise control of the processing parameters allowed us to control the thicknesses of the membranes below 100 nanometres to provide high permeabilities. Our results for the selectivity of new nanostructured 2D materials-based membranes are in the range of the performance reported in the available literature around 2D materials (such as graphene oxide) applied to hydrogen purification, which validates their use as one of the most promising next-generation hydrogen separation and purification solutions.Keywords: membranes, 2D materials, hydrogen purification, nanocomposites
Procedia PDF Downloads 13226932 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids
Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran
Abstract:
As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation
Procedia PDF Downloads 14026931 Design of a Vehicle Door Structure Based on Finite Element Method
Authors: Tawanda Mushiri, Charles Mbohwa
Abstract:
The performance of door assembly is very significant for the vehicle design. In the present paper, the finite element method is used in the development processes of the door assembly. The stiffness, strength, modal characteristic, and anti-extrusion of a newly developed passenger vehicle door assembly are calculated and evaluated by several finite element analysis commercial software. The structural problems discovered by FE analysis have been modified and finally achieved the expected door structure performance target of this new vehicle. The issue in focus is to predict the performance of the door assembly by powerful finite element analysis software, and optimize the structure to meet the design targets. It is observed that this method can be used to forecast the performance of vehicle door efficiently when it’s designed. In order to reduce lead time and cost in the product development of vehicles more development will be made virtually.Keywords: vehicle door, structure, strength, stiffness, modal characteristic, anti-extrusion, Finite Element Method
Procedia PDF Downloads 42626930 Anomalous Behaviors of Visible Luminescence from Graphene Quantum Dots
Authors: Hyunho Shin, Jaekwang Jung, Jeongho Park, Sungwon Hwang
Abstract:
For the application of graphene quantum dots (GQDs) to optoelectronic nanodevices, it is of critical importance to understand the mechanisms which result in novel phenomena of their light absorption/emission. The optical transitions are known to be available up to ~6 eV in GQDs, especially useful for ultraviolet (UV) photodetectors (PDs). Here, we present size-dependent shape/edge-state variations of GQDs and visible photoluminescence (PL) showing anomalous size dependencies. With varying the average size (da) of GQDs from 5 to 35 nm, the peak energy of the absorption spectra monotonically decreases, while that of the visible PL spectra unusually shows nonmonotonic behaviors having a minimum at diameter ∼17 nm. The PL behaviors can be attributed to the novel feature of GQDs, that is, the circular-to-polygonal-shape and corresponding edge-state variations of GQDs at diameter ∼17 nm as the GQD size increases, as demonstrated by high resolution transmission electron microscopy. We believe that such a comprehensive scheme in designing device architecture and the structural formulation of GQDs provides a device for practical realization of environmentally benign, high performance flexible devices in the future.Keywords: graphene, quantum dot, size, photoluminescence
Procedia PDF Downloads 29326929 An Investigation of the Operation and Performance of London Cycle Hire Scheme
Authors: Amer Ali, Jessica Cecchinelli, Antonis Charalambous
Abstract:
Cycling is one of the most environmentally friendly, economic and healthy modes of transport but it needs more efficient cycle infrastructure and more effective safety measures. This paper represents an investigation into the performance and operation of the London Cycle Hire Scheme which started to operate in July 2010 using 5,000 cycles and 315 docking stations and currently has more than 10,000 cycles and over 700 docking stations across London which are available 24/7, 365 days a year. The study, which was conducted during the second half of 2014, consists of two parts; namely, the longitudinal review of the hire scheme between its introduction in 2010 and November 2014, and a field survey in November 2014 in the form of face-face interviews of the users of the cycle scheme to ascertain the existing limitations and difficulties experienced by those users and how it could be improved in terms of capability and safety. The study also includes a correlation between the usage of the cycle scheme and the corresponding weather conditions. The main findings are that on average the number of users (hiring frequency) had increased from just over two millions hires in 2010 to just less than ten millions in 2014. The field survey showed that 80% of the users are satisfied with the performance of the scheme whilst 50% of the users raised concern about the safety level of using the available cycle routes and infrastructure. The study also revealed that a high percentage of the cycle trips were relatively short (less than 30 minutes). Although the weather condition had some effect on cycling, the cost of using the cycle scheme and the main events in London had more effect on the number of cycle hires. The key conclusions are that despite the safety concern and the lack of infrastructure for continuous routes there was an encouraging number of people who opted for cycling as a clean, affordable, and healthy mode of transport. There is a need to expand the scheme by providing more cycles and docking stations and to support that by more well-designed and maintained cycle routes. More details about the development of London Cycle Hire Scheme during the last five years, its performance and the key issues revealed by the surveyed users will be reported in the full version of the paper.Keywords: cycling mode of transport, london cycle hire scheme, safety, environmental and health benefits, user satisfaction
Procedia PDF Downloads 38626928 The Impact of External Technology Acquisition and Exploitation on Firms' Process Innovation Performance
Authors: Thammanoon Charmjuree, Yuosre F. Badir, Umar Safdar
Abstract:
There is a consensus among innovation scholars that knowledge is a vital antecedent for firm’s innovation; e.g., process innovation. Recently, there has been an increasing amount of attention to more open approaches to innovation. This open model emphasizes the use of purposive flows of knowledge across the organization boundaries. Firms adopt open innovation strategy to improve their innovation performance by bringing knowledge into the organization (inbound open innovation) to accelerate internal innovation or transferring knowledge outside (outbound open innovation) to expand the markets for external use of innovation. Reviewing open innovation research reveals the following. First, the majority of existing studies have focused on inbound open innovation and less on outbound open innovation. Second, limited research has considered the possible interaction between both and how this interaction may impact the firm’s innovation performance. Third, scholars have focused mainly on the impact of open innovation strategy on product innovation and less on process innovation. Therefore, our knowledge of the relationship between firms’ inbound and outbound open innovation and how these two impact process innovation is still limited. This study focuses on the firm’s external technology acquisition (ETA) and external technology exploitation (ETE) and the firm’s process innovation performance. The ETA represents inbound openness in which firms rely on the acquisition and absorption of external technologies to complement their technology portfolios. The ETE, on the other hand, refers to commercializing technology assets exclusively or in addition to their internal application. This study hypothesized that both ETA and ETE have a positive relationship with process innovation performance and that ETE fully mediates the relationship between ETA and process innovation performance, i.e., ETA has a positive impact on ETE, and turn, ETE has a positive impact on process innovation performance. This study empirically explored these hypotheses in software development firms in Thailand. These firms were randomly selected from a list of Software firms registered with the Department of Business Development, Ministry of Commerce of Thailand. The questionnaires were sent to 1689 firms. After follow-ups and periodic reminders, we obtained 329 (19.48%) completed usable questionnaires. The structure question modeling (SEM) has been used to analyze the data. An analysis of the outcome of 329 firms provides support for our three hypotheses: First, the firm’s ETA has a positive impact on its process innovation performance. Second, the firm’s ETA has a positive impact its ETE. Third, the firm’s ETE fully mediates the relationship between the firm’s ETA and its process innovation performance. This study fills up the gap in open innovation literature by examining the relationship between inbound (ETA) and outbound (ETE) open innovation and suggest that in order to benefits from the promises of openness, firms must engage in both. The study went one step further by explaining the mechanism through which ETA influence process innovation performance.Keywords: process innovation performance, external technology acquisition, external technology exploitation, open innovation
Procedia PDF Downloads 20126927 Influence of Silica Fume on Ultrahigh Performance Concrete
Authors: Vitoldas Vaitkevičius, Evaldas Šerelis
Abstract:
Silica fume, also known as microsilica (MS) or condensed silica fume is a by-product of the production of silicon metal or ferrosilicon alloys. Silica fume is one of the most effective pozzolanic additives which could be used for ultrahigh performance and other types of concrete. Despite the fact, however is not entirely clear, which amount of silica fume is most optimal for UHPC. Main objective of this experiment was to find optimal amount of silica fume for UHPC with and without thermal treatment, when different amount of quartz powder is substituted by silica fume. In this work were investigated four different composition of UHPC with different amount of silica fume. Silica fume were added 0, 10, 15 and 20% of cement (by weight) to UHPC mixture. Optimal amount of silica fume was determined by slump, viscosity, qualitative and quantitative XRD analysis and compression strength tests methods.Keywords: compressive strength, silica fume, ultrahigh performance concrete, XRD
Procedia PDF Downloads 29326926 Thiazolo[5,4-D]Thiazole-Core Organic Chromophore with Furan Spacer for Organic Solar Cells
Authors: M. Nazim, S. Ameen, H. K. Seo, H. S. Shin
Abstract:
Energy is the basis of life and strong attention has been growing for the cost-effective energy production. Recently, solution-processed small molecule organic solar cells (SMOSCs) have grown much attention due to the wages such as well-defined molecular structures, definite molecular weight, easy synthesis and easy purification techniques. In particular, the size of donor (D) and acceptor (A) unit is a crucial factor for the exciton-diffusion towards D-A interface and then charge-separation for the effective charge-transport to the electrodes. Furan-bridged materials are more electron-rich, high fluorescence, with better molecular-packing, and greater rigidity and greater solubility than their thiophene-counterparts In this work, a furan-bridged thiazolo[5,4-d]thiazole based organic small molecule (RFTzR) was formulated and applied for BHJ organic solar cells (OSCs). The introduction of furan spacer with two terminal alkyl units improved its absorption and solubility in the common organic solvents, significantly. RFTzR exhibited a HOMO and LUMO energy levels of -5.36 eV and -3.14 eV, respectively. The fabricated solar cell devices of RFTzR (donor) with PC60BM (acceptor) as photoactive materials showed high performance of 2.72% (RFTzR:PC60BM, 2:1, w/w) ratio with open-circuit voltage of 0.756 V and high photocurrent density of 10.13 mA/cm².Keywords: chromophore, organic solar cells, photoactive materials, small molecule
Procedia PDF Downloads 161