Search results for: computational mathematics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2440

Search results for: computational mathematics

460 Fast Bayesian Inference of Multivariate Block-Nearest Neighbor Gaussian Process (NNGP) Models for Large Data

Authors: Carlos Gonzales, Zaida Quiroz, Marcos Prates

Abstract:

Several spatial variables collected at the same location that share a common spatial distribution can be modeled simultaneously through a multivariate geostatistical model that takes into account the correlation between these variables and the spatial autocorrelation. The main goal of this model is to perform spatial prediction of these variables in the region of study. Here we focus on a geostatistical multivariate formulation that relies on sharing common spatial random effect terms. In particular, the first response variable can be modeled by a mean that incorporates a shared random spatial effect, while the other response variables depend on this shared spatial term, in addition to specific random spatial effects. Each spatial random effect is defined through a Gaussian process with a valid covariance function, but in order to improve the computational efficiency when the data are large, each Gaussian process is approximated to a Gaussian random Markov field (GRMF), specifically to the block nearest neighbor Gaussian process (Block-NNGP). This approach involves dividing the spatial domain into several dependent blocks under certain constraints, where the cross blocks allow capturing the spatial dependence on a large scale, while each individual block captures the spatial dependence on a smaller scale. The multivariate geostatistical model belongs to the class of Latent Gaussian Models; thus, to achieve fast Bayesian inference, it is used the integrated nested Laplace approximation (INLA) method. The good performance of the proposed model is shown through simulations and applications for massive data.

Keywords: Block-NNGP, geostatistics, gaussian process, GRMF, INLA, multivariate models.

Procedia PDF Downloads 68
459 Scheduling Jobs with Stochastic Processing Times or Due Dates on a Server to Minimize the Number of Tardy Jobs

Authors: H. M. Soroush

Abstract:

The problem of scheduling products and services for on-time deliveries is of paramount importance in today’s competitive environments. It arises in many manufacturing and service organizations where it is desirable to complete jobs (products or services) with different weights (penalties) on or before their due dates. In such environments, schedules should frequently decide whether to schedule a job based on its processing time, due-date, and the penalty for tardy delivery to improve the system performance. For example, it is common to measure the weighted number of late jobs or the percentage of on-time shipments to evaluate the performance of a semiconductor production facility or an automobile assembly line. In this paper, we address the problem of scheduling a set of jobs on a server where processing times or due-dates of jobs are random variables and fixed weights (penalties) are imposed on the jobs’ late deliveries. The goal is to find the schedule that minimizes the expected weighted number of tardy jobs. The problem is NP-hard to solve; however, we explore three scenarios of the problem wherein: (i) both processing times and due-dates are stochastic; (ii) processing times are stochastic and due-dates are deterministic; and (iii) processing times are deterministic and due-dates are stochastic. We prove that special cases of these scenarios are solvable optimally in polynomial time, and introduce efficient heuristic methods for the general cases. Our computational results show that the heuristics perform well in yielding either optimal or near optimal sequences. The results also demonstrate that the stochasticity of processing times or due-dates can affect scheduling decisions. Moreover, the proposed problem is general in the sense that its special cases reduce to some new and some classical stochastic single machine models.

Keywords: number of late jobs, scheduling, single server, stochastic

Procedia PDF Downloads 471
458 Effects of the Air Supply Outlets Geometry on Human Comfort inside Living Rooms: CFD vs. ADPI

Authors: Taher M. Abou-deif, Esmail M. El-Bialy, Essam E. Khalil

Abstract:

The paper is devoted to numerically investigating the influence of the air supply outlets geometry on human comfort inside living looms. A computational fluid dynamics model is developed to examine the air flow characteristics of a room with different supply air diffusers. The work focuses on air flow patterns, thermal behavior in the room with few number of occupants. As an input to the full-scale 3-D room model, a 2-D air supply diffuser model that supplies direction and magnitude of air flow into the room is developed. Air distribution effect on thermal comfort parameters was investigated depending on changing the air supply diffusers type, angles and velocity. Air supply diffusers locations and numbers were also investigated. The pre-processor Gambit is used to create the geometric model with parametric features. Commercially available simulation software “Fluent 6.3” is incorporated to solve the differential equations governing the conservation of mass, three momentum and energy in the processing of air flow distribution. Turbulence effects of the flow are represented by the well-developed two equation turbulence model. In this work, the so-called standard k-ε turbulence model, one of the most widespread turbulence models for industrial applications, was utilized. Basic parameters included in this work are air dry bulb temperature, air velocity, relative humidity and turbulence parameters are used for numerical predictions of indoor air distribution and thermal comfort. The thermal comfort predictions through this work were based on ADPI (Air Diffusion Performance Index),the PMV (Predicted Mean Vote) model and the PPD (Percentage People Dissatisfied) model, the PMV and PPD were estimated using Fanger’s model.

Keywords: thermal comfort, Fanger's model, ADPI, energy effeciency

Procedia PDF Downloads 384
457 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: autonomous vehicles, deformable part model, dpm, pedestrian detection, real time

Procedia PDF Downloads 253
456 Improvement Performances of the Supersonic Nozzles at High Temperature Type Minimum Length Nozzle

Authors: W. Hamaidia, T. Zebbiche

Abstract:

This paper presents the design of axisymmetric supersonic nozzles, in order to accelerate a supersonic flow to the desired Mach number and that having a small weight, in the same time gives a high thrust. The concerned nozzle gives a parallel and uniform flow at the exit section. The nozzle is divided into subsonic and supersonic regions. The supersonic portion is independent to the upstream conditions of the sonic line. The subsonic portion is used to give a sonic flow at the throat. In this case, nozzle gives a uniform and parallel flow at the exit section. It’s named by minimum length Nozzle. The study is done at high temperature, lower than the dissociation threshold of the molecules, in order to improve the aerodynamic performances. Our aim consists of improving the performances both by the increase of exit Mach number and the thrust coefficient and by reduction of the nozzle's mass. The variation of the specific heats with the temperature is considered. The design is made by the Method of Characteristics. The finite differences method with predictor-corrector algorithm is used to make the numerical resolution of the obtained nonlinear algebraic equations. The application is for air. All the obtained results depend on three parameters which are exit Mach number, the stagnation temperature, the chosen mesh in characteristics. A numerical simulation of nozzle through Computational Fluid Dynamics-FASTRAN was done to determine and to confirm the necessary design parameters.

Keywords: flux supersonic flow, axisymmetric minimum length nozzle, high temperature, method of characteristics, calorically imperfect gas, finite difference method, trust coefficient, mass of the nozzle, specific heat at constant pressure, air, error

Procedia PDF Downloads 131
455 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 159
454 ADP Approach to Evaluate the Blood Supply Network of Ontario

Authors: Usama Abdulwahab, Mohammed Wahab

Abstract:

This paper presents the application of uncapacitated facility location problems (UFLP) and 1-median problems to support decision making in blood supply chain networks. A plethora of factors make blood supply-chain networks a complex, yet vital problem for the regional blood bank. These factors are rapidly increasing demand; criticality of the product; strict storage and handling requirements; and the vastness of the theater of operations. As in the UFLP, facilities can be opened at any of $m$ predefined locations with given fixed costs. Clients have to be allocated to the open facilities. In classical location models, the allocation cost is the distance between a client and an open facility. In this model, the costs are the allocation cost, transportation costs, and inventory costs. In order to address this problem the median algorithm is used to analyze inventory, evaluate supply chain status, monitor performance metrics at different levels of granularity, and detect potential problems and opportunities for improvement. The Euclidean distance data for some Ontario cities (demand nodes) are used to test the developed algorithm. Sitation software, lagrangian relaxation algorithm, and branch and bound heuristics are used to solve this model. Computational experiments confirm the efficiency of the proposed approach. Compared to the existing modeling and solution methods, the median algorithm approach not only provides a more general modeling framework but also leads to efficient solution times in general.

Keywords: approximate dynamic programming, facility location, perishable product, inventory model, blood platelet, P-median problem

Procedia PDF Downloads 485
453 STEM (Science–Technology–Engineering–Mathematics) Based Entrepreneurship Training, Within a Learning Company

Authors: Diana Mitova, Krassimir Mitrev

Abstract:

To prepare the current generation for the future, education systems need to change. It implies a way of learning that meets the demands of the times and the environment in which we live. Productive interaction in the educational process implies an interactive learning environment and the possibility of personal development of learners based on communication and mutual dialogue, cooperation and good partnership in decision-making. Students need not only theoretical knowledge, but transferable skills that will help them to become inventors and entrepreneurs, to implement ideas. STEM education , is now a real necessity for the modern school. Through learning in a "learning company", students master examples from classroom practice, simulate real life situations, group activities and apply basic interactive learning strategies and techniques. The learning company is the subject of this study, reduced to entrepreneurship training in STEM - technologies that encourage students to think outside the traditional box. STEM learning focuses the teacher's efforts on modeling entrepreneurial thinking and behavior in students and helping them solve problems in the world of business and entrepreneurship. Learning based on the implementation of various STEM projects in extracurricular activities, experiential learning, and an interdisciplinary approach are means by which educators better connect the local community and private businesses. Learners learn to be creative, experiment and take risks and work in teams - the leading characteristics of any innovator and future entrepreneur. This article presents some European policies on STEM and entrepreneurship education. It also shares best practices for training company training , with the integration of STEM in the learning company training environment. The main results boil down to identifying some advantages and problems in STEM entrepreneurship education. The benefits of using integrative approaches to teach STEM within a training company are identified, as well as the positive effects of project-based learning in a training company using STEM. Best practices for teaching entrepreneurship through extracurricular activities using STEM within a training company are shared. The following research methods are applied in this research paper: Theoretical and comparative analysis of principles and policies of European Union countries and Bulgaria in the field of entrepreneurship education through a training company. Experiences in entrepreneurship education through extracurricular activities with STEM application within a training company are shared. A questionnaire survey to investigate the motivation of secondary vocational school students to learn entrepreneurship through a training company and their readiness to start their own business after completing their education. Within the framework of learning through a "learning company" with the integration of STEM, the activity of the teacher-facilitator includes the methods: counseling, supervising and advising students during work. The expectation is that students acquire the key competence "initiative and entrepreneurship" and that the cooperation between the vocational education system and the business in Bulgaria is more effective.

Keywords: STEM, entrepreneurship, training company, extracurricular activities

Procedia PDF Downloads 77
452 TAXAPRO, A Streamlined Pipeline to Analyze Shotgun Metagenomes

Authors: Sofia Sehli, Zainab El Ouafi, Casey Eddington, Soumaya Jbara, Kasambula Arthur Shem, Islam El Jaddaoui, Ayorinde Afolayan, Olaitan I. Awe, Allissa Dillman, Hassan Ghazal

Abstract:

The ability to promptly sequence whole genomes at a relatively low cost has revolutionized the way we study the microbiome. Microbiologists are no longer limited to studying what can be grown in a laboratory and instead are given the opportunity to rapidly identify the makeup of microbial communities in a wide variety of environments. Analyzing whole genome sequencing (WGS) data is a complex process that involves multiple moving parts and might be rather unintuitive for scientists that don’t typically work with this type of data. Thus, to help lower the barrier for less-computationally inclined individuals, TAXAPRO was developed at the first Omics Codeathon held virtually by the African Society for Bioinformatics and Computational Biology (ASBCB) in June 2021. TAXAPRO is an advanced metagenomics pipeline that accurately assembles organelle genomes from whole-genome sequencing data. TAXAPRO seamlessly combines WGS analysis tools to create a pipeline that automatically processes raw WGS data and presents organism abundance information in both a tabular and graphical format. TAXAPRO was evaluated using COVID-19 patient gut microbiome data. Analysis performed by TAXAPRO demonstrated a high abundance of Clostridia and Bacteroidia genera and a low abundance of Proteobacteria genera relative to others in the gut microbiome of patients hospitalized with COVID-19, consistent with the original findings derived using a different analysis methodology. This provides crucial evidence that the TAXAPRO workflow dispenses reliable organism abundance information overnight without the hassle of performing the analysis manually.

Keywords: metagenomics, shotgun metagenomic sequence analysis, COVID-19, pipeline, bioinformatics

Procedia PDF Downloads 182
451 Teaching for Social Justice: Towards Education for Sustainable Development

Authors: Nashwa Moheyeldine

Abstract:

Education for sustainable development (ESD) aims to preserve the rights of the present and future generations as well as preserving the globe, both humans and nature. ESD should aim not only to bring about consciousness of the current and future issues, but also to foster student agency to bring about change at schools, communities and nations. According to the Freirian concept of conscientização, (conscientization) — “learning to perceive social, political, and economic contradictions, and to take action against the oppressive elements of reality”, education aims to liberate people to understand and act upon their worlds. Social justice is greatly intertwined with a nation’s social, political and economic rights, and thus, should be targeted through ESD. “Literacy researchers have found that K-12 students who engage in social justice inquiries develop vital academic knowledge and skills, critical understandings about oppression in the world, and strong dispositions to continue working toward social justice beyond the initial inquiries they conduct”. Education for social justice greatly equips students with the critical thinking skills and sense of agency, that are required for responsible decision making that would ensure a sustainable world. In fact teaching for social justice is intersecting with many of the pedagogies such as multicultural education, cultural relevant pedagogy, education for sustainable development, critical theory pedagogy, (local and global) citizenship education, all of which aim to prepare students for awareness, responsibility and agency. Social justice pedagogy has three specific goals, including helping students develop 1) a sociopolitical consciousness - an awareness of the symbiotic relationship between the social and political factors that affect society, 2) a sense of agency, the freedom to act on one’s behalf and to feel empowered as a change agent, and 3) positive social and cultural identities. The keyword to social justice education is to expose the realities to the students, and challenge the students not only to question , but also to change. Social justice has been usually discussed through the subjects of history and social sciences, however, an interdisciplinary approach is essential to enhance the students’ understanding of their world. Teaching social justice through various subjects is also important, as it make students’ learning relevant to their lives. The main question that this paper seeks to answer is ‘How could social justice be taught through different subjects and tools, such as mathematics, literature through story-telling, geography, and service learning will be shown in this paper. Also challenges to education for social justice will be described. Education is not a neutral endeavor, but is either oriented toward the cause of liberation or in support of domination. In fact , classrooms can be “a microcosm of the emancipatory societies we seek to encourage”, education for the 21st century should be relevant to students' lives where it exposes life's realities to them. Education should also provide students with the basics of school subjects with the bigger goal of helping them make the world a better, more just place to live in.

Keywords: teaching for social justice, student agency, citizenship education, education

Procedia PDF Downloads 379
450 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 327
449 Review of Strategies for Hybrid Energy Storage Management System in Electric Vehicle Application

Authors: Kayode A. Olaniyi, Adeola A. Ogunleye, Tola M. Osifeko

Abstract:

Electric Vehicles (EV) appear to be gaining increasing patronage as a feasible alternative to Internal Combustion Engine Vehicles (ICEVs) for having low emission and high operation efficiency. The EV energy storage systems are required to handle high energy and power density capacity constrained by limited space, operating temperature, weight and cost. The choice of strategies for energy storage evaluation, monitoring and control remains a challenging task. This paper presents review of various energy storage technologies and recent researches in battery evaluation techniques used in EV applications. It also underscores strategies for the hybrid energy storage management and control schemes for the improvement of EV stability and reliability. The study reveals that despite the advances recorded in battery technologies there is still no cell which possess both the optimum power and energy densities among other requirements, for EV application. However combination of two or more energy storages as hybrid and allowing the advantageous attributes from each device to be utilized is a promising solution. The review also reveals that State-of-Charge (SoC) is the most crucial method for battery estimation. The conventional method of SoC measurement is however questioned in the literature and adaptive algorithms that include all model of disturbances are being proposed. The review further suggests that heuristic-based approach is commonly adopted in the development of strategies for hybrid energy storage system management. The alternative approach which is optimization-based is found to be more accurate but is memory and computational intensive and as such not recommended in most real-time applications.

Keywords: battery state estimation, hybrid electric vehicle, hybrid energy storage, state of charge, state of health

Procedia PDF Downloads 201
448 Reduction of Plutonium Production in Heavy Water Research Reactor: A Feasibility Study through Neutronic Analysis Using MCNPX2.6 and CINDER90 Codes

Authors: H. Shamoradifar, B. Teimuri, P. Parvaresh, S. Mohammadi

Abstract:

One of the main characteristics of Heavy Water Moderated Reactors is their high production of plutonium. This article demonstrates the possibility of reduction of plutonium and other actinides in Heavy Water Research Reactor. Among the many ways for reducing plutonium production in a heavy water reactor, in this research, changing the fuel from natural Uranium fuel to Thorium-Uranium mixed fuel was focused. The main fissile nucleus in Thorium-Uranium fuels is U-233 which would be produced after neutron absorption by Th-232, so the Thorium-Uranium fuels have some known advantages compared to the Uranium fuels. Due to this fact, four Thorium-Uranium fuels with different compositions ratios were chosen in our simulations; a) 10% UO2-90% THO2 (enriched= 20%); b) 15% UO2-85% THO2 (enriched= 10%); c) 30% UO2-70% THO2 (enriched= 5%); d) 35% UO2-65% THO2 (enriched= 3.7%). The natural Uranium Oxide (UO2) is considered as the reference fuel, in other words all of the calculated data are compared with the related data from Uranium fuel. Neutronic parameters were calculated and used as the comparison parameters. All calculations were performed by Monte Carol (MCNPX2.6) steady state reaction rate calculation linked to a deterministic depletion calculation (CINDER90). The obtained computational data showed that Thorium-Uranium fuels with four different fissile compositions ratios can satisfy the safety and operating requirements for Heavy Water Research Reactor. Furthermore, Thorium-Uranium fuels have a very good proliferation resistance and consume less fissile material than uranium fuels at the same reactor operation time. Using mixed Thorium-Uranium fuels reduced the long-lived α emitter, high radiotoxic wastes and the radio toxicity level of spent fuel.

Keywords: Heavy Water Reactor, Burn up, Minor Actinides, Neutronic Calculation

Procedia PDF Downloads 228
447 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 67
446 Search for APN Permutations in Rings ℤ_2×ℤ_2^k

Authors: Daniel Panario, Daniel Santana de Freitas, Brett Stevens

Abstract:

Almost Perfect Nonlinear (APN) permutations with optimal resistance against differential cryptanalysis can be found in several domains. The permutation used in the standard for symmetric cryptography (the AES), for example, is based on a special kind of inversion in GF(28). Although very close to APN (2-uniform), this permutation still contains one number 4 in its differential spectrum, which means that, rigorously, it must be classified as 4-uniform. This fact motivates the search for fully APN permutations in other domains of definition. The extremely high complexity associated to this kind of problem precludes an exhaustive search for an APN permutation with 256 elements to be performed without the support of a suitable mathematical structure. On the other hand, in principle, there is nothing to indicate which mathematically structured domains can effectively help the search, and it is necessary to test several domains. In this work, the search for APN permutations in rings ℤ2×ℤ2k is investigated. After a full, exhaustive search with k=2 and k=3, all possible APN permutations in those rings were recorded, together with their differential profiles. Some very promising heuristics in these cases were collected so that, when used as a basis to prune backtracking for the same search in ℤ2×ℤ8 (search space with size 16! ≅244), just a few tenths of a second were enough to produce an APN permutation in a single CPU. Those heuristics were empirically extrapolated so that they could be applied to a backtracking search for APNs over ℤ2×ℤ16 (search space with size 32! ≅2117). The best permutations found in this search were further refined through Simulated Annealing, with a definition of neighbors suitable to this domain. The best result produced with this scheme was a 3-uniform permutation over ℤ2×ℤ16 with only 24 values equal to 3 in the differential spectrum (all the other 968 values were less than or equal 2, as it should be the case for an APN permutation). Although far from being fully APN, this result is technically better than a 4-uniform permutation and demanded only a few seconds in a single CPU. This is a strong indication that the use of mathematically structured domains, like the rings described in this work, together with heuristics based on smaller cases, can lead to dramatic cuts in the computational resources involved in the complexity of the search for APN permutations in extremely large domains.

Keywords: APN permutations, heuristic searches, symmetric cryptography, S-box design

Procedia PDF Downloads 133
445 Physical Modeling of Woodwind Ancient Greek Musical Instruments: The Case of Plagiaulos

Authors: Dimitra Marini, Konstantinos Bakogiannis, Spyros Polychronopoulos, Georgios Kouroupetroglou

Abstract:

Archaemusicology cannot entirely depend on the study of the excavated ancient musical instruments as most of the time their condition is not ideal (i.e., missing/eroded parts) and moreover, because of the concern damaging the originals during the experiments. Researchers, in order to overcome the above obstacles, build replicas. This technique is still the most popular one, although it is rather expensive and time-consuming. Throughout the last decades, the development of physical modeling techniques has provided tools that enable the study of musical instruments through their digitally simulated models. This is not only a more cost and time-efficient technique but also provides additional flexibility as the user can easily modify parameters such as their geometrical features and materials. This paper thoroughly describes the steps to create a physical model of a woodwind ancient Greek instrument, Plagiaulos. This instrument could be considered as the ancestor of the modern flute due to the common geometry and air-jet excitation mechanism. Plagiaulos is comprised of a single resonator with an open end and a number of tone holes. The combination of closed and open tone holes produces the pitch variations. In this work, the effects of all the instrument’s components are described by means of physics and then simulated based on digital waveguides. The synthesized sound of the proposed model complies with the theory, highlighting its validity. Further, the synthesized sound of the model simulating the Plagiaulos of Koile (2nd century BCE) was compared with its replica build in our laboratory by following the scientific methodologies of archeomusicology. The aforementioned results verify that robust dynamic digital tools can be introduced in the field of computational, experimental archaemusicology.

Keywords: archaeomusicology, digital waveguides, musical acoustics, physical modeling

Procedia PDF Downloads 78
444 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 236
443 Nuclear Fuel Safety Threshold Determined by Logistic Regression Plus Uncertainty

Authors: D. S. Gomes, A. T. Silva

Abstract:

Analysis of the uncertainty quantification related to nuclear safety margins applied to the nuclear reactor is an important concept to prevent future radioactive accidents. The nuclear fuel performance code may involve the tolerance level determined by traditional deterministic models producing acceptable results at burn cycles under 62 GWd/MTU. The behavior of nuclear fuel can simulate applying a series of material properties under irradiation and physics models to calculate the safety limits. In this study, theoretical predictions of nuclear fuel failure under transient conditions investigate extended radiation cycles at 75 GWd/MTU, considering the behavior of fuel rods in light-water reactors under reactivity accident conditions. The fuel pellet can melt due to the quick increase of reactivity during a transient. Large power excursions in the reactor are the subject of interest bringing to a treatment that is known as the Fuchs-Hansen model. The point kinetic neutron equations show similar characteristics of non-linear differential equations. In this investigation, the multivariate logistic regression is employed to a probabilistic forecast of fuel failure. A comparison of computational simulation and experimental results was acceptable. The experiments carried out use the pre-irradiated fuels rods subjected to a rapid energy pulse which exhibits the same behavior during a nuclear accident. The propagation of uncertainty utilizes the Wilk's formulation. The variables chosen as essential to failure prediction were the fuel burnup, the applied peak power, the pulse width, the oxidation layer thickness, and the cladding type.

Keywords: logistic regression, reactivity-initiated accident, safety margins, uncertainty propagation

Procedia PDF Downloads 271
442 Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger

Authors: Feyza Şahi̇n, Harun Deni̇zli̇, Mustafa Zabun, Hüseyi̇n OnbaşIoğli

Abstract:

Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems.

Keywords: heat exchanger, fan hood, heat exchanger performance, air flow performance

Procedia PDF Downloads 43
441 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model

Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu

Abstract:

The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.

Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model

Procedia PDF Downloads 289
440 In silico Subtractive Genomics Approach for Identification of Strain-Specific Putative Drug Targets among Hypothetical Proteins of Drug-Resistant Klebsiella pneumoniae Strain 825795-1

Authors: Umairah Natasya Binti Mohd Omeershffudin, Suresh Kumar

Abstract:

Klebsiella pneumoniae, a Gram-negative enteric bacterium that causes nosocomial and urinary tract infections. Particular concern is the global emergence of multidrug-resistant (MDR) strains of Klebsiella pneumoniae. Characterization of antibiotic resistance determinants at the genomic level plays a critical role in understanding, and potentially controlling, the spread of multidrug-resistant (MDR) pathogens. In this study, drug-resistant Klebsiella pneumoniae strain 825795-1 was investigated with extensive computational approaches aimed at identifying novel drug targets among hypothetical proteins. We have analyzed 1099 hypothetical proteins available in genome. We have used in-silico genome subtraction methodology to design potential and pathogen-specific drug targets against Klebsiella pneumoniae. We employed bioinformatics tools to subtract the strain-specific paralogous and host-specific homologous sequences from the bacterial proteome. The sorted 645 proteins were further refined to identify the essential genes in the pathogenic bacterium using the database of essential genes (DEG). We found 135 unique essential proteins in the target proteome that could be utilized as novel targets to design newer drugs. Further, we identified 49 cytoplasmic protein as potential drug targets through sub-cellular localization prediction. Further, we investigated these proteins in the DrugBank databases, and 11 of the unique essential proteins showed druggability according to the FDA approved drug bank databases with diverse broad-spectrum property. The results of this study will facilitate discovery of new drugs against Klebsiella pneumoniae.

Keywords: pneumonia, drug target, hypothetical protein, subtractive genomics

Procedia PDF Downloads 157
439 Multisensory Science, Technology, Engineering and Mathematics Learning: Combined Hands-on and Virtual Science for Distance Learners of Food Chemistry

Authors: Paulomi Polly Burey, Mark Lynch

Abstract:

It has been shown that laboratory activities can help cement understanding of theoretical concepts, but it is difficult to deliver such an activity to an online cohort and issues such as occupational health and safety in the students’ learning environment need to be considered. Chemistry, in particular, is one of the sciences where practical experience is beneficial for learning, however typical university experiments may not be suitable for the learning environment of a distance learner. Food provides an ideal medium for demonstrating chemical concepts, and along with a few simple physical and virtual tools provided by educators, analytical chemistry can be experienced by distance learners. Food chemistry experiments were designed to be carried out in a home-based environment that 1) Had sufficient scientific rigour and skill-building to reinforce theoretical concepts; 2) Were safe for use at home by university students and 3) Had the potential to enhance student learning by linking simple hands-on laboratory activities with high-level virtual science. Two main components of the resources were developed, a home laboratory experiment component, and a virtual laboratory component. For the home laboratory component, students were provided with laboratory kits, as well as a list of supplementary inexpensive chemical items that they could purchase from hardware stores and supermarkets. The experiments used were typical proximate analyses of food, as well as experiments focused on techniques such as spectrophotometry and chromatography. Written instructions for each experiment coupled with video laboratory demonstrations were used to train students on appropriate laboratory technique. Data that students collected in their home laboratory environment was collated across the class through shared documents, so that the group could carry out statistical analysis and experience a full laboratory experience from their own home. For the virtual laboratory component, students were able to view a laboratory safety induction and advised on good characteristics of a home laboratory space prior to carrying out their experiments. Following on from this activity, students observed laboratory demonstrations of the experimental series they would carry out in their learning environment. Finally, students were embedded in a virtual laboratory environment to experience complex chemical analyses with equipment that would be too costly and sensitive to be housed in their learning environment. To investigate the impact of the intervention, students were surveyed before and after the laboratory series to evaluate engagement and satisfaction with the course. Students were also assessed on their understanding of theoretical chemical concepts before and after the laboratory series to determine the impact on their learning. At the end of the intervention, focus groups were run to determine which aspects helped and hindered learning. It was found that the physical experiments helped students to understand laboratory technique, as well as methodology interpretation, particularly if they had not been in such a laboratory environment before. The virtual learning environment aided learning as it could be utilized for longer than a typical physical laboratory class, thus allowing further time on understanding techniques.

Keywords: chemistry, food science, future pedagogy, STEM education

Procedia PDF Downloads 147
438 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors

Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany

Abstract:

Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.

Keywords: numerical simulation, carbonization, gasification, biomass, reactor

Procedia PDF Downloads 82
437 Hardware-In-The-Loop Relative Motion Control: Theory, Simulation and Experimentation

Authors: O. B. Iskender, K. V. Ling, V. Dubanchet, L. Simonini

Abstract:

This paper presents a Guidance and Control (G&C) strategy to address spacecraft maneuvering problem for future Rendezvous and Docking (RVD) missions. The proposed strategy allows safe and propellant efficient trajectories for space servicing missions including tasks such as approaching, inspecting and capturing. This work provides the validation test results of the G&C laws using a Hardware-In-the-Loop (HIL) setup with two robotic mockups representing the chaser and the target spacecraft. Through this paper, the challenges of the relative motion control in space are first summarized, and in particular, the constraints imposed by the mission, spacecraft and, onboard processing capabilities. Second, the proposed algorithm is introduced by presenting the formulation of constrained Model Predictive Control (MPC) to optimize the fuel consumption and explicitly handle the physical and geometric constraints in the system, e.g. thruster or Line-Of-Sight (LOS) constraints. Additionally, the coupling between translational motion and rotational motion is addressed via dual quaternion based kinematic description and accordingly explained. The resulting convex optimization problem allows real-time implementation capability based on a detailed discussion on the computational time requirements and the obtained results with respect to the onboard computer and future trends of space processors capabilities. Finally, the performance of the algorithm is presented in the scope of a potential future mission and of the available equipment. The results also cover a comparison between the proposed algorithms with Linear–quadratic regulator (LQR) based control law to highlight the clear advantages of the MPC formulation.

Keywords: autonomous vehicles, embedded optimization, real-time experiment, rendezvous and docking, space robotics

Procedia PDF Downloads 99
436 CFD Modeling of Air Stream Pressure Drop inside Combustion Air Duct of Coal-Fired Power Plant with and without Airfoil

Authors: Pakawhat Khumkhreung, Yottana Khunatorn

Abstract:

The flow pattern inside rectangular intake air duct of 300 MW lignite coal-fired power plant is investigated in order to analyze and reduce overall inlet system pressure drop. The system consists of the 45-degree inlet elbow, the flow instrument, the 90-degree mitered elbow and fans, respectively. The energy loss in each section can be determined by Bernoulli’s equation and ASHRAE standard table. Hence, computational fluid dynamics (CFD) is used in this study based on Navier-Stroke equation and the standard k-epsilon turbulence modeling. Input boundary condition is 175 kg/s mass flow rate inside the 11-m2 cross sectional duct. According to the inlet air flow rate, the Reynolds number of airstream is 2.7x106 (based on the hydraulic duct diameter), thus the flow behavior is turbulence. The numerical results are validated with the real operation data. It is found that the numerical result agrees well with the operating data, and dominant loss occurs at the flow rate measurement device. Normally, the air flow rate is measured by the airfoil and it gets high pressure drop inside the duct. To overcome this problem, the airfoil is planned to be replaced with the other type measuring instrument, such as the average pitot tube which generates low pressure drop of airstream. The numerical result in case of average pitot tube shows that the pressure drop inside the inlet airstream duct is decreased significantly. It should be noted that the energy consumption of inlet air system is reduced too.

Keywords: airfoil, average pitot tube, combustion air, CFD, pressure drop, rectangular duct

Procedia PDF Downloads 141
435 Numerical Analysis of Laminar Reflux Condensation from Gas-Vapour Mixtures in Vertical Parallel Plate Channels

Authors: Foad Hassaninejadafarahani, Scott Ormiston

Abstract:

Reflux condensation occurs in a vertical channels and tubes when there is an upward core flow of vapor (or gas-vapor mixture) and a downward flow of the liquid film. The understanding of this condensation configuration is crucial in the design of reflux condensers, distillation columns, and in loss-of-coolant safety analyses in nuclear power plant steam generators. The unique feature of this flow is the upward flow of the vapor-gas mixture (or pure vapor) that retards the liquid flow via shear at the liquid-mixture interface. The present model solves the full, elliptic governing equations in both the film and the gas-vapor core flow. The computational mesh is non-orthogonal and adapts dynamically the phase interface, thus produces sharp and accurate interface. Shear forces and heat and mass transfer at the interface are accounted for fundamentally. This modeling is a big step ahead of current capabilities by removing the limitations of previous reflux condensation models which inherently cannot account for the detailed local balances of shear, mass, and heat transfer at the interface. Discretisation has been done based on a finite volume method and a co-located variable storage scheme. An in-house computer code was developed to implement the numerical solution scheme. Detailed results are presented for laminar reflux condensation from steam-air mixtures flowing in vertical parallel plate channels. The results include velocity and pressure profiles, as well as axial variations of film thickness, Nusselt number and interface gas mass fraction.

Keywords: Reflux, Condensation, CFD-Two Phase, Nusselt number

Procedia PDF Downloads 339
434 Opposed Piston Engine Crankshaft Strength Calculation Using Finite Element Method

Authors: Konrad Pietrykowski, Michał Gęca, Michał Bialy

Abstract:

The paper presents the results of the crankshaft strength simulation. The crankshaft was taken from the opposed piston engine. Calculations were made using finite element method (FEM) in Abaqus software. This program allows to perform strength tests of individual machine parts as well as their assemblies. The crankshaft that was used in the calculations will be used in the two-stroke aviation research aircraft engine. The assumptions for the calculations were obtained from the AVL Boost software, from one-dimensional engine cycle model and from the multibody model using the method developed in the MSC Adams software. The research engine will be equipped with 3 combustion chambers and two crankshafts. In order to shorten the calculation time, only one crankcase analysis was performed. The cut of the shaft has been selected with the greatest forces resulting from the engine operation. Calculations were made for two cases. For maximum piston force when maximum bending load occurs and for the maximum torque. Cast iron material was adopted. For this material, Poisson's number, density, and Young's modulus were determined. The computational grid contained of 1,977,473 Tet elements. This type of elements was chosen because of the complex design of the crankshaft. Results are presented in the form of stress distributions maps and displacements on the surface and inside the geometry of the shaft. The results show the places of tension stresses, however, no stresses are exceeded at any place. The shaft can thus be applied to the engine in its present form. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK 'PZL-KALISZ’ S.A. and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.

Keywords: aircraft diesel engine, crankshaft, finite element method, two-stroke engine

Procedia PDF Downloads 160
433 An Unbiased Profiling of Immune Repertoire via Sequencing and Analyzing T-Cell Receptor Genes

Authors: Yi-Lin Chen, Sheng-Jou Hung, Tsunglin Liu

Abstract:

Adaptive immune system recognizes a wide range of antigens via expressing a large number of structurally distinct T cell and B cell receptor genes. The distinct receptor genes arise from complex rearrangements called V(D)J recombination, and constitute the immune repertoire. A common method of profiling immune repertoire is via amplifying recombined receptor genes using multiple primers and high-throughput sequencing. This multiplex-PCR approach is efficient; however, the resulting repertoire can be distorted because of primer bias. To eliminate primer bias, 5’ RACE is an alternative amplification approach. However, the application of RACE approach is limited by its low efficiency (i.e., the majority of data are non-regular receptor sequences, e.g., containing intronic segments) and lack of the convenient tool for analysis. We propose a computational tool that can correctly identify non-regular receptor sequences in RACE data via aligning receptor sequences against the whole gene instead of only the exon regions as done in all other tools. Using our tool, the remaining regular data allow for an accurate profiling of immune repertoire. In addition, a RACE approach is improved to yield a higher fraction of regular T-cell receptor sequences. Finally, we quantify the degree of primer bias of a multiplex-PCR approach via comparing it to the RACE approach. The results reveal significant differences in frequency of VJ combination by the two approaches. Together, we provide a new experimental and computation pipeline for an unbiased profiling of immune repertoire. As immune repertoire profiling has many applications, e.g., tracing bacterial and viral infection, detection of T cell lymphoma and minimal residual disease, monitoring cancer immunotherapy, etc., our work should benefit scientists who are interested in the applications.

Keywords: immune repertoire, T-cell receptor, 5' RACE, high-throughput sequencing, sequence alignment

Procedia PDF Downloads 166
432 TutorBot+: Automatic Programming Assistant with Positive Feedback based on LLMs

Authors: Claudia Martínez-Araneda, Mariella Gutiérrez, Pedro Gómez, Diego Maldonado, Alejandra Segura, Christian Vidal-Castro

Abstract:

The purpose of this document is to showcase the preliminary work in developing an EduChatbot-type tool and measuring the effects of its use aimed at providing effective feedback to students in programming courses. This bot, hereinafter referred to as tutorBot+, was constructed based on chatGPT and is tasked with assisting and delivering timely positive feedback to students in the field of computer science at the Universidad Católica de Concepción. The proposed working method consists of four stages: (1) Immersion in the domain of Large Language Models (LLMs), (2) Development of the tutorBot+ prototype and integration, (3) Experiment design, and (4) Intervention. The first stage involves a literature review on the use of artificial intelligence in education and the evaluation of intelligent tutors, as well as research on types of feedback for learning and the domain of chatGPT. The second stage encompasses the development of tutorBot+, and the final stage involves a quasi-experimental study with students from the Programming and Database labs, where the learning outcome involves the development of computational thinking skills, enabling the use and measurement of the tool's effects. The preliminary results of this work are promising, as a functional chatBot prototype has been developed in both conversational and non-conversational versions integrated into an open-source online judge and programming contest platform system. There is also an exploration of the possibility of generating a custom model based on a pre-trained one tailored to the domain of programming. This includes the integration of the created tool and the design of the experiment to measure its utility.

Keywords: assessment, chatGPT, learning strategies, LLMs, timely feedback

Procedia PDF Downloads 41
431 A Combined CFD Simulation of Plateau Borders including Films and Transitional Areas of Liquid Foams

Authors: Abdolhamid Anazadehsayed, Jamal Naser

Abstract:

An integrated computational fluid dynamics model is developed for a combined simulation of Plateau borders, films, and transitional areas between the film and the Plateau borders to reduce the simplifications and shortcomings of available models for foam drainage in micro-scale. Additionally, the counter-flow related to the Marangoni effect in the transitional area is investigated. The results of this combined model show the contribution of the films, the exterior Plateau borders, and Marangoni flow in the drainage process more accurately since the inter-influence of foam's elements is included in this study. The exterior Plateau borders flow rate can be four times larger than the interior ones. The exterior bubbles can be more prominent in the drainage process in cases where the number of the exterior Plateau borders increases due to the geometry of container. The ratio of the Marangoni counter-flow to the Plateau border flow increases drastically with an increase in the mobility of air-liquid interface. However, the exterior bubbles follow the same trend with much less intensity since typically, the flow is less dependent on the interface of air-liquid in the exterior bubbles. Moreover, the Marangoni counter-flow in a near-wall transition area is less important than an internal one. The influence of air-liquid interface mobility on the average velocity of interior foams is attained with more accuracy with more realistic boundary condition. Then it has been compared with other numerical and analytical results. The contribution of films in the drainage is significant for the mobile foams as the velocity of flow in the film has the same order of magnitude as the velocity in the Plateau border. Nevertheless, for foams with rigid interfaces, film's contribution in foam drainage is insignificant, particularly for the films near the wall of the container.

Keywords: foam, plateau border, film, Marangoni, CFD, bubble

Procedia PDF Downloads 320