Search results for: multi linear regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9419

Search results for: multi linear regression

7469 Approximation of Convex Set by Compactly Semidefinite Representable Set

Authors: Anusuya Ghosh, Vishnu Narayanan

Abstract:

The approximation of convex set by semidefinite representable set plays an important role in semidefinite programming, especially in modern convex optimization. To optimize a linear function over a convex set is a hard problem. But optimizing the linear function over the semidefinite representable set which approximates the convex set is easy to solve as there exists numerous efficient algorithms to solve semidefinite programming problems. So, our approximation technique is significant in optimization. We develop a technique to approximate any closed convex set, say K by compactly semidefinite representable set. Further we prove that there exists a sequence of compactly semidefinite representable sets which give tighter approximation of the closed convex set, K gradually. We discuss about the convergence of the sequence of compactly semidefinite representable sets to closed convex set K. The recession cone of K and the recession cone of the compactly semidefinite representable set are equal. So, we say that the sequence of compactly semidefinite representable sets converge strongly to the closed convex set. Thus, this approximation technique is very useful development in semidefinite programming.

Keywords: semidefinite programming, semidefinite representable set, compactly semidefinite representable set, approximation

Procedia PDF Downloads 367
7468 Examining Factors Influencing Career Choice Among Young Muslim Arab Women in Nursing

Authors: Merav Ben Natan, Miriam Abo El Hadi, Fardus Zoubi

Abstract:

Aim: This study investigates the factors that motivate young Muslim Arab women to pursue nursing careers, focusing on the impact of nurse uniforms, the COVID-19 pandemic, and perceptions of nurses and the nursing profession. The aim is to draw insights that can inform policy strategies. Background: The global shortage of nursing professionals is a pressing concern, even in regions like Israel. Attracting and retaining young Muslim Arab women in nursing is essential for addressing this shortage. To better understand their career decisions, it is crucial to examine the influence of nurse uniforms, the pandemic, and perceptions related to nurses and the nursing profession. Methods: This cross-sectional study employed digital questionnaires, which were administered to 200 Muslim Arab women between the ages of 20 and 30 in Israel. Results: Only 29.2% of the participants indicated an interest in pursuing a nursing career. The study findings revealed a noteworthy positive correlation between the pandemic's impact and the intention to pursue nursing. Further analysis, using linear regression, elucidated the role of factors such as the white nurse uniform, perceptions of nurses, and the image of the nursing profession in influencing career choices in nursing. Discussion: This study underscores the significance of nurse uniforms, the image of nurses, and the perception of the nursing profession in shaping the career choices of young Muslim Arab women in nursing. Policy interventions should prioritize raising awareness about diverse nursing roles, expanding nurses' responsibilities, and highlighting their invaluable contributions to society.

Keywords: nursing image, uniform, nursing career, nurse profession

Procedia PDF Downloads 65
7467 Modelling of Heating and Evaporation of Biodiesel Fuel Droplets

Authors: Mansour Al Qubeissi, Sergei S. Sazhin, Cyril Crua, Morgan R. Heikal

Abstract:

This paper presents the application of the Discrete Component Model for heating and evaporation to multi-component biodiesel fuel droplets in direct injection internal combustion engines. This model takes into account the effects of temperature gradient, recirculation and species diffusion inside droplets. A distinctive feature of the model used in the analysis is that it is based on the analytical solutions to the temperature and species diffusion equations inside the droplets. Nineteen types of biodiesel fuels are considered. It is shown that a simplistic model, based on the approximation of biodiesel fuel by a single component or ignoring the diffusion of components of biodiesel fuel, leads to noticeable errors in predicted droplet evaporation time and time evolution of droplet surface temperature and radius.

Keywords: heat/mass transfer, biodiesel, multi-component fuel, droplet

Procedia PDF Downloads 553
7466 Optimum Design of Alkali Activated Slag Concretes for Low Chloride Ion Permeability and Water Absorption Capacity

Authors: Müzeyyen Balçikanli, Erdoğan Özbay, Hakan Tacettin Türker, Okan Karahan, Cengiz Duran Atiş

Abstract:

In this research, effect of curing time (TC), curing temperature (CT), sodium concentration (SC) and silicate modules (SM) on the compressive strength, chloride ion permeability, and water absorption capacity of alkali activated slag (AAS) concretes were investigated. For maximization of compressive strength while for minimization of chloride ion permeability and water absorption capacity of AAS concretes, best possible combination of CT, CTime, SC and SM were determined. An experimental program was conducted by using the central composite design method. Alkali solution-slag ratio was kept constant at 0.53 in all mixture. The effects of the independent parameters were characterized and analyzed by using statistically significant quadratic regression models on the measured properties (dependent parameters). The proposed regression models are valid for AAS concretes with the SC from 0.1% to 7.5%, SM from 0.4 to 3.2, CT from 20 °C to 94 °C and TC from 1.2 hours to 25 hours. The results of test and analysis indicate that the most effective parameter for the compressive strength, chloride ion permeability and water absorption capacity is the sodium concentration.

Keywords: alkali activation, slag, rapid chloride permeability, water absorption capacity

Procedia PDF Downloads 300
7465 An Attempt at the Multi-Criterion Classification of Small Towns

Authors: Jerzy Banski

Abstract:

The basic aim of this study is to discuss and assess different classifications and research approaches to small towns that take their social and economic functions into account, as well as relations with surrounding areas. The subject literature typically includes three types of approaches to the classification of small towns: 1) the structural, 2) the location-related, and 3) the mixed. The structural approach allows for the grouping of towns from the point of view of the social, cultural and economic functions they discharge. The location-related approach draws on the idea of there being a continuum between the center and the periphery. A mixed classification making simultaneous use of the different approaches to research brings the most information to bear in regard to categories of the urban locality. Bearing in mind the approaches to classification, it is possible to propose a synthetic method for classifying small towns that takes account of economic structure, location and the relationship between the towns and their surroundings. In the case of economic structure, the small centers may be divided into two basic groups – those featuring a multi-branch structure and those that are specialized economically. A second element of the classification reflects the locations of urban centers. Two basic types can be identified – the small town within the range of impact of a large agglomeration, or else the town outside such areas, which is to say located peripherally. The third component of the classification arises out of small towns’ relations with their surroundings. In consequence, it is possible to indicate 8 types of small-town: from local centers enjoying good accessibility and a multi-branch economic structure to peripheral supra-local centers characterised by a specialized economic structure.

Keywords: small towns, classification, functional structure, localization

Procedia PDF Downloads 168
7464 Study and Simulation of a Dynamic System Using Digital Twin

Authors: J.P. Henriques, E. R. Neto, G. Almeida, G. Ribeiro, J.V. Coutinho, A.B. Lugli

Abstract:

Industry 4.0, or the Fourth Industrial Revolution, is transforming the relationship between people and machines. In this scenario, some technologies such as Cloud Computing, Internet of Things, Augmented Reality, Artificial Intelligence, Additive Manufacturing, among others, are making industries and devices increasingly intelligent. One of the most powerful technologies of this new revolution is the Digital Twin, which allows the virtualization of a real system or process. In this context, the present paper addresses the linear and nonlinear dynamic study of a didactic level plant using Digital Twin. In the first part of the work, the level plant is identified at a fixed point of operation, BY using the existing method of least squares means. The linearized model is embedded in a Digital Twin using Automation Studio® from Famous Technologies. Finally, in order to validate the usage of the Digital Twin in the linearized study of the plant, the dynamic response of the real system is compared to the Digital Twin. Furthermore, in order to develop the nonlinear model on a Digital Twin, the didactic level plant is identified by using the method proposed by Hammerstein. Different steps are applied to the plant, and from the Hammerstein algorithm, the nonlinear model is obtained for all operating ranges of the plant. As for the linear approach, the nonlinear model is embedded in the Digital Twin, and the dynamic response is compared to the real system in different points of operation. Finally, yet importantly, from the practical results obtained, one can conclude that the usage of Digital Twin to study the dynamic systems is extremely useful in the industrial environment, taking into account that it is possible to develop and tune controllers BY using the virtual model of the real systems.

Keywords: industry 4.0, digital twin, system identification, linear and nonlinear models

Procedia PDF Downloads 126
7463 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System

Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock

Abstract:

The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription-Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the Roche assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the Roche assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.

Keywords: HIV viral load, Aptima, Roche, Panther system

Procedia PDF Downloads 355
7462 The Lightener of Love: The World Peace Religion

Authors: Abdul Razzaq

Abstract:

It is known that every human society throughout the world and throughout history, the various religions and their theologies, ethics, and traditions influence everything in their life, shaping socio-economic and political ideas, attitudes and institutions. It is observed that religious teachings and traditions shape how people respond to each other in their daily social inter-course and interaction in the community at large. The majorities of us preserves and protect our own religious beliefs and traditions as generally they symbolize our essential identities, theologically, historically, culturally, socially, and even politically. Our religious faiths symbolize our dignity as persons and our very souls as communities and individuals. It thus goes without saying that in our multi-racial and multi-religious society, the only way for us to live in peace and harmony is for us to live in peaceful co-existence. It is important for us to recognize, understand, accept and respect each other regardless of our respective belief. The history of interfaith is as ancient as the religions since men and women when not at war with their neighbors have always made an effort to understand them (not least because understanding is a strategy for defense, but also because for as long as there is dialogue wars are delayed).

Keywords: Islam, religion, peace, society

Procedia PDF Downloads 407
7461 The Lightener of Love - The World Peace

Authors: Abdul Razzaq

Abstract:

It is known that every human society throughout the world and throughout history, the various religions and their theologies, ethics, and traditions influence everything in their life, shaping socio-economic and political ideas, attitudes and institutions. It is observed that religious teachings and traditions shape how people respond to each other in their daily social inter-course and interaction in the community at large. The majorities of us preserves and protect our own religious beliefs and traditions as generally they symbolize our essential identities, theologically, historically, culturally, socially, and even politically. Our religious faiths symbolize our dignity as persons and our very souls as communities and individuals. It thus goes without saying that in our multi-racial and multi-religious society, the only way for us to live in peace and harmony is for us to live in peaceful co-existence. It is important for us to recognize, understand, accept and respect each other regardless of our respective belief. The history of interfaith is as ancient as the religions since men and women when not at war with their neighbors have always made an effort to understand them (not least because understanding is a strategy for defense, but also because for as long as there is dialogue wars are delayed).

Keywords: Islam, interfaith, Sects, world, piece

Procedia PDF Downloads 666
7460 A Robust PID Load Frequency Controller of Interconnected Power System Using SDO Software

Authors: Pasala Gopi, P. Linga Reddy

Abstract:

The response of the load frequency control problem in an multi-area interconnected electrical power system is much more complex with increasing size, changing structure and increasing load. This paper deals with Load Frequency Control of three area interconnected Power system incorporating Reheat, Non-reheat and Reheat turbines in all areas respectively. The response of the load frequency control problem in an multi-area interconnected power system is improved by designing PID controller using different tuning techniques and proved that the PID controller which was designed by Simulink Design Optimization (SDO) Software gives the superior performance than other controllers for step perturbations. Finally the robustness of controller was checked against system parameter variations

Keywords: load frequency control, pid controller tuning, step load perturbations, inter connected power system

Procedia PDF Downloads 627
7459 Fault Diagnosis of Squirrel-Cage Induction Motor by a Neural Network Multi-Models

Authors: Yahia. Kourd, N. Guersi D. Lefebvre

Abstract:

In this paper we propose to study the faults diagnosis in squirrel-cage induction motor using MLP neural networks. We use neural healthy and faulty models of the behavior in order to detect and isolate some faults in machine. In the first part of this work, we have created a neural model for the healthy state using Matlab and a motor located in LGEB by acquirins data inputs and outputs of this engine. Then we detected the faults in the machine by residual generation. These residuals are not sufficient to isolate the existing faults. For this reason, we proposed additive neural networks to represent the faulty behaviors. From the analysis of these residuals and the choice of a threshold we propose a method capable of performing the detection and diagnosis of some faults in asynchronous machines with squirrel cage rotor.

Keywords: faults diagnosis, neural networks, multi-models, squirrel-cage induction motor

Procedia PDF Downloads 615
7458 An Algebraic Geometric Imaging Approach for Automatic Dairy Cow Body Condition Scoring System

Authors: Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, Yoichiro Horii

Abstract:

Today dairy farm experts and farmers have well recognized the importance of dairy cow Body Condition Score (BCS) since these scores can be used to optimize milk production, managing feeding system and as an indicator for abnormality in health even can be utilized to manage for having healthy calving times and process. In tradition, BCS measures are done by animal experts or trained technicians based on visual observations focusing on pin bones, pin, thurl and hook area, tail heads shapes, hook angles and short and long ribs. Since the traditional technique is very manual and subjective, the results can lead to different scores as well as not cost effective. Thus this paper proposes an algebraic geometric imaging approach for an automatic dairy cow BCS system. The proposed system consists of three functional modules. In the first module, significant landmarks or anatomical points from the cow image region are automatically extracted by using image processing techniques. To be specific, there are 23 anatomical points in the regions of ribs, hook bones, pin bone, thurl and tail head. These points are extracted by using block region based vertical and horizontal histogram methods. According to animal experts, the body condition scores depend mainly on the shape structure these regions. Therefore the second module will investigate some algebraic and geometric properties of the extracted anatomical points. Specifically, the second order polynomial regression is employed to a subset of anatomical points to produce the regression coefficients which are to be utilized as a part of feature vector in scoring process. In addition, the angles at thurl, pin, tail head and hook bone area are computed to extend the feature vector. Finally, in the third module, the extracted feature vectors are trained by using Markov Classification process to assign BCS for individual cows. Then the assigned BCS are revised by using multiple regression method to produce the final BCS score for dairy cows. In order to confirm the validity of proposed method, a monitoring video camera is set up at the milk rotary parlor to take top view images of cows. The proposed method extracts the key anatomical points and the corresponding feature vectors for each individual cows. Then the multiple regression calculator and Markov Chain Classification process are utilized to produce the estimated body condition score for each cow. The experimental results tested on 100 dairy cows from self-collected dataset and public bench mark dataset show very promising with accuracy of 98%.

Keywords: algebraic geometric imaging approach, body condition score, Markov classification, polynomial regression

Procedia PDF Downloads 143
7457 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization

Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang

Abstract:

The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.

Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling

Procedia PDF Downloads 235
7456 The Influence of Microscopic Features on the Self-Cleaning Ability of Developed 3D Printed Fabric-Like Structures Using Different Printing Parameters

Authors: Ayat Adnan Atwah, Muhammad A. Khan

Abstract:

Self-cleaning surfaces are getting significant attention in industrial fields. Especially for textile fabrics, it is observed that self-cleaning textile fabric surfaces are created by manipulating the surface features with the help of coatings and nanoparticles, which are considered costly and far more complicated. However, controlling the fabrication parameters of textile fabrics at the microscopic level by exploring the potential for self-cleaning has not been addressed. This study aimed to establish the context of self-cleaning textile fabrics by controlling the fabrication parameters of the textile fabric at the microscopic level. Therefore, 3D-printed textile fabrics were fabricated using the low-cost fused filament fabrication (FFF) technique. The printing parameters, such as orientation angle (O), layer height (LH), and extruder width (EW), were used to control the microscopic features of the printed fabrics. The combination of three printing parameters was created to provide the best self-cleaning textile fabric surface: (LH) (0.15, 0.13, 0.10 mm) and (EW) (0.5, 0.4, 0.3 mm) along with two different (O) of (45º and 90º). Three different thermoplastic flexible filament materials were used: (TPU 98A), (TPE felaflex), and (TPC flex45). The printing parameters were optimised to get the optimum self-cleaning ability of the printed specimens. Furthermore, the impact of these characteristics on mechanical strength at the fabric-woven structure level was investigated. The study revealed that the printing parameters significantly affect the self-cleaning properties after adjusting the selected combination of layer height, extruder width, and printing orientation. A linear regression model was effectively developed to demonstrate the association between 3D printing parameters (layer height, extruder width, and orientation). According to the experimental results, (TPE felaflex) has a better self-cleaning ability than the other two materials.

Keywords: 3D printing, self-cleaning fabric, microscopic features, printing parameters, fabrication

Procedia PDF Downloads 66
7455 Using Artificial Intelligence Method to Explore the Important Factors in the Reuse of Telecare by the Elderly

Authors: Jui-Chen Huang

Abstract:

This research used artificial intelligence method to explore elderly’s opinions on the reuse of telecare, its effect on their service quality, satisfaction and the relationship between customer perceived value and intention to reuse. This study conducted a questionnaire survey on the elderly. A total of 124 valid copies of a questionnaire were obtained. It adopted Backpropagation Network (BPN) to propose an effective and feasible analysis method, which is different from the traditional method. Two third of the total samples (82 samples) were taken as the training data, and the one third of the samples (42 samples) were taken as the testing data. The training and testing data RMSE (root mean square error) are 0.022 and 0.009 in the BPN, respectively. As shown, the errors are acceptable. On the other hand, the training and testing data RMSE are 0.100 and 0.099 in the regression model, respectively. In addition, the results showed the service quality has the greatest effects on the intention to reuse, followed by the satisfaction, and perceived value. This result of the Backpropagation Network method is better than the regression analysis. This result can be used as a reference for future research.

Keywords: artificial intelligence, backpropagation network (BPN), elderly, reuse, telecare

Procedia PDF Downloads 197
7454 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra

Authors: Bitewulign Mekonnen

Abstract:

Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.

Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network

Procedia PDF Downloads 71
7453 Multiscale Analysis of Shale Heterogeneity in Silurian Longmaxi Formation from South China

Authors: Xianglu Tang, Zhenxue Jiang, Zhuo Li

Abstract:

Characterization of shale multi scale heterogeneity is an important part to evaluate size and space distribution of shale gas reservoirs in sedimentary basins. The origin of shale heterogeneity has always been a hot research topic for it determines shale micro characteristics description and macro quality reservoir prediction. Shale multi scale heterogeneity was discussed based on thin section observation, FIB-SEM, QEMSCAN, TOC, XRD, mercury intrusion porosimetry (MIP), and nitrogen adsorption analysis from 30 core samples in Silurian Longmaxi formation. Results show that shale heterogeneity can be characterized by pore structure and mineral composition. The heterogeneity of shale pore is showed by different size pores at nm-μm scale. Macropores (pore diameter > 50 nm) have a large percentage of pore volume than mesopores (pore diameter between 2~ 50 nm) and micropores (pore diameter < 2nm). However, they have a low specific surface area than mesopores and micropores. Fractal dimensions of the pores from nitrogen adsorption data are higher than 2.7, what are higher than 2.8 from MIP data, showing extremely complex pore structure. This complexity in pore structure is mainly due to the organic matter and clay minerals with complex pore network structures, and diagenesis makes it more complicated. The heterogeneity of shale minerals is showed by mineral grains, lamina, and different lithology at nm-km scale under the continuous changing horizon. Through analyzing the change of mineral composition at each scale, random arrangement of mineral equal proportion, seasonal climate changes, large changes of sedimentary environment, and provenance supply are considered to be the main reasons that cause shale minerals heterogeneity from microcosmic to macroscopic. Due to scale effect, the change of shale multi scale heterogeneity is a discontinuous process, and there is a transformation boundary between homogeneous and in homogeneous. Therefore, a shale multi scale heterogeneity changing model is established by defining four types of homogeneous unit at different scales, which can be used to guide the prediction of shale gas distribution from micro scale to macro scale.

Keywords: heterogeneity, homogeneous unit, multiscale, shale

Procedia PDF Downloads 436
7452 Investigation of Mechanical and Rheological Properties of Poly (trimethylene terephthalate) (PTT)/Polyethylene Blend Using Carboxylate and Ionomer as Compatibilizers

Authors: Wuttikorn Chayapanja, Sutep Charoenpongpool, Manit Nithitanakul, Brian P. Grady

Abstract:

Poly (trimethylene terephthalate) (PTT) is a linear aromatic polyester with good strength and stiffness, good surface appearance, low shrinkage and war page, and good dimensional stability. However, it has low impact strength which is a problem in automotive application. Thus, modification of PTT with the other polymer or polymer blending is a one way to develop a new material with excellence properties. In this study, PTT/High Density Polyethylene (HDPE) blends and PTT/Linear Low Density Polyethylene (LLDPE) blends with and without compatibilizers base on maleic anhydride grafted HDPE (MAH-g-HDPE) and ethylene-methacrylic acid neutralized sodium metal (Na-EMAA) were prepared by a twin-screw extruder. The blended samples with different ratios of polymers and compatibilizers were characterized on mechanical and rheological properties. Moreover, the phase morphology and dispersion size were studied by using SEM to give better understanding of the compatibility of the blends.

Keywords: poly trimethylene terephthalate, polyethylene, compatibilizer, polymer blend

Procedia PDF Downloads 398
7451 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 128
7450 Seismic Soil-Pile Interaction Considering Nonlinear Soil Column Behavior in Saturated and Dry Soil Conditions

Authors: Mohammad Moeini, Mehrdad Ghyabi, Kiarash Mohtasham Dolatshahi

Abstract:

This paper investigates seismic soil-pile interaction using the Beam on Nonlinear Winkler Foundation (BNWF) approach. Three soil types are considered to cover all the possible responses, as well as nonlinear site response analysis using finite element method in OpenSees platform. Excitations at each elevation that are output of the site response analysis are used as the input excitation to the soil pile system implementing multi-support excitation method. Spectral intensities of acceleration show that the extent of the response in sand is more severe than that of clay, in addition, increasing the PGA of ground strong motion will affect the sandy soil more, in comparison with clayey medium, which is an indicator of the sensitivity of soil-pile systems in sandy soil.

Keywords: BNWF method, multi-support excitation, nonlinear site response analysis, seismic soil-pile interaction

Procedia PDF Downloads 375
7449 The Impact of the Board of Directors’ Characteristics on Tax Aggressiveness in USA Companies

Authors: jihen ayadi sellami

Abstract:

The rapid evolution of the global financial landscape has led to increased attention to corporate tax policies and the need to understand the factors that influence their tax behavior. In order to mitigate any residual loss for shareholders resulting from tax aggressiveness and resolve the agency problem, appropriate systems that separate the function of management from that of controlling are needed. In this context of growing concerns to limit aggressive corporate taxation practices through governance, this study discusses. Its aims is to examine the influence of six key characteristics of the board of directors (board size, diligence, CEO duality, presence of audit committees, gender diversity and independence of directors), given a governance mechanism, on the tax decisions of non-financial corporations in the United State. In fact, using a sample of 90 non-financial US firms from S&P 500 over a period of 4 years going from 2014 to 2017, the results based on a multivariate linear regression highlight significant associations between these characteristics and corporate tax policy. Notably, larger board, gender diversity, diligence and increased director independence appear to play an important role in reducing aggressive taxation. While duality has a positive and significant correlation with tax aggressiveness, that can be explained by the fact that the manager did properly exploit his specific position within the company. These findings contribute to a deeper understanding of how board characteristics can influence corporate tax management, providing avenues for more effective corporate governance and more responsible tax decision-making

Keywords: tax aggressiveness, board of directors, board size, CEO duality, audit committees, gender diversity, director independence, diligence, corporate governance, united states

Procedia PDF Downloads 44
7448 Comparative DNA Binding of Iron and Manganese Complexes by Spectroscopic and ITC Techniques and Antibacterial Activity

Authors: Maryam Nejat Dehkordi, Per Lincoln, Hassan Momtaz

Abstract:

Interaction of Schiff base complexes of iron and manganese (iron [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) chloride, [Fe Salen]Cl, manganese [N, N’ Bis (5-(triphenyl phosphonium methyl) salicylidene) -1, 2 ethanediamine) acetate) with DNA were investigated by spectroscopic and isothermal titration calorimetry techniques (ITC). The absorbance spectra of complexes have shown hyper and hypochromism in the presence of DNA that is indication of interaction of complexes with DNA. The linear dichroism (LD) measurements confirmed the bending of DNA in the presence of complexes. Furthermore, isothermal titration calorimetry experiments approved that complexes bound to DNA on the base of both electrostatic and hydrophobic interactions. Furthermore, ITC profile exhibits the existence of two binding phases for the complex. Antibacterial activity of ligand and complexes were tested in vitro to evaluate their activity against the gram positive and negative bacteria.

Keywords: Schiff base complexes, ct-DNA, linear dichroism (LD), isothermal titration calorimetry (ITC), antibacterial activity

Procedia PDF Downloads 458
7447 Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients

Authors: Yagahira E. Castro-Sesquen, Robert H. Gilman, Carolina Mejia, Daniel E. Clark, Jeong Choi, Melissa J. Reimer-Mcatee, Rocio Castro, Jorge Flores, Edward Valencia-Ayala, Faustino Torrico, Ricardo Castillo-Neyra, Lance Liotta, Caryn Bern, Alessandra Luchini

Abstract:

Early diagnosis of reactivation of Chagas disease in HIV patients could be lifesaving; however, in Latin American the diagnosis is performed by detection of parasitemia by microscopy which lacks sensitivity. To evaluate if levels of T. cruzi antigens in urine determined by Chunap (Chagas urine nanoparticle test) are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. T. cruzi antigens in urine of HIV patients (N=55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. The percentage of Chagas positive patients determined by Chunap compared to blood microscopy, qPCR, and ELISA was 100% (6/6), 95% (18/19) and 74% (23/31), respectively. Chunap specificity was 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels (determined by qPCR) and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (6/6). Urine antigen concentration was significantly higher among patients with CD4+ lymphocyte counts below 200/mL (p=0.045). Chunap shows potential for early detection of reactivation and with appropriate adaptation can be used for monitoring Chagas disease status in T. cruzi/HIV co-infected patients.

Keywords: antigenuria, Chagas disease, Chunap, nanoparticles, parasitemia, poly N-isopropylacrylamide (NIPAm)/trypan blue particles (polyNIPAm/TB), reactivation of Chagas disease.

Procedia PDF Downloads 355
7446 Nutritional Status of Children in a Rural Food Environment, Haryana: A Paradox for the Policy Action

Authors: Neha Gupta, Sonika Verma, Seema Puri, Nikhil Tandon, Narendra K. Arora

Abstract:

The concurrent increasing prevalence of underweight and overweight/obesity among children with changing lifestyle and the rapid transitioning society has necessitated the need for a unifying/multi-level approach to understand the determinants of the problem. The present community-based cross-sectional research study was conducted to assess the associations between lifestyle behavior and food environment of the child at household, neighborhood, and school with the BMI of children (6-12 year old) (n=612) residing in three rural clusters of Palwal district, Haryana. The study used innovative and robust methods for assessing the lifestyle and various components of food environment in the study. The three rural clusters selected for the study were located at three different locations according to their access to highways in the SOMAARTH surveillance site. These clusters were significantly different from each other in terms of their socio-demographic and socio-economic profile, living conditions, environmental hygiene, health seeking behavior and retail density. Despite of being different, the quality of living conditions and environmental hygiene was poor across three clusters. The children had higher intakes of dietary energy and sugars; one-fifth share of the energy being derived from unhealthy foods, engagement in high levels of physical activity and significantly different food environment at home, neighborhood and school level. However, despite having a high energy intake, 22.5% of the recruited children were thin/severe thin, and 3% were overweight/obese as per their BMI-for-age categories. The analysis was done using multi-variate logistic regression at three-tier hierarchy including individual, household and community level. The factors significantly explained the variability in governing the risk of getting thin/severe thin among children in rural area (p-value: 0.0001; Adjusted R2: 0.156) included age (>10years) (OR: 2.1; 95% CI: 1.0-4.4), the interaction between minority category and poor SES of the household (OR: 4.4; 95% CI: 1.6-12.1), availability of sweets (OR: 0.9; 95% CI: 0.8-0.99) and cereals (OR: 0.9; 95% CI: 0.8-1.0) in the household and poor street condition (proxy indicator of the hygiene and cleanliness in the neighborhood) (OR: 0.3; 95% CI: 0.1-1.1). The homogeneity of other factors at neighborhood and school level food environment diluted the heterogeneity in the lifestyles and home environment of the recruited children and their households. However, it is evident that when various individual factors interplay at multiple levels amplifies the risk of undernutrition in a rural community. Conclusion: These rural areas in Haryana are undergoing developmental, economic and societal transition. In correspondence, no improvements in the nutritional status of children have happened. Easy access to the unhealthy foods has become a paradox.

Keywords: transition, food environment, lifestyle, undernutrition, overnutrition

Procedia PDF Downloads 165
7445 Multi-Label Approach to Facilitate Test Automation Based on Historical Data

Authors: Warda Khan, Remo Lachmann, Adarsh S. Garakahally

Abstract:

The increasing complexity of software and its applicability in a wide range of industries, e.g., automotive, call for enhanced quality assurance techniques. Test automation is one option to tackle the prevailing challenges by supporting test engineers with fast, parallel, and repetitive test executions. A high degree of test automation allows for a shift from mundane (manual) testing tasks to a more analytical assessment of the software under test. However, a high initial investment of test resources is required to establish test automation, which is, in most cases, a limitation to the time constraints provided for quality assurance of complex software systems. Hence, a computer-aided creation of automated test cases is crucial to increase the benefit of test automation. This paper proposes the application of machine learning for the generation of automated test cases. It is based on supervised learning to analyze test specifications and existing test implementations. The analysis facilitates the identification of patterns between test steps and their implementation with test automation components. For the test case generation, this approach exploits historical data of test automation projects. The identified patterns are the foundation to predict the implementation of unknown test case specifications. Based on this support, a test engineer solely has to review and parameterize the test automation components instead of writing them manually, resulting in a significant time reduction for establishing test automation. Compared to other generation approaches, this ML-based solution can handle different writing styles, authors, application domains, and even languages. Furthermore, test automation tools require expert knowledge by means of programming skills, whereas this approach only requires historical data to generate test cases. The proposed solution is evaluated using various multi-label evaluation criteria (EC) and two small-sized real-world systems. The most prominent EC is ‘Subset Accuracy’. The promising results show an accuracy of at least 86% for test cases, where a 1:1 relationship (Multi-Class) between test step specification and test automation component exists. For complex multi-label problems, i.e., one test step can be implemented by several components, the prediction accuracy is still at 60%. It is better than the current state-of-the-art results. It is expected the prediction quality to increase for larger systems with respective historical data. Consequently, this technique facilitates the time reduction for establishing test automation and is thereby independent of the application domain and project. As a work in progress, the next steps are to investigate incremental and active learning as additions to increase the usability of this approach, e.g., in case labelled historical data is scarce.

Keywords: machine learning, multi-class, multi-label, supervised learning, test automation

Procedia PDF Downloads 114
7444 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems

Procedia PDF Downloads 422
7443 Comparison of Mini-BESTest versus Berg Balance Scale to Evaluate Balance Disorders in Parkinson's Disease

Authors: R. Harihara Prakash, Shweta R. Parikh, Sangna S. Sheth

Abstract:

The purpose of this study was to explore the usefulness of the Mini-BESTest compared to the Berg Balance Scale in evaluating balance in people with Parkinson's Disease (PD) of varying severity. Evaluation were done to obtain (1) the distribution of patients scores to look for ceiling effects, (2) concurrent validity with severity of disease, and (3) the sensitivity & specificity of separating people with or without postural response deficits. Methods and Material: Seventy-seven(77) people with Parkinson's Disease were tested for balance deficits using the Berg Balance Scale, Mini-BESTest. Unified Parkinson’s Disease Rating Scale (UPDRS) III and the Hoehn & Yahr (H&Y) disease severity scales were used for classification. Materials used in this study were case record sheet, chair without arm rests or wheels, Incline ramp, stopwatch, a box, 3 meter distance measured out and marked on the floor with tape [from chair]. Statistical analysis used: Multiple Linear regression was carried out of UPDRS jointly on the two scores for the Berg and Mini-BESTest. Receiver operating characteristic curves for classifying people into two groups based on a threshold for the H&Y score, to discriminate between mild PD versus more severe PD.Correlation co-efficient to find relativeness between the two variables. Results: The Mini-BESTest is highly correlated with the Berg (r = 0.732,P < 0.001), but avoids the ceiling compression effect of the Berg for mild PD (skewness −0.714 Berg, −0.512 Mini-BESTest). Consequently, the Mini-BESTest is more effective than the Berg for predicting UPDRS Motor score (P < 0.001 Mini-BESTest versus P = 0.72 Berg), and for discriminating between those with and without postural response deficits as measured by the H&Y (ROC).

Keywords: balance, berg balance scale, MINI BESTest, parkinson's disease

Procedia PDF Downloads 378
7442 Appraisal of Shipping Trade Influence on Economic Growth in Nigeria

Authors: Ikpechukwu Njoku

Abstract:

The study examined appraisal of shipping trade influence on the economic growth in Nigeria from 1981-2016 by the use of secondary data collected from the Central Bank of Nigeria. The main objectives are to examine the trend of shipping trade in Nigeria as well as determine the influence of economic growth on gross domestic product (GDP). The study employed both descriptive and influential tools. The study adopted cointegration regression method for the analysis of each of the variables (shipping trade, external reserves and external debts). The results show that there is a statistically significant relationship between GDP and external reserves with p-value 0.0190. Also the result revealed that there is a statistically significant relationship between GDP and shipping trade with p-value 0.000. However, shipping trade and external reserves contributed positively at 1% and 5% level of significance respectively while external debts impacted negatively to GDP at 5% level of significance with a long run variance of cointegration regression. Therefore, the study suggests that government should do all it can to curtail foreign dominance and repatriation of profit for a more sustainable economy as well as upgrade port facilities, prevent unnecessary delays and encourage exportable goods for maximum deployment of ships.

Keywords: external debts, external reserve, GDP, shipping trade

Procedia PDF Downloads 135
7441 The Magnetized Quantum Breathing in Cylindrical Dusty Plasma

Authors: A. Abdikian

Abstract:

A quantum breathing mode has been theatrically studied in quantum dusty plasma. By using linear quantum hydrodynamic model, not only the quantum dispersion relation of rotation mode but also void structure has been derived in the presence of an external magnetic field. Although the phase velocity of the magnetized quantum breathing mode is greater than that of unmagnetized quantum breathing mode, attenuation of the magnetized quantum breathing mode along radial distance seems to be slower than that of unmagnetized quantum breathing mode. Clearly, drawing the quantum breathing mode in the presence and absence of a magnetic field, we found that the magnetic field alters the distribution of dust particles and changes the radial and azimuthal velocities around the axis. Because the magnetic field rotates the dust particles and collects them, it could compensate the void structure.

Keywords: the linear quantum hydrodynamic model, the magnetized quantum breathing mode, the quantum dispersion relation of rotation mode, void structure

Procedia PDF Downloads 278
7440 Development of Tensile Stress-Strain Relationship for High-Strength Steel Fiber Reinforced Concrete

Authors: H. A. Alguhi, W. A. Elsaigh

Abstract:

This paper provides a tensile stress-strain (σ-ε) relationship for High-Strength Steel Fiber Reinforced Concrete (HSFRC). Load-deflection (P-δ) behavior of HSFRC beams tested under four-point flexural load were used with inverse analysis to calculate the tensile σ-ε relationship for various tested concrete grades (70 and 90MPa) containing 60 kg/m3 (0.76 %) of hook-end steel fibers. A first estimate of the tensile (σ-ε) relationship is obtained using RILEM TC 162-TDF and other methods available in literature, frequently used for determining tensile σ-ε relationship of Normal-Strength Concrete (NSC) Non-Linear Finite Element Analysis (NLFEA) package ABAQUS® is used to model the beam’s P-δ behavior. The results have shown that an element-size dependent tensile σ-ε relationship for HSFRC can be successfully generated and adopted for further analyzes involving HSFRC structures.

Keywords: tensile stress-strain, flexural response, high strength concrete, steel fibers, non-linear finite element analysis

Procedia PDF Downloads 347