Search results for: design manufacturing
11963 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method
Authors: S. A. Tabatabaei, S. Aarabi
Abstract:
Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element packageKeywords: viscoelasticity, finite element method, repeated loading, HMA
Procedia PDF Downloads 39811962 The Impacts of Green Logistics Management Practices on Sustainability Performance in Nigeria
Authors: Ozoemelam Ikechukwu Lazarus, Nizamuddin B. Zainuddin, Abdul Kafi
Abstract:
Numerous studies have been carried out on Green Logistics Management Practices (GLMPs) across the globe. The study on the practices and performance of green chain practices in Africa in particular has not gained enough scholarly attention. Again, the majority of supply chain sustainability research being conducted focus on environmental sustainability. Logistics has been a major cause of supply chain resource waste and environmental damage. Many sectors of the economy that engage in logistical operations significantly rely on vehicles, which emit pollutants into the environment. Due to urbanization and industrialization, the logistical operations of manufacturing companies represent a serious hazard to the society and human life, making the sector one of the fastest expanding in the world today. Logistics companies are faced with numerous difficulties when attempting to implement logistics practices along their supply chains. In Nigeria, manufacturing companies aspire to implement reverse logistics in response to stakeholders’ requirements to reduce negative environmental consequences. However, implementing this is impeded by a criteria framework, and necessitates the careful analysis of how such criteria interact with each other in the presence of uncertainty. This study integrates most of the green logistics management practices (GLMPs) into the Nigerian firms to improve generalizability, and credibility. It examines the effect of Green Logistics Management Practices on environmental performance, social performance, market performance, and financial performance in the logistics industries. It seeks to identify the critical success factors in order to develop a model that incorporates different factors from the perspectives of the technology, organization, human and environment to inform the adoption and use of technologies for logistics supply chain social sustainability in Nigeria. It uses exploratory research approach to collect and analyse the data.Keywords: logistics, managemernt, suatainability, environment, operations
Procedia PDF Downloads 6311961 CFD Simulation Research on a Double Diffuser for Wind Turbines
Authors: Krzysztof Skiba, Zdzislaw Kaminski
Abstract:
Wind power is based on a variety of construction solutions to convert wind energy into electrical energy. These constructions are constrained by the correlation between their energy conversion efficiency and the area they occupy. Their energy conversion efficiency can be improved by wind tunnel tests of a rotor as a diffuser to optimize shapes of aerodynamic elements, to adapt these elements to changing conditions and to increase airflow intensity. This paper discusses the results of computer simulations and aerodynamic analyzes of this innovative diffuser design. The research aims at determining the aerodynamic phenomena triggered by the airflow inside this construction, and developing a design to improve the efficiency of the wind turbine. The research results enable us to design a diffuser with a double Venturi nozzle and specially shaped blades. The design of this type uses Bernoulli’s law on the behavior of the flowing medium in the tunnel of a decreasing diameter. The air flowing along the tunnel changes its velocity so the rotor inside such a decreased tunnel diameter rotates faster in this airflow than does the wind outside this tunnel, which makes the turbine more efficient. Additionally, airflow velocity is improved by applying aerodynamic rings with extended trailing edges to achieve controlled turbulent vortices.Keywords: wind turbine, renewable energy, cfd, numerical analysis
Procedia PDF Downloads 31011960 Enhancing Visual Corporate Identity on Festive Money Packets Design with Cultural Symbolisms
Authors: Noranis Ismail, Shamsul H. A. Rahman
Abstract:
The objective of this research is to accentuate the importance of Visual Corporate Identity by utilizing Malay motifs amalgamated with Malay proverbs to enhance the corporate brand of The Design School (TDS) of Taylor’s University. The researchers aim to manipulate festive money packet as a mean to communicate to the audience by using non-verbal visual cues such as colour, languages, and symbols that reflect styles and cultural heritage. The paper concluded that it is possible to utilize Hari Raya packet as a medium for creative expressions by creating high-impact design through the symbolism of selected Malay proverbs and traditional Malay motifs to enhance TDS corporate visual identity. It also provides a vital contribution to other organizations to understand an integral part of corporate visual identity in heightening corporate brand by communicating indirectly to its stakeholders using visual mnemonic and cultural heritage.Keywords: corporate branding, cultural cues, Malay culture, visual identity
Procedia PDF Downloads 42811959 Architectural Design Strategies and Visual Perception of Contemporary Spatial Design
Authors: Nora Geczy
Abstract:
In today’s architectural practice, during the process of designing public, educational, healthcare and cultural space, human-centered architectural designs helping spatial orientation, safe space usage and the appropriate spatial sequence of actions are gaining increasing importance. Related to the methodology of designing public buildings, several scientific experiments in spatial recognition, spatial analysis and spatial psychology with regard to the components of space producing mental and physiological effects have been going on at the Department of Architectural Design and the Interdisciplinary Student Workshop (IDM) at the Széchenyi István University, Győr since 2013. Defining the creation of preventive, anticipated spatial design and the architectural tools of spatial comfort of public buildings and their practical usability are in the limelight of our research. In the experiments applying eye-tracking cameras, we studied the way public spaces are used, especially concentrating on the characteristics of spatial behaviour, orientation, recognition, the sequence of actions, and space usage. Along with the role of mental maps, human perception, and interaction problems in public spaces (at railway stations, galleries, and educational institutions), we analyzed the spatial situations influencing psychological and ergonomic factors. We also analyzed the eye movements of the experimental subjects in dynamic situations, in spatial procession, using stairs and corridors. We monitored both the consequences and the distorting effects of the ocular dominance of the right eye on spatial orientation; we analyzed the gender-based differences of women and men’s orientation, stress-inducing spaces, spaces affecting concentration and the spatial situation influencing territorial behaviour. Based on these observations, we collected the components of creating public interior spaces, which -according to our theory- contribute to the optimal usability of public spaces. We summed up our research in criteria for design, including 10 points. Our further goals are testing design principles needed for optimizing orientation and space usage, their discussion, refinement, and practical usage.Keywords: architecture, eye-tracking, human-centered spatial design, public interior spaces, visual perception
Procedia PDF Downloads 11111958 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks
Authors: Jai Prakash Prasad, Suresh Chandra Mohan
Abstract:
Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.Keywords: energy efficient, network lifetime, sensor networks, wireless communication
Procedia PDF Downloads 46911957 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 9811956 Structured Cross System Planning and Control in Modular Production Systems by Using Agent-Based Control Loops
Authors: Simon Komesker, Achim Wagner, Martin Ruskowski
Abstract:
In times of volatile markets with fluctuating demand and the uncertainty of global supply chains, flexible production systems are the key to an efficient implementation of a desired production program. In this publication, the authors present a holistic information concept taking into account various influencing factors for operating towards the global optimum. Therefore, a strategy for the implementation of multi-level planning for a flexible, reconfigurable production system with an alternative production concept in the automotive industry is developed. The main contribution of this work is a system structure mixing central and decentral planning and control evaluated in a simulation framework. The information system structure in current production systems in the automotive industry is rigidly hierarchically organized in monolithic systems. The production program is created rule-based with the premise of achieving uniform cycle time. This program then provides the information basis for execution in subsystems at the station and process execution level. In today's era of mixed-(car-)model factories, complex conditions and conflicts arise in achieving logistics, quality, and production goals. There is no provision for feedback loops of results from the process execution level (resources) and process supporting (quality and logistics) systems and reconsideration in the planning systems. To enable a robust production flow, the complexity of production system control is artificially reduced by the line structure and results, for example in material-intensive processes (buffers and safety stocks - two container principle also for different variants). The limited degrees of freedom of line production have produced the principle of progress figure control, which results in one-time sequencing, sequential order release, and relatively inflexible capacity control. As a result, modularly structured production systems such as modular production according to known approaches with more degrees of freedom are currently difficult to represent in terms of information technology. The remedy is an information concept that supports cross-system and cross-level information processing for centralized and decentralized decision-making. Through an architecture of hierarchically organized but decoupled subsystems, the paradigm of hybrid control is used, and a holonic manufacturing system is offered, which enables flexible information provisioning and processing support. In this way, the influences from quality, logistics, and production processes can be linked holistically with the advantages of mixed centralized and decentralized planning and control. Modular production systems also require modularly networked information systems with semi-autonomous optimization for a robust production flow. Dynamic prioritization of different key figures between subsystems should lead the production system to an overall optimum. The tasks and goals of quality, logistics, process, resource, and product areas in a cyber-physical production system are designed as an interconnected multi-agent-system. The result is an alternative system structure that executes centralized process planning and decentralized processing. An agent-based manufacturing control is used to enable different flexibility and reconfigurability states and manufacturing strategies in order to find optimal partial solutions of subsystems, that lead to a near global optimum for hybrid planning. This allows a robust near to plan execution with integrated quality control and intralogistics.Keywords: holonic manufacturing system, modular production system, planning, and control, system structure
Procedia PDF Downloads 16911955 Sensory Ethnography and Interaction Design in Immersive Higher Education
Authors: Anna-Kaisa Sjolund
Abstract:
The doctoral thesis examines interaction design and sensory ethnography as tools to create immersive education environments. In recent years, there has been increasing interest and discussions among researchers and educators on immersive education like augmented reality tools, virtual glasses and the possibilities to utilize them in education at all levels. Using virtual devices as learning environments it is possible to create multisensory learning environments. Sensory ethnography in this study refers to the way of the senses consider the impact on the information dynamics in immersive learning environments. The past decade has seen the rapid development of virtual world research and virtual ethnography. Christine Hine's Virtual Ethnography offers an anthropological explanation of net behavior and communication change. Despite her groundbreaking work, time has changed the users’ communication style and brought new solutions to do ethnographical research. The virtual reality with all its new potential has come to the fore and considering all the senses. Movie and image have played an important role in cultural research for centuries, only the focus has changed in different times and in a different field of research. According to Karin Becker, the role of image in our society is information flow and she found two meanings what the research of visual culture is. The images and pictures are the artifacts of visual culture. Images can be viewed as a symbolic language that allows digital storytelling. Combining the sense of sight, but also the other senses, such as hear, touch, taste, smell, balance, the use of a virtual learning environment offers students a way to more easily absorb large amounts of information. It offers also for teachers’ different ways to produce study material. In this article using sensory ethnography as research tool approaches the core question. Sensory ethnography is used to describe information dynamics in immersive environment through interaction design. Immersive education environment is understood as three-dimensional, interactive learning environment, where the audiovisual aspects are central, but all senses can be taken into consideration. When designing learning environments or any digital service, interaction design is always needed. The question what is interaction design is justified, because there is no simple or consistent idea of what is the interaction design or how it can be used as a research method or whether it is only a description of practical actions. When discussing immersive learning environments or their construction, consideration should be given to interaction design and sensory ethnography.Keywords: immersive education, sensory ethnography, interaction design, information dynamics
Procedia PDF Downloads 13711954 Design Intelligence in Garment Design Between Technical Creativity and Artistic Creativity
Authors: Kanwar Varinder Pal Singh
Abstract:
Art is one of the five secondary sciences next to the social sciences. As per the single essential concept in garment design, it is the coexistence and co-creation of two aspects of reality: Ultimate reality and apparent or conventional reality. All phenomena possess two natures: That which is revealed by correct perception and that which is induced by deceptive perception. The object of correct perception is the ultimate reality, the object of deceptive perception is conventional reality. The same phenomenon, therefore, may be perceived according to its ultimate nature or its apparent nature. Ultimate reality is also called ‘emptiness’. Emptiness does not mean that all phenomena are nothing but do not exist in themselves. Although phenomena, the universe, thoughts, beings, time, and so on, seem very real in themselves, ultimately, they are not. Each one of us can perceive the changing and unpredictable nature of existence. This transitory nature of phenomena, impermanence, is the first sign of emptiness. Sometimes, the interdependence of phenomena leads to ultimate reality, which is nothing but emptiness, e.g., a rainbow, which is an effect due to the function of ‘sun rays,’ ‘rain,’ and ‘time.’ In light of the above, to achieve decision-making for the global desirability of garment design, the coexistence of artistic and technical creativity must achieve an object of correct perception, i.e., ultimate reality. This paper mentions the decision-making technique as semiotic engineering, both subjective and objective.Keywords: global desirability, social desirability, comfort desirability, handle desirability, overall desirability
Procedia PDF Downloads 1011953 Engine with Dual Helical Crankshaft System Operating at an Overdrive Gear Ratio
Authors: Anierudh Vishwanathan
Abstract:
This paper suggests a new design of the crankshaft system that would help to use a low revving engine for applications requiring the use of a high revving engine operating at the same power by converting the extra or unnecessary torque obtained from a low revving engine into angular velocity of the crankshaft of the engine hence, improve the fuel economy of the vehicle because of the fact that low revving engines run more effectively on lean air fuel mixtures accompanied with less wear and tear of the engine due to lesser rubbing of the piston rings with the cylinder walls. If the crankshaft with the proposed design is used in a low revving engine, then it will give the same torque and speed as that given by a high revving engine operating at the same power but the new engine will give better fuel economy. Hence the new engine will give the benefits of a low revving engine as well as a high revving engine. The proposed crankshaft design will be achieved by changing the design of the crankweb in such a way that it functions both as a counterweight as well as a helical gear that can transfer power to the secondary gear shaft which will be incorporated in the crankshaft system. The crankshaft and the secondary gear shaft will be operating at an overdrive ratio. The crankshaft will now be a two shaft system instead of a single shaft system. The newly designed crankshaft will be mounted on the bearings instead of being connected to the flywheel of the engine. This newly designed crankshaft will transmit power to the secondary shaft which will rotate the flywheel and then the rotary motion will be transmitted to the transmission system as usual. In this design, the concept of power transmission will be incorporated in the crankshaft system. In the paper, the crankshaft and the secondary shafts have been designed in such a way that at any instant of time only half the number of crankwebs will be meshed with the secondary shaft. For example, during one revolution of the crankshaft, if for the first half of revolution; first, second, seventh and eighth crankwebs are meshing with the secondary shaft then for the next half revolution, third, fourth, fifth and sixth crankwebs will mesh with the secondary shaft. This paper also analyses the proposed crankshaft design for safety against fatigue failure. Finite element analysis of the crankshaft has been done and the resultant stresses have been calculated.Keywords: low revving, high revving, secondary shaft, partial meshing
Procedia PDF Downloads 26911952 Characterizing Compressive Strength of Compressed Stabilized Earth Blocks as a Function of Mix Design
Authors: Robert K. Hillyard, Jonathan Thomas, Brett A. Story
Abstract:
Compressed Stabilized Earth Blocks (CSEB) are masonry units that combine soil, sand, stabilizer, and water under pressure to form an earth block. These CSEB’s offer a cost-effective building solution for remote construction, using local resources and labor to minimize transportation and material costs. However, CSEB’s, and earthen construction generally have not been widely adopted as standardized construction materials. One shortcoming is the difficulty in standardizing strength values of CSEB units and systems due to the inherent variations in mix design, including production compression. This research presents findings on compressive strengths of full-scale CSEB’s from 60 different mix designs as a function of the amount of cement, sand, soil, and water added to the mixture. The full-scale results are compared with CSEB cylinder cores.Keywords: CSEB, compressive strength, earth construction, mix design
Procedia PDF Downloads 10011951 An In-silico Pharmacophore-Based Anti-Viral Drug Development for Hepatitis C Virus
Authors: Romasa Qasim, G. M. Sayedur Rahman, Nahid Hasan, M. Shazzad Hosain
Abstract:
Millions of people worldwide suffer from Hepatitis C, one of the fatal diseases. Interferon (IFN) and ribavirin are the available treatments for patients with Hepatitis C, but these treatments have their own side-effects. Our research focused on the development of an orally taken small molecule drug targeting the proteins in Hepatitis C Virus (HCV), which has lesser side effects. Our current study aims to the Pharmacophore based drug development of a specific small molecule anti-viral drug for Hepatitis C Virus (HCV). Drug designing using lab experimentation is not only costly but also it takes a lot of time to conduct such experimentation. Instead in this in silico study, we have used computer-aided techniques to propose a Pharmacophore-based anti-viral drug specific for the protein domains of the polyprotein present in the Hepatitis C Virus. This study has used homology modeling and ab initio modeling for protein 3D structure generation followed by pocket identification in the proteins. Drug-able ligands for the pockets were designed using de novo drug design method. For ligand design, pocket geometry is taken into account. Out of several generated ligands, a new Pharmacophore is proposed, specific for each of the protein domains of HCV.Keywords: pharmacophore-based drug design, anti-viral drug, in-silico drug design, Hepatitis C virus (HCV)
Procedia PDF Downloads 27111950 Economic Design of a Quality Control Chart for the Proportion of Defective Items
Authors: Encarnación Álvarez-Verdejo, Raúl Amor-Pulido, Pablo J. Moya-Fernández, Juan F. Muñoz-Rosas, Francisco J. Blanco-Encomienda
Abstract:
Many companies use the statistical tool named as statistical quality control, and which can have a high cost for the companies interested on these statistical tools. The evaluation of the quality of products and services is an important topic, but the reduction of the cost of the implantation of the statistical quality control also has important benefits for the companies. For this reason, it is important to implement a economic design for the various steps included into the statistical quality control. In this paper, we describe some relevant aspects related to the economic design of a quality control chart for the proportion of defective items. They are very important because the suggested issues can reduce the cost of implementing a quality control chart for the proportion of defective items. Note that the main purpose of this chart is to evaluate and control the proportion of defective items of a production process.Keywords: proportion, type I error, economic plan, distribution function
Procedia PDF Downloads 44311949 Evaluation of Forming Properties on AA 5052 Aluminium Alloy by Incremental Forming
Authors: A. Anbu Raj, V. Mugendiren
Abstract:
Sheet metal forming is a vital manufacturing process used in automobile, aerospace, agricultural industries, etc. Incremental forming is a promising process providing a short and inexpensive way of forming complex three-dimensional parts without using die. The aim of this research is to study the forming behaviour of AA 5052, Aluminium Alloy, using incremental forming and also to study the FLD of cone shape AA 5052 Aluminium Alloy at room temperature and various annealing temperature. Initially the surface roughness and wall thickness through incremental forming on AA 5052 Aluminium Alloy sheet at room temperature is optimized by controlling the effects of forming parameters. The central composite design (CCD) was utilized to plan the experiment. The step depth, feed rate, and spindle speed were considered as input parameters in this study. The surface roughness and wall thickness were used as output response. The process performances such as average thickness and surface roughness were evaluated. The optimized results are taken for minimum surface roughness and maximum wall thickness. The optimal results are determined based on response surface methodology and the analysis of variance. Formability Limit Diagram is constructed on AA 5052 Aluminium Alloy at room temperature and various annealing temperature by using optimized process parameters from the response surface methodology. The cone has higher formability than the square pyramid and higher wall thickness distribution. Finally the FLD on cone shape and square pyramid shape at room temperature and the various annealing temperature is compared experimentally and simulated with Abaqus software.Keywords: incremental forming, response surface methodology, optimization, wall thickness, surface roughness
Procedia PDF Downloads 33811948 The Design of Children’s Picture Book from the Tales of Amphawa Fireflies
Authors: Marut Phichetvit
Abstract:
The research objective aims to search information about storytelling and fable associated with fireflies in Amphawa community, in order to design and create a story book which is appropriate for the interests of children in early childhood. This book should help building the development of learning about the natural environment, imagination, and creativity among children, which then, brings about the promotion of the development, conservation and dissemination of cultural values and uniqueness of the Amphawa community. The population used in this study were 30 students in early childhood aged between 6-8 years-old, grade 1-3 from the Demonstration School of Suan Sunandha Rajabhat University. The method used for this study was purposive sampling and the research conducted by the query and analysis of data from both the document and the narrative field tales and fable associated with the fireflies of Amphawa community. Then, using the results to synthesize and create a conceptual design in a form of 8 visual images which were later applied to 1 illustrated children’s book and presented to the experts to evaluate and test this media.Keywords: children’s illustrated book, fireflies, Amphawa
Procedia PDF Downloads 20511947 Implementing Universal Design for Learning in Social Work Education
Authors: Kaycee Bills
Abstract:
Action research is a method of inquiry useful in solving social problems in social work. This study seeks to address a significant problem: higher education’s use of traditional instructional methods in social work education. Ineffective techniques, such as lecturing, fail to account for students’ variable learning needs. In contrast to traditional pedagogy, universal design for learning (UDL) is a robust framework that '[improves] and [optimizes] teaching and learning for all people' (CAST, 2018), including students with disabilities. For this project, the research team interviewed the UDL and Accessibility Specialist at their institution for two reasons: (1) to learn how to implement UDL practices in their classrooms, and in turn, (2) to motivate other faculty members at their institution to consider enacting UDL principles. A thematic analysis of the interview’s transcript reveals themes relevant to practicing UDL. Implications for future practice, as well as the researcher’s reflections on the research process, are shared in the discussion section.Keywords: disabilities, higher education, inclusive education, universal design for learning
Procedia PDF Downloads 12811946 A Fermatean Fuzzy MAIRCA Approach for Maintenance Strategy Selection of Process Plant Gearbox Using Sustainability Criteria
Authors: Soumava Boral, Sanjay K. Chaturvedi, Ian Howard, Kristoffer McKee, V. N. A. Naikan
Abstract:
Due to strict regulations from government to enhance the possibilities of sustainability practices in industries, and noting the advances in sustainable manufacturing practices, it is necessary that the associated processes are also sustainable. Maintenance of large scale and complex machines is a pivotal task to maintain the uninterrupted flow of manufacturing processes. Appropriate maintenance practices can prolong the lifetime of machines, and prevent associated breakdowns, which subsequently reduces different cost heads. Selection of the best maintenance strategies for such machines are considered as a burdensome task, as they require the consideration of multiple technical criteria, complex mathematical calculations, previous fault data, maintenance records, etc. In the era of the fourth industrial revolution, organizations are rapidly changing their way of business, and they are giving their utmost importance to sensor technologies, artificial intelligence, data analytics, automations, etc. In this work, the effectiveness of several maintenance strategies (e.g., preventive, failure-based, reliability centered, condition based, total productive maintenance, etc.) related to a large scale and complex gearbox, operating in a steel processing plant is evaluated in terms of economic, social, environmental and technical criteria. As it is not possible to obtain/describe some criteria by exact numerical values, these criteria are evaluated linguistically by cross-functional experts. Fuzzy sets are potential soft-computing technique, which has been useful to deal with linguistic data and to provide inferences in many complex situations. To prioritize different maintenance practices based on the identified sustainable criteria, multi-criteria decision making (MCDM) approaches can be considered as potential tools. Multi-Attributive Ideal Real Comparative Analysis (MAIRCA) is a recent addition in the MCDM family and has proven its superiority over some well-known MCDM approaches, like TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) and ELECTRE (ELimination Et Choix Traduisant la REalité). It has a simple but robust mathematical approach, which is easy to comprehend. On the other side, due to some inherent drawbacks of Intuitionistic Fuzzy Sets (IFS) and Pythagorean Fuzzy Sets (PFS), recently, the use of Fermatean Fuzzy Sets (FFSs) has been proposed. In this work, we propose the novel concept of FF-MAIRCA. We obtain the weights of the criteria by experts’ evaluation and use them to prioritize the different maintenance practices according to their suitability by FF-MAIRCA approach. Finally, a sensitivity analysis is carried out to highlight the robustness of the approach.Keywords: Fermatean fuzzy sets, Fermatean fuzzy MAIRCA, maintenance strategy selection, sustainable manufacturing, MCDM
Procedia PDF Downloads 13811945 Willingness to Adopt "Green Steel" Products: A Case Study from the Automotive Sector
Authors: Hasan Muslemani, Jeffrey Wilson, Xi Liang, Francisco Ascui, Katharina Kaesehage
Abstract:
This paper aims to examine consumer behaviour towards, and the willingness to adopt, green steel use in the automotive sector, in order to identify potential barriers and opportunities for its widespread adoption. Semi-structured interviews were held with experts from global, regional and country-specific industry associations and automakers. The analysis shows there is a new shift towards lifecycle thinking in the sector, although these efforts have been voluntary and driven by customer and employee pressures rather than regulation. The paper further appraises possible demand for green steel within different vehicle types (based on size and powertrain), and shows that manufacturers of electric heavy-duty vehicles are most likely to adopt green steel in the first instance, given the amount of incorporated steel in the vehicles and the fact that lifecycle emissions lie predominantly in their manufacturing phase. A case for green advanced higher-strength steels (AHSS) can also be made in light-duty passenger vehicles, which may mitigate competition from light-weight alternative materials in terms of cost and greenness (depending on source and utilisation zones). This work builds on a wide sustainability-related literature in the automotive sector and highlights areas in need of urgent action if the sector as a whole were to meet its Paris Agreement climate targets, in particular a need to revisit current CO2 performance regulations to include Scope 1 and Scope 2 emissions, engage in educational green marketing campaigns, and explore innovative market-based mechanisms to bridge the gap between relatively-low carbon abatement costs of steelmaking and high abatement costs of vehicle manufacturing.Keywords: Green steel, Consumer behaviour, Automotive industry, Environmental sustainability
Procedia PDF Downloads 16411944 A Three-Dimensional Assessment Approach on Sustainable Development Process of Sportswear Products
Authors: Y. N. Fung, R. Liu, T. M. Choi
Abstract:
The life cycle assessment (LCA) is widely applied in the study of the sustainable fashion industry. Through the LCA, the social, environmental, and economic performances of the fashion industry can be assessed, which helps sustainable product developers (designers, retailers, and manufacturers) to address problems in product development. In prior studies, environmental impact, economic performance, and social responsibility are commonly considered separately. Inter-relations between dimensions of sustainability and LCA are rarely reported. The development process of sustainable sportswear products is complicated. Changes in the product components (e.g., materials, manufacturing methods, and product design) of sportswear will correspondingly influence supply chain activities and meanwhile affect environmental, economic, and social performances. In this study, the interrelations between different LCAs and how the interrelated LCAs can help product developers to strike a balance among environmental, economic, and social performances are explored. Based on the findings, a three-dimensional assessment framework on the sustainability life cycle is introduced. To examine the applicability of the developed framework, proof-of-concept sportswear legging products were developed. The developed sportswear legging products were assessed in terms of the interrelated dimensions of environmental, economic, and social performances. The results demonstrate the effects of shifting in desig¬n details and product functions on the environmental, social, and economic performances of sportswear products. The outcome of this study provides insights on the approach to balance sustainability and the development of cost-effective and sustainable sportswear products for sportswear developers.Keywords: sustainable development, sports fashion, life cycle assessment, indicators for sustainability, sustainability impacts
Procedia PDF Downloads 14311943 Adsorption of Xylene Cyanol FF onto Activated Carbon from Brachystegia Eurycoma Seed Hulls: Determination of the Optimal Conditions by Statistical Design of Experiments
Authors: F. G Okibe, C. E Gimba, V. O Ajibola, I. G Ndukwe, E. D. Paul
Abstract:
A full factorial experimental design technique at two levels and four factors (24) was used to optimize the adsorption at 615 nm of Xylene Cyanol ff in aqueous solutions onto activated carbon prepared from brachystegia eurycoma seed hulls by chemical carbonization method. The effect of pH (3 and 5), initial dye concentration (20 and 60 mg/l), adsorbent dosage (0.01 and 0.05 g), and contact time (30 and 60 min) on removal efficiency of the adsorbent for the dye were investigated at 298K. From the analysis of variance, response surface and cube plot, adsorbent dosage was observed to be the most significant factor affecting the adsorption process. However, from the interaction between the variables studied, the optimum removal efficiency was 96.80 % achieved with adsorbent dosage of 0.05 g, contact time 45 minutes, pH 3, and initial dye concentration 60 mg/l.Keywords: factorial experimental design, adsorption, optimization, brachystegia eurycoma, xylene cyanol ff
Procedia PDF Downloads 40011942 Dual-Polarized Multi-Antenna System for Massive MIMO Cellular Communications
Authors: Naser Ojaroudi Parchin, Haleh Jahanbakhsh Basherlou, Raed A. Abd-Alhameed, Peter S. Excell
Abstract:
In this paper, a multiple-input/multiple-output (MIMO) antenna design with polarization and radiation pattern diversity is presented for future smartphones. The configuration of the design consists of four double-fed circular-ring antenna elements located at different edges of the printed circuit board (PCB) with an FR-4 substrate and overall dimension of 75×150 mm2. The antenna elements are fed by 50-Ohm microstrip-lines and provide polarization and radiation pattern diversity function due to the orthogonal placement of their feed lines. A good impedance bandwidth (S11 ≤ -10 dB) of 3.4-3.8 GHz has been obtained for the smartphone antenna array. However, for S11 ≤ -6 dB, this value is 3.25-3.95 GHz. More than 3 dB realized gain and 80% total efficiency are achieved for the single-element radiator. The presented design not only provides the required radiation coverage but also generates the polarization diversity characteristic.Keywords: cellular communications, multiple-input/multiple-output systems, mobile-phone antenna, polarization diversity
Procedia PDF Downloads 14211941 MARTI and MRSD: Newly Developed Isolation-Damping Devices with Adaptive Hardening for Seismic Protection of Structures
Authors: Murast Dicleli, Ali SalemMilani
Abstract:
In this paper, a summary of analytical and experimental studies into the behavior of a new hysteretic damper, designed for seismic protection of structures is presented. The Multi-directional Torsional Hysteretic Damper (MRSD) is a patented invention in which a symmetrical arrangement of identical cylindrical steel cores is so configured as to yield in torsion while the structure experiences planar movements due to earthquake shakings. The new device has certain desirable properties. Notably, it is characterized by a variable and controllable-via-design post-elastic stiffness. The mentioned property is a result of MRSD’s kinematic configuration which produces this geometric hardening, rather than being a secondary large-displacement effect. Additionally, the new system is capable of reaching high force and displacement capacities, shows high levels of damping, and very stable cyclic response. The device has gone through many stages of design refinement, multiple prototype verification tests and development of design guide-lines and computer codes to facilitate its implementation in practice. Practicality of the new device, as offspring of an academic sphere, is assured through extensive collaboration with industry in its final design stages, prototyping and verification test programs.Keywords: seismic, isolation, damper, adaptive stiffness
Procedia PDF Downloads 45611940 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 54111939 A Valid Professional Development Framework For Supporting Science Teachers In Relation To Inquiry-Based Curriculum Units
Authors: Fru Vitalis Akuma, Jenna Koenen
Abstract:
The science education community is increasingly calling for learning experiences that mirror the work of scientists. Although inquiry-based science education is aligned with these calls, the implementation of this strategy is a complex and daunting task for many teachers. Thus, policymakers and researchers have noted the need for continued teacher Professional Development (PD) in the enactment of inquiry-based science education, coupled with effective ways of reaching the goals of teacher PD. This is a complex problem for which educational design research is suitable. The purpose at this stage of our design research is to develop a generic PD framework that is valid as the blueprint of a PD program for supporting science teachers in relation to inquiry-based curriculum units. The seven components of the framework are the goal, learning theory, strategy, phases, support, motivation, and an instructional model. Based on a systematic review of the literature on effective (science) teacher PD, coupled with developer screening, we have generated a design principle per component of the PD framework. For example, as per the associated design principle, the goal of the framework is to provide science teachers with experiences in authentic inquiry, coupled with enhancing their competencies linked to the adoption, customization and design; then the classroom implementation and the revision of inquiry-based curriculum units. The seven design principles have allowed us to synthesize the PD framework, which, coupled with the design principles, are the preliminary outcomes of the current research. We are in the process of evaluating the content and construct validity of the framework, based on nine one-on-one interviews with experts in inquiry-based classroom and teacher learning. To this end, we have developed an interview protocol with the input of eight such experts in South Africa and Germany. Using the protocol, the expert appraisal of the PD framework will involve three experts from Germany, South Africa, and Cameroon, respectively. These countries, where we originate and/or work, provide a variety of inquiry-based science education contexts, making the countries suitable in the evaluation of the generic PD framework. Based on the evaluation, we will revise the framework and its seven design principles to arrive at the final outcomes of the current research. While the final content and construct a valid version of the framework will serve as an example of the needed ways through which effective inquiry-based science teacher PD may be achieved, the final design principles will be useful to researchers when transforming the framework for use in any specific educational context. For example, in our further research, we will transform the framework to one that is practical and effective in supporting inquiry-based practical work in resource-constrained physical sciences classrooms in South Africa. Researchers in other educational contexts may similarly consider the final framework and design principles in their work. Thus, our final outcomes will inform practice and research around the support of teachers to increase the incorporation of learning experiences that mirror the work of scientists in a worldwide manner.Keywords: design principles, educational design research, evaluation, inquiry-based science education, professional development framework
Procedia PDF Downloads 14911938 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 10211937 The Fracture Resistance of Zirconia Based Dental Crowns from Cyclic Loading: A Function of Relative Wear Depth
Authors: T. Qasim, B. El Masoud, D. Ailabouni
Abstract:
This in vitro study focused on investigating the fatigue resistance of veneered zirconia molar crowns with different veneering ceramic thicknesses, simulating the relative wear depths under simulated cyclic loading. A mandibular first molar was prepared and then scanned using computer-aided design/computer-aided manufacturing (CAD/CAM) technology to fabricate 32 zirconia copings of uniform 0.5 mm thickness. The manufactured copings then veneered with 1.5 mm, 1.0 mm, 0.5 mm, and 0.0 mm representing 0%, 33%, 66%, and 100% relative wear of a normal ceramic thickness of 1.5 mm. All samples were thermally aged to 6000 thermo-cycles for 2 minutes with distilled water between 5 ˚C and 55 ˚C. The samples subjected to cyclic fatigue and fracture testing using SD Mechatronik chewing simulator. These samples are loaded up to 1.25x10⁶ cycles or until they fail. During fatigue, testing, extensive cracks were observed in samples with 0.5 mm veneering layer thickness. Veneering layer thickness 1.5-mm group and 1.0-mm group were not different in terms of resisting loads necessary to cause an initial crack or final failure. All ceramic zirconia-based crown restorations with varying occlusal veneering layer thicknesses appeared to be fatigue resistant. Fracture load measurement for all tested groups before and after fatigue loading exceeded the clinical chewing forces in the posterior region. In general, the fracture loads increased after fatigue loading and with the increase in the thickness of the occlusal layering ceramic.Keywords: all ceramic, cyclic loading, chewing simulator, dental crowns, relative wear, thermally ageing
Procedia PDF Downloads 14211936 The Application on Interactivity of Light in New Media Art
Authors: Yansong Chen
Abstract:
In the age of media convergence, new media technology is constantly impacting, changing, and even reshaping the limits of Art. From the technological ontology of the new media art, the concept of interaction design has always been dominated by I/O (Input/Output) systems through the ages, which ignores the content of systems and kills the aura of art. Light, as a fusion media, basically comes from the extension of some human feelings and can be the content of the input or the effect of output. In this paper, firstly, on the basis of literature review, the interaction characteristics research was conducted on light. Secondly, starting from discourse patterns of people and machines, people and people, people, and imagining things, we propose three light modes: object-oriented interaction, Immersion interaction, Tele-Presence interaction. Finally, this paper explains how to regain the aura of art through light elements in new media art and understand multiple levels of 'Interaction design'. In addition, the new media art, especially the light-based interaction art, enriches the language patterns and motivates emerging art forms to be more widespread and popular, which achieves its aesthetics growth.Keywords: new media art, interaction design, light art, immersion
Procedia PDF Downloads 23511935 Applying Spanning Tree Graph Theory for Automatic Database Normalization
Authors: Chetneti Srisa-an
Abstract:
In Knowledge and Data Engineering field, relational database is the best repository to store data in a real world. It has been using around the world more than eight decades. Normalization is the most important process for the analysis and design of relational databases. It aims at creating a set of relational tables with minimum data redundancy that preserve consistency and facilitate correct insertion, deletion, and modification. Normalization is a major task in the design of relational databases. Despite its importance, very few algorithms have been developed to be used in the design of commercial automatic normalization tools. It is also rare technique to do it automatically rather manually. Moreover, for a large and complex database as of now, it make even harder to do it manually. This paper presents a new complete automated relational database normalization method. It produces the directed graph and spanning tree, first. It then proceeds with generating the 2NF, 3NF and also BCNF normal forms. The benefit of this new algorithm is that it can cope with a large set of complex function dependencies.Keywords: relational database, functional dependency, automatic normalization, primary key, spanning tree
Procedia PDF Downloads 35311934 Humanizing Industrial Architecture: When Form Meets Function and Emotion
Authors: Sahar Majed Asad
Abstract:
Industrial structures have historically focused on functionality and efficiency, often disregarding aesthetics and human experience. However, a new approach is emerging that prioritizes humanizing industrial architecture and creating spaces that promote well-being, sustainability, and social responsibility. This study explores the motivations and design strategies behind this shift towards more human-centered industrial environments, providing practical guidance for architects, designers, and other stakeholders interested in incorporating these principles into their work. Through in-depth interviews with architects, designers, and industry experts, as well as a review of relevant literature, this study uncovers the reasons for this change in industrial design. The findings reveal that this shift is driven by a desire to create environments that prioritize the needs and experiences of the people who use them. The study identifies strategies such as incorporating natural elements, flexible design, and advanced technologies as crucial in achieving human-centric industrial design. It also emphasizes that effective communication and collaboration among stakeholders are crucial for successful human-centered design outcomes. This paper provides a comprehensive analysis of the motivations and design strategies behind the humanization of industrial architecture. It begins by examining the history of industrial architecture and highlights the focus on functionality and efficiency. The paper then explores the emergence of human-centered design principles in industrial architecture, discussing the benefits of this approach, including creating more sustainable and socially responsible environments.The paper explains specific design strategies that prioritize the human experience of industrial spaces. It outlines how incorporating natural elements like greenery and natural lighting can create more visually appealing and comfortable environments for industrial workers. Flexible design solutions, such as movable walls and modular furniture, can make spaces more adaptable to changing needs and promote a sense of ownership and creativity among workers. Advanced technologies, such as sensors and automation, can improve the efficiency and safety of industrial spaces while also enhancing the human experience. To provide practical guidance, the paper offers recommendations for incorporating human-centered design principles into industrial structures. It emphasizes the importance of understanding the needs and experiences of the people who use these spaces and provides specific examples of how natural elements, flexible design, and advanced technologies can be incorporated into industrial structures to promote human well-being. In conclusion, this study demonstrates that the humanization of industrial architecture is a growing trend that offers tremendous potential for creating more sustainable and socially responsible built environments. By prioritizing the human experience of industrial spaces, designers can create environments that promote well-being, sustainability, and social responsibility. This research study provides practical guidance for architects, designers, and other stakeholders interested in incorporating human-centered design principles into their work, demonstrating that a human-centered approach can lead to functional and aesthetically pleasing industrial spaces that promote human well-being and contribute to a better future for all.Keywords: human-centered design, industrial architecture, sustainability, social responsibility
Procedia PDF Downloads 161