Search results for: wall film
521 External Vacuum Dressing: Optimising Non-Operative Management of Flail Sternum Post CPR
Authors: Nicholas Bayfield, Mark Newman
Abstract:
Case Presentation: A 48-year-old male was brought in by ambulance after an out-of-hospital cardiac arrest, with 20 minutes of good-quality cardiopulmonary resuscitation in the community. Return of spontaneous circulation was achieved with defibrillation, revealing an inferior ST-elevation myocardial infarction. He was revascularized emergently in the cath lab and stabilised. Following the procedure, he was noted to have paradoxical respiratory movements of the sternum and high oxygen requirements. CT imaging demonstrated a flail chest with bilateral anterior rib 1-7 fractures as well as a large left-sided extra-pleural haematoma and small haemopneumothorax, secondary to CPR. The patient’s ventilation was stabilised with oxygen via a high-flow humidifier. Pain relief was provided. The anatomy of his rib fractures was not easily amenable to operative fixation. In addition, he was considered to be a high-risk operative candidate due to his recent arrest. He was managed thus non-operatively with an external vacuum dressing applied to the anterior chest wall to minimise respiratory compromise and minimise pain from the motion around the rib fracture sites. Non-operative management was successful, and the patient was reviewed one month later. The paradoxical sternal movement had abated. Discussion: External vacuum dressing has been trialled for non-operative management of rib fractures with varying success. It provides an external brace to minimise fracture site movement during respiration and coughing, thus minimising pain. This modality should be considered a low-cost, high-reward adjunct to non-operative management of bony thoracic trauma.Keywords: thoracic surgery, thoracic trauma, rib fractures, negative pressure dressing
Procedia PDF Downloads 154520 Human Metabolism of the Drug Candidate PBTZ169
Authors: Vadim Makarov, Stewart T.Cole
Abstract:
PBTZ169 is novel drug candidate with high efficacy in animals models, and its combination treatment of PBTZ169 with BDQ and pyrazinamide was shown to be more efficacious than the standard treatment for tuberculosis in a mouse model. The target of PBTZ169 is famous DprE1, an essential enzyme in cell wall biosynthesis. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Furthermore, this drug candidate demonstrated during preclinical research ‘drug like’ properties what made it an attractive drug candidate to treat tuberculosis in humans. During first clinical trials several cohorts of the healthy volunteers were treated by the single doses of PBTZ169 as well as two weeks repeated treatment was chosen for two maximal doses. As expected PBTZ169 was well tolerated, and no significant toxicity effects were observed during the trials. The study of the metabolism shown that human metabolism of PBTZ169 is very different from microbial or animals compound transformation. So main pathway of microbial, mice and less rats metabolism connected with reduction processes, but human metabolism mainly connected with oxidation processes. Due to this difference we observed several metabolites of PBTZ169 in humans with antitubercular activity, and now we can conclude that animal antituberculosis activity of PBTZ169 is a result not only activity of the drug itself, but it is a result of the sum activity of the drug and its metabolites. Direct antimicrobial plasma activity was studied, and such activity was observed for 24 hours after human treatment for some doses. This data gets high chance for good efficacy of PBTZ169 in human for treatment TB infection. Second phase of clinical trials was started summer of 2017 and continues to the present day. Available data will be presented.Keywords: clinical trials, DprE1, PBTZ169, metabolism
Procedia PDF Downloads 166519 Hole Characteristics of Percussion and Single Pulse Laser-Incised Radiata Pine and the Effects of Wood Anatomy on Laser-Incision
Authors: Subhasisa Nath, David Waugh, Graham Ormondroyd, Morwenna Spear, Andy Pitman, Paul Mason
Abstract:
Wood is one of the most sustainable and environmentally favourable materials and is chemically treated in timber industries to maximise durability. To increase the chemical preservative uptake and retention by the wood, current limiting incision technologies are commonly used. This work reports the effects of single pulse CO2 laser-incision and frequency tripled Nd:YAG percussion laser-incision on the characteristics of laser-incised holes in the Radiata Pine. The laser-incision studies were based on changing laser wavelengths, energies and focal planes to conclude on an optimised combination for the laser-incision of Radiata Pine. The laser pulse duration had a dominant effect over laser power in controlling hole aspect ratio in CO2 laser-incision. A maximum depth of ~ 30 mm was measured with a laser power output of 170 W and a pulse duration of 80 ms. However, increased laser power led to increased carbonisation of holes. The carbonisation effect was reduced during laser-incision in the ultra-violet (UV) regime. Deposition of a foamy phase on the laser-incised hole wall was evident irrespective of laser radiation wavelength and energy. A maximum hole depth of ~20 mm was measured in the percussion laser-incision in the UV regime (355 nm) with a pulse energy of 320 mJ. The radial and tangential faces had a significant effect on laser-incision efficiency for all laser wavelengths. The laser-incised hole shapes and circularities were affected by the wood anatomy (earlywoods and latewoods in the structure). Subsequently, the mechanism of laser-incision is proposed by analysing the internal structure of laser-incised holes.Keywords: CO2 Laser, Nd: YAG laser, incision, drilling, wood, hole characteristics
Procedia PDF Downloads 241518 3-D Numerical Simulation of Scraped Surface Heat Exchanger with Helical Screw
Authors: Rabeb Triki, Hassene Djemel, Mounir Baccar
Abstract:
Surface scraping is a passive heat transfer enhancement technique that is directly used in scraped surface heat exchanger (SSHE). The scraping action prevents the accumulation of the product on the inner wall, which intensifies the heat transfer and avoids the formation of dead zones. SSHEs are widely used in industry for several applications such as crystallization, sterilization, freezing, gelatinization, and many other continuous processes. They are designed to deal with products that are viscous, sticky or that contain particulate matter. This research work presents a three-dimensional numerical simulation of the coupled thermal and hydrodynamic behavior within a SSHE which includes Archimedes’ screw instead of scraper blades. The finite volume Fluent 15.0 was used to solve continuity, momentum and energy equations using multiple reference frame formulation. The process fluid investigated under this study is the pure glycerin. Different geometrical parameters were studied in the case of steady, non-isothermal, laminar flow. In particular, attention is focused on the effect of the conicity of the rotor and the pitch of Archimedes’ screw on temperature and velocity distribution and heat transfer rate. Numerical investigations show that the increase of the number of turns in the screw from five to seven turns leads to amelioration of heat transfer coefficient, and the increase of the conicity of the rotor from 0.1 to 0.15 leads to an increase in the rate of heat transfer. Further studies should investigate the effect of different operating parameters (axial and rotational Reynolds number) on the hydrodynamic and thermal behavior of the SSHE.Keywords: ANSYS-Fluent, hydrodynamic behavior, scraped surface heat exchange, thermal behavior
Procedia PDF Downloads 160517 Compact LWIR Borescope Sensor for Thermal Imaging of 2D Surface Temperature in Gas-Turbine Engines
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandar, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine engines is a strong function of its component temperatures and requires good control of these temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system with optimized flow rates of cooling air is significantly important to elongate the lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate two-dimensional (2D) surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement in this application include the rmocouples, thermal wall paints, pyrometry, and phosphors. They have shown some disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve 2D high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of a combustor in gas-turbine engines and, furthermore, to develop more advanced gas-turbine engines.Keywords: borescope, engine, low-wave-infrared, sensor
Procedia PDF Downloads 135516 In-Fun-Mation: Putting the Fun in Information Retrieval at the Linnaeus University, Sweden
Authors: Aagesson, Ekstrand, Persson, Sallander
Abstract:
A description of how a team of librarians at Linnaeus University Library in Sweden utilizes a pedagogical approach to deliver engaging digital workshops on information retrieval. The team consists of four librarians supporting three different faculties. The paper discusses the challenges faced in engaging students who may perceive information retrieval as a boring and difficult subject. The paper emphasizes the importance of motivation, inclusivity, constructive feedback, and collaborative learning in enhancing student engagement. By employing a two-librarian teaching model, maintaining a lighthearted approach, and relating information retrieval to everyday experiences, the team aimed to create an enjoyable and meaningful learning experience. The authors describe their approach to increase student engagement and learning outcomes through a three-phase workshop structure: before, during, and after the workshops. The "flipped classroom" method was used, where students were provided with pre-workshop materials, including a short film on information search and encouraged to reflect on the topic using a digital collaboration tool. During the workshops, interactive elements such as quizzes, live demonstrations, and practical training were incorporated, along with opportunities for students to ask questions and provide feedback. The paper concludes by highlighting the benefits of the flipped classroom approach and the extended learning opportunities provided by the before and after workshop phases. The authors believe that their approach offers a sustainable alternative for enhancing information retrieval knowledge among students at Linnaeus University.Keywords: digital workshop, flipped classroom, information retrieval, interactivity, LIS practitioner, student engagement
Procedia PDF Downloads 66515 Interface Engineering of Short- and Ultrashort Period W-Based Multilayers for Soft X-Rays
Authors: A. E. Yakshin, D. Ijpes, J. M. Sturm, I. A. Makhotkin, M. D. Ackermann
Abstract:
Applications like synchrotron optics, soft X-ray microscopy, X-ray astronomy, and wavelength dispersive X-ray fluorescence (WD-XRF) rely heavily on short- and ultra-short-period multilayer (ML) structures. In WD-XRF, ML serves as an analyzer crystal to disperse emission lines of light elements. The key requirement for the ML is to be highly reflective while also providing sufficient angular dispersion to resolve specific XRF lines. For these reasons, MLs with periods ranging from 1.0 to 2.5 nm are of great interest in this field. Due to the short period, the reflectance of such MLs is extremely sensitive to interface imperfections such as roughness and interdiffusion. Moreover, the thickness of the individual layers is only a few angstroms, which is close to the limit of materials to grow a continuous film. MLs with a period between 2.5 nm and 1.0 nm, combining tungsten (W) reflector with B₄C, Si, and Al spacers, were created and examined. These combinations show high theoretical reflectance in the full range from C-Kα (4.48nm) down to S-Kα (0.54nm). However, the formation of optically unfavorable compounds, intermixing, and interface roughness result in limited reflectance. A variety of techniques, including diffusion barriers, seed layers, and ion polishing for sputter-deposited MLs, were used to address these issues. Diffuse scattering measurements, photo-electron spectroscopy analysis, and X-ray reflectivity measurements showed a noticeable reduction of compound formation, intermixing, and interface roughness. This also resulted in a substantial increase in soft X-ray reflectance for W/Si, W/B4C, and W/Al MLs. In particular, the reflectivity of 1 nm period W/Si multilayers at the wavelength of 0.84 nm increased more than 3-fold – propelling forward the applicability of such multilayers for shorter wavelengths.Keywords: interface engineering, reflectance, short period multilayer structures, x-ray optics
Procedia PDF Downloads 50514 Structural Health Monitoring of the 9-Story Torre Central Building Using Recorded Data and Wave Method
Authors: Tzong-Ying Hao, Mohammad T. Rahmani
Abstract:
The Torre Central building is a 9-story shear wall structure located in Santiago, Chile, and has been instrumented since 2009. Events of different intensity (ambient vibrations, weak and strong earthquake motions) have been recorded, and thus the building can serve as a full-scale benchmark to evaluate the structural health monitoring method developed. The first part of this article presents an analysis of inter-story drifts, and of changes in the first system frequencies (estimated from the relative displacement response of the 8th-floor with respect to the basement from recorded data) as baseline indicators of the occurrence of damage. During 2010 Chile earthquake the system frequencies were detected decreasing approximately 24% in the EW and 27% in NS motions. Near the end of shaking, an increase of about 17% in the EW motion was detected. The structural health monitoring (SHM) method based on changes in wave traveling time (wave method) within a layered shear beam model of structure is presented in the second part of this article. If structural damage occurs the velocity of wave propagated through the structure changes. The wave method measures the velocities of shear wave propagation from the impulse responses generated by recorded data at various locations inside the building. Our analysis and results show that the detected changes in wave velocities are consistent with the observed damages. On this basis, the wave method is proven for actual implementation in structural health monitoring systems.Keywords: Chile earthquake, damage detection, earthquake response, impulse response, layered shear beam, structural health monitoring, Torre Central building, wave method, wave travel time
Procedia PDF Downloads 364513 Effects of Channel Orientation on Heat Transfer in a Rotating Rectangular Channel with Jet Impingement Cooling and Film Coolant Extraction
Authors: Hua Li, Hongwu Deng
Abstract:
The turbine blade's leading edge is usually cooled by jet impingement cooling technology due to the heaviest heat load. For a rotating turbine blade, however, the channel orientation (β, the angle between the jet direction and the rotating plane) could play an important role in influencing the flow field and heat transfer. Therefore, in this work, the effects of channel orientation (from 90° to 180°) on heat transfer in a jet impingement cooling channel are experimentally investigated. Furthermore, the investigations are conducted under an isothermal boundary condition. Both the jet-to-target surface distance and jet-to-jet spacing are three times the jet hole diameter. The jet Reynolds number is 5,000, and the maximum jet rotation number reaches 0.24. The results show that the rotation-induced variations of heat transfer are different in each channel orientation. In the cases of 90°≤β≤135°, a vortex generated in the low-radius region of the supply channel changes the mass-flowrate distribution in each jet hole. Therefore, the heat transfer in the low-radius region decreases with the rotation number, whereas the heat transfer in the high-radius region increases, indicating that a larger temperature gradient in the radial direction could appear in the turbine blade's leading edge. When 135°<β≤180°; however, the heat transfer of the entire stagnant zone decreases with the rotation number. The rotation-induced jet deflection is the primary factor that weakens the heat transfer, and jets cannot reach the target surface at high rotation numbers. For the downstream regions, however, the heat transfer is enhanced by 50%-80% in every channel orientation because the dead zone is broken by the rotation-induced secondary flow in the impingement channel.Keywords: heat transfer, jet impingement cooling, channel orientation, high rotation number, isothermal boundary
Procedia PDF Downloads 105512 Differential Diagnosis of an Asymptomatic Lesion in Contact with the Bladder
Authors: Angelis P. Barlampas
Abstract:
PURPOSE: Presentation of an interesting finding in an asymptomatic patient. MATERIAL: A patient came at hospital because of dysuric complaints and after a urologist’s prescription of a US exam of the urogenital system. The simple ultrasound examination of the lower abdomen revealed a moderate hypertrophy of the prostate and a solitary large bladder stone. The kidneys were normal. Then, the patient underwent a CT scan, which depicted the bladder stone and, as an incidental finding, a cystic lesion in contact with the upper anterior right surface of the bladder, with mural calcifications. METHOD: Abdominal ultrasound and abdominal computed tomography before and after intravenous contrast administration. RESULTS: The repeated US exam showed a cylindrical cystic lesion with a double wall and two mural hyperechoic foci, with partial posterior shadowing. Blood flow was not recognized on color doppler. The CT exam confirmed the cystic-like anechoic lesion, in the right iliac fossa, with the presence of two foci of mural calcifications. The differential diagnosis includes cases of enteric cyst, intestinal duplication cyst, chronic abscess, urachal cyst, Meckel's diverticulum, bladder diverticulum, old hematoma, thrombosed vascular aneurysm, diverticular abscess, etc. The patient refused surgical removal and is being monitored by ultrasound. CONCLUSIONS: The careful examination of the wider peri-abdominal area, especially during the routine ultrasound examination, can contribute to the identification of important asymptomatic findings. The radiologist must not be solely focused in a certain area of examination, even if the clinical doctor asks so, but should give attention to the neighboring areas, too.Keywords: enteric cyst, US, CT, urogenital tract, miscellaneous findings
Procedia PDF Downloads 56511 Theoretical Analysis of the Existing Sheet Thickness in the Calendering of Pseudoplastic Material
Authors: Muhammad Zahid
Abstract:
The mechanical process of smoothing and compressing a molten material by passing it through a number of pairs of heated rolls in order to produce a sheet of desired thickness is called calendering. The rolls that are in combination are called calenders, a term derived from kylindros the Greek word for the cylinder. It infects the finishing process used on cloth, paper, textiles, leather cloth, or plastic film and so on. It is a mechanism which is used to strengthen surface properties, minimize sheet thickness, and yield special effects such as a glaze or polish. It has a wide variety of applications in industries in the manufacturing of textile fabrics, coated fabrics, and plastic sheeting to provide the desired surface finish and texture. An analysis has been presented for the calendering of Pseudoplastic material. The lubrication approximation theory (LAT) has been used to simplify the equations of motion. For the investigation of the nature of the steady solutions that exist, we make use of the combination of exact solution and numerical methods. The expressions for the velocity profile, rate of volumetric flow and pressure gradient are found in the form of exact solutions. Furthermore, the quantities of interest by engineering point of view, such as pressure distribution, roll-separating force, and power transmitted to the fluid by the rolls are also computed. Some results are shown graphically while others are given in the tabulated form. It is found that the non-Newtonian parameter and Reynolds number serve as the controlling parameters for the calendering process.Keywords: calendering, exact solutions, lubrication approximation theory, numerical solutions, pseudoplastic material
Procedia PDF Downloads 148510 PitMod: The Lorax Pit Lake Hydrodynamic and Water Quality Model
Authors: Silvano Salvador, Maryam Zarrinderakht, Alan Martin
Abstract:
Open pits, which are the result of mining, are filled by water over time until the water reaches the elevation of the local water table and generates mine pit lakes. There are several specific regulations about the water quality of pit lakes, and mining operations should keep the quality of groundwater above pre-defined standards. Therefore, an accurate, acceptable numerical model predicting pit lakes’ water balance and water quality is needed in advance of mine excavation. We carry on analyzing and developing the model introduced by Crusius, Dunbar, et al. (2002) for pit lakes. This model, called “PitMod”, simulates the physical and geochemical evolution of pit lakes over time scales ranging from a few months up to a century or more. Here, a lake is approximated as one-dimensional, horizontally averaged vertical layers. PitMod calculates the time-dependent vertical distribution of physical and geochemical pit lake properties, like temperature, salinity, conductivity, pH, trace metals, and dissolved oxygen, within each model layer. This model considers the effect of pit morphology, climate data, multiple surface and subsurface (groundwater) inflows/outflows, precipitation/evaporation, surface ice formation/melting, vertical mixing due to surface wind stress, convection, background turbulence and equilibrium geochemistry using PHREEQC and linking that to the geochemical reactions. PitMod, which is used and validated in over 50 mines projects since 2002, incorporates physical processes like those found in other lake models such as DYRESM (Imerito 2007). However, unlike DYRESM PitMod also includes geochemical processes, pit wall runoff, and other effects. In addition, PitMod is actively under development and can be customized as required for a particular site.Keywords: pit lakes, mining, modeling, hydrology
Procedia PDF Downloads 158509 Analyzing Use of Figurativeness, Visual Elements, Allegory, Scenic Imagery as Support System in Punjabi Contemporary Theatre for Escaping Censorship
Authors: Shazia Anwer
Abstract:
This paper has discussed the unusual form of resistance in theatre against censorship board in Pakistan. The atypical approach of dramaturgy created massive space for performers and audiences to integrate and communicate. The social and religious absolutes creates suffocation in Pakistani society, strict control over all Fine and Performing Art has made art political, contemporary dramatics has started an amalgamated theatre to avoid censorship. Contemporary Punjabi theatre techniques are directly dependent on human cognition. The idea of indirect thought processing is not unique but dependent on spectators. The paper has provided an account of these techniques and their specific use for conveying specific messages across the audiences. For the Dramaturge of today, theatre space is an expression representing a linguistic formulation that includes qualities of experimental and non-traditional use of classical theatrical space in the context of fulfilling the concept of open theatre. Paper has explained the transformation of the theatrical experience into an event where the actor and the audience are co-existing and co-experiencing the dramatical experience. The denial of the existence of the 4th -Wall made two-way communication possible. This paper has elaborated that the previously marginalized genres such as naach, jugat, miras, are extensively included to counter the censorship board. Figurativeness, visual elements, allegory, scenic imagery are basic support system for contemporary Punjabi theatre. The body of the actor is used as a source for non-verbal communication, and for an escape from traditional theatrical space which by every means has every element that could be controlled and reprimanded by the controlling authority.Keywords: communication, Punjabi theatre, figurativeness, censorship
Procedia PDF Downloads 134508 Robust Segmentation of Salient Features in Automatic Breast Ultrasound (ABUS) Images
Authors: Lamees Nasser, Yago Diez, Robert Martí, Joan Martí, Ibrahim Sadek
Abstract:
Automated 3D breast ultrasound (ABUS) screening is a novel modality in medical imaging because of its common characteristics shared with other ultrasound modalities in addition to the three orthogonal planes (i.e., axial, sagittal, and coronal) that are useful in analysis of tumors. In the literature, few automatic approaches exist for typical tasks such as segmentation or registration. In this work, we deal with two problems concerning ABUS images: nipple and rib detection. Nipple and ribs are the most visible and salient features in ABUS images. Determining the nipple position plays a key role in some applications for example evaluation of registration results or lesion follow-up. We present a nipple detection algorithm based on color and shape of the nipple, besides an automatic approach to detect the ribs. In point of fact, rib detection is considered as one of the main stages in chest wall segmentation. This approach consists of four steps. First, images are normalized in order to minimize the intensity variability for a given set of regions within the same image or a set of images. Second, the normalized images are smoothed by using anisotropic diffusion filter. Next, the ribs are detected in each slice by analyzing the eigenvalues of the 3D Hessian matrix. Finally, a breast mask and a probability map of regions detected as ribs are used to remove false positives (FP). Qualitative and quantitative evaluation obtained from a total of 22 cases is performed. For all cases, the average and standard deviation of the root mean square error (RMSE) between manually annotated points placed on the rib surface and detected points on rib borders are 15.1188 mm and 14.7184 mm respectively.Keywords: Automated 3D Breast Ultrasound, Eigenvalues of Hessian matrix, Nipple detection, Rib detection
Procedia PDF Downloads 330507 Abnormal Branching Pattern of Lumbar Plexus in an Adult Male Cadaver: A Case Report
Authors: Deepthinath Reghunathan, Satheesha Nayak, Sudarshan S., Prasad Alathady Maloor, Prakash Shetty
Abstract:
Lumbar plexus is formed by the union of ventral rami of T12, L1, L2, L3 spinal nerves and the larger upper division of L4 lumbar spinal nerves. Variations in the normal anatomy of the lumbar and sacral plexus might be seen in some cases and are reported in the literature, but finding such an unusual case comprising of multiple variations which is normally not expected in a clinical setup, proves to be a vital piece of information for clinicians and medical practitioners. During the dissection of the abdomen and pelvis of an approximately 70 year old cadaver, we observed the following variations in the formation of the lumbar and sacral nerves. 1. The genitofemoral nerve bifurcated at a higher level; genital branch of genitofemoral nerve gave branches to the anterior abdominal wall muscles, 2. A communicating branch was given from the lateral cutaneous nerve of thigh to the medial cutaneous nerve of thigh, 3. A muscular branch was given from femoral nerve to psoas major, 4. There was absence of contribution of L4 spinal nerve in the formation of the lumbosacral trunk and 5. Lumbosacral trunk gave communicating branches to the femoral and obturator nerves. Most of the variations found were rare and finding all the above said variations in a single cadaver is even rare. Documentation of such rare cases with multiple variations in the formation of nerves from the lumbar plexus provides vital information on such occurrences. This information would in turn improve the knowledge of clinicians and surgeons dealing with this region. Emphasizing such knowledge of this region would prevent accidental damage to the structures with a variant anatomy.Keywords: femoral nerve, genitofemoral nerve, lumbar plexus, lumbosacral trunk
Procedia PDF Downloads 288506 The Role of Long-Chain Ionic Surfactants on Extending Drug Delivery from Contact Lenses
Authors: Cesar Torres, Robert Briber, Nam Sun Wang
Abstract:
Eye drops are the most commonly used treatment for short-term and long-term ophthalmic diseases. However, eye drops could deliver only about 5% of the functional ingredients contained in a burst dosage. To address the limitations of eye drops, the use of therapeutic contact lenses has been introduced. Drug-loaded contact lenses provide drugs a longer residence time in the tear film and hence, decrease the potential risk of side effects. Nevertheless, a major limitation of contact lenses as drug delivery devices is that most of the drug absorbed is released within the first few hours. This fact limits their use for extended release. The present study demonstrates the application of long-alkyl chain ionic surfactants on extending drug release kinetics from commercially available silicone hydrogel contact lenses. In vitro release experiments were carried by immersing drug-containing contact lenses in phosphate buffer saline at physiological pH. The drug concentration as a function of time was monitored using ultraviolet-visible spectroscopy. The results of the study demonstrate that release kinetics is dependent on the ionic surfactant weight percent in the contact lenses, and on the length of the hydrophobic alkyl chain of the ionic surfactants. The use of ionic surfactants in contact lenses can extend the delivery of drugs from a few hours to a few weeks, depending on the physicochemical properties of the drugs. Contact lenses embedded with ionic surfactants could be potential biomaterials to be used for extended drug delivery and in the treatment of ophthalmic diseases. However, ocular irritation and toxicity studies would be needed to evaluate the safety of the approach.Keywords: contact lenses, drug delivery, controlled release, ionic surfactant
Procedia PDF Downloads 143505 4-Allylpyrocatechol Loaded Polymeric Micelles for Solubility Enhancing and Effects on Streptococcus mutans Biofilms
Authors: Siriporn Okonogi, Pimpak Phumat, Sakornrat Khongkhunthian
Abstract:
Piper betle has been extensively reported for various pharmacological effects including antimicrobial activity. 4-Allylpyrocatechol (AC) is a principle active compound found in P. betle. However, AC has a problem of solubility in water. The aims of the present study were to prepare AC loaded polymeric micelles for enhancing its water solubility and to evaluate its anti-biofilm activity against oral phathogenic bacteria. AC was loaded in polymeric micelles (PM) of Pluronic F127 by using thin film hydration method to obtain AC loaded PM (PMAC). The results revealed that AC in the form of PMAC possessed high water solubility. PMAC particles were characterized using a transmission electron microscope and photon correlation spectroscopy. Determination of entrapment efficiency (EE) and loading capacity (LC) of PMAC was done by using high-performance liquid chromatography. The highest EE (86.33 ± 14.27 %) and LC (19.25 ± 3.18 %) of PMAC were found when the weight ratio of polymer to AC was 4 to 1. At this ratio, the particles showed spherical in shape with the size of 38.83 ± 1.36 nm and polydispersity index of 0.28 ± 0.10. Zeta potential of the particles is negative with the value of 16.43 ± 0.55 mV. Crystal violet assay and confocal microscopy were applied to evaluate the effects of PMAC on Streptococcus mutans biofilms using chlorhexidine (CHX) as a positive control. PMAC contained 1.5 mg/mL AC could potentially inhibit (102.01 ± 9.18%) and significantly eradicate (85.05 ± 2.03 %) these biofilms (p < 0.05). Comparison with CHX, PMAC showed slightly similar biofilm inhibition but significantly stronger biofilm eradication (p < 0.05) than CHX. It is concluded that PMAC can enhance water solubility and anti-biofilm activity of AC.Keywords: pluronic, polymeric micelles, solubility, 4-allylpyrocathecol, Streptococcus mutans, anti-biofilm
Procedia PDF Downloads 144504 Solving a Micromouse Maze Using an Ant-Inspired Algorithm
Authors: Rolando Barradas, Salviano Soares, António Valente, José Alberto Lencastre, Paulo Oliveira
Abstract:
This article reviews the Ant Colony Optimization, a nature-inspired algorithm, and its implementation in the Scratch/m-Block programming environment. The Ant Colony Optimization is a part of Swarm Intelligence-based algorithms and is a subset of biological-inspired algorithms. Starting with a problem in which one has a maze and needs to find its path to the center and return to the starting position. This is similar to an ant looking for a path to a food source and returning to its nest. Starting with the implementation of a simple wall follower simulator, the proposed solution uses a dynamic graphical interface that allows young students to observe the ants’ movement while the algorithm optimizes the routes to the maze’s center. Things like interface usability, Data structures, and the conversion of algorithmic language to Scratch syntax were some of the details addressed during this implementation. This gives young students an easier way to understand the computational concepts of sequences, loops, parallelism, data, events, and conditionals, as they are used through all the implemented algorithms. Future work includes the simulation results with real contest mazes and two different pheromone update methods and the comparison with the optimized results of the winners of each one of the editions of the contest. It will also include the creation of a Digital Twin relating the virtual simulator with a real micromouse in a full-size maze. The first test results show that the algorithm found the same optimized solutions that were found by the winners of each one of the editions of the Micromouse contest making this a good solution for maze pathfinding.Keywords: nature inspired algorithms, scratch, micromouse, problem-solving, computational thinking
Procedia PDF Downloads 126503 Plasma Ion Implantation Study: A Comparison between Tungsten and Tantalum as Plasma Facing Components
Authors: Tahreem Yousaf, Michael P. Bradley, Jerzy A. Szpunar
Abstract:
Currently, nuclear fusion is considered one of the most favorable options for future energy generation, due both to its abundant fuel and lack of emissions. For fusion power reactors, a major problem will be a suitable material choice for the Plasma Facing Components (PFCs) which will constitute the reactor first wall. Tungsten (W) has advantages as a PFC material because of its high melting point, low vapour pressure, high thermal conductivity and low retention of hydrogen isotopes. However, several adverse effects such as embrittlement, melting and morphological evolution have been observed in W when it is bombarded by low-energy and high-fluence helium (He) and deuterium (D) ions, as a simulation conditions adjacent to a fusion plasma. Recently, tantalum (Ta) also investigate as PFC and show better reluctance to nanostructure fuzz as compared to W under simulated fusion plasma conditions. But retention of D ions found high in Ta than W. Preparatory to plasma-based ion implantation studies, the effect of D and He ion impact on W and Ta is predicted by using the stopping and range of ions in the matter (SRIM) code. SRIM provided some theoretical results regarding projected range, ion concentration (at. %) and displacement damage (dpa) in W and Ta. The projected range for W under Irradiation of He and D ions with an energy of 3-keV and 1×fluence is determined 75Å and 135 Å and for Ta 85Å and 155Å, respectively. For both W and Ta samples, the maximum implanted peak for helium is predicted ~ 5.3 at. % at 12 nm and for De ions concentration peak is located near 3.1 at. % at 25 nm. For the same parameters, the displacement damage for He ions is observed in W ~ 0.65 dpa and Ta ~ 0.35 dpa at 5 nm. For D ions the displacement damage for W ~ 0.20 dpa at 8 nm and Ta ~ 0.175 dpa at 7 nm. The mean implantation depth is same for W and Ta, i.e. for He ions ~ 40 nm and D ions ~ 70 nm. From these results, we conclude that retention of D is high than He ions, but damage is low for Ta as compared to W. Further investigation still in progress regarding W and T.Keywords: helium and deuterium ion impact, plasma facing components, SRIM simulation, tungsten, tantalum
Procedia PDF Downloads 131502 Geometrical Analysis of an Atheroma Plaque in Left Anterior Descending Coronary Artery
Authors: Sohrab Jafarpour, Hamed Farokhi, Mohammad Rahmati, Alireza Gholipour
Abstract:
In the current study, a nonlinear fluid-structure interaction (FSI) biomechanical model of atherosclerosis in the left anterior descending (LAD) coronary artery is developed to perform a detailed sensitivity analysis of the geometrical features of an atheroma plaque. In the development of the numerical model, first, a 3D geometry of the diseased artery is developed based on patient-specific dimensions obtained from the experimental studies. The geometry includes four influential geometric characteristics: stenosis ratio, plaque shoulder-length, fibrous cap thickness, and eccentricity intensity. Then, a suitable strain energy density function (SEDF) is proposed based on the detailed material stability analysis to accurately model the hyperelasticity of the arterial walls. The time-varying inlet velocity and outlet pressure profiles are adopted from experimental measurements to incorporate the pulsatile nature of the blood flow. In addition, a computationally efficient type of structural boundary condition is imposed on the arterial walls. Finally, a non-Newtonian viscosity model is implemented to model the shear-thinning behaviour of the blood flow. According to the results, the structural responses in terms of the maximum principal stress (MPS) are affected more compared to the fluid responses in terms of wall shear stress (WSS) as the geometrical characteristics are varying. The extent of these changes is critical in the vulnerability assessment of an atheroma plaque.Keywords: atherosclerosis, fluid-Structure interaction modeling, material stability analysis, and nonlinear biomechanics
Procedia PDF Downloads 88501 Efficient Oxygen Evolution and Gas Bubble Release by a Low-Bubble-Adhesion Iron-Nickel Vanadate Electrocatalyst
Authors: Kamran Dastafkan, Chuan Zhao
Abstract:
Improving surface chemistry is a promising approach in addition to the rational alteration in the catalyst composition to advance water electrolysis. Here, we demonstrate an evident enhancement of oxygen evolution on an iron-nickel vanadate catalyst synthesized by a facile successive ionic adsorption and reaction method. The vanadate-modified catalyst demonstrates a highly efficient oxygen evolution in 1 M KOH by requiring low overpotentials of 274 and 310 mV for delivering large current densities of 100 and 400 mA cm⁻², respectively where vigorous gas bubble evolution occurs. Vanadate modification augments the OER activity from three aspects. (i) Both the electrochemical surface area (47.1 cm²) and intrinsic activity (318 mV to deliver 10 mA cm⁻² per unit ECSA) of the catalytic sites are improved. (ii) The amorphous and roughened nanoparticle-comprised catalyst film exhibits a high surface wettability and a low-gas bubble-adhesion, which is beneficial for the accelerated mass transport and gas bubble dissipation at large current densities. The gas bubble dissipation behavior is studied by operando dynamic specific resistance measurements where a significant change in the variation of the interfacial resistance during the OER is detected for the vanadate-modified catalyst. (iii) The introduced vanadate poly-oxo-anions with high charge density have electronic interplay with Fe and Ni catalytic centers. Raman study reveals the structural evolution of β-NiOOH and γ-FeOOH phases during the OER through the vanadate-active site synergistic interactions. Achievement of a high catalytic turnover of 0.12 s⁻¹ put the developed FeNi vanadate among the best recent catalysts for water oxidation.Keywords: gas bubble dissipation, iron-nickel vanadate, low-gas bubble-adhesion catalyst, oxygen evolution reaction
Procedia PDF Downloads 130500 Preparation of Ceramic Hollow Fiber Membranes for CO2 Capture
Authors: Kai-Wei Huang, Yi-Feng Lin
Abstract:
The purpose of this study is to have chemical resistance, high heat resistance and mechanical strength of ceramic hollow fiber membrane into a membrane contactor, and the combustion process is applied (Post-combustion capture) of the carbon dioxide absorption device. In this paper, we would investigate the effect of the ceramic membrane hydrophobicity to the flux of the carbon dioxide adsorption. To improve the applicability of the ceramic film. We use the dry-wet spinning method with the high temperature sintering process for preparing a ceramic hollow fiber membranes to increase the filling density per unit volume of the membrane. The PESf/Al2O3 ratio of 1:5 was prepared ceramic hollow fibers membrane precursors and investigate the relationship of the different sintering temperature to the membrane pore size and porosity. It can be found that the membrane via the sintering temperature of 1400 °C prepared with the highest porosity of 70%, while the membrane via the sintering temperature of 1600 °C prepared although has a minimum porosity of about 54%, but also has the smallest average pore size of about 0.2 μm. The hydrophilic ceramic hollow fiber membranes which after high-temperature sintering were changed into hydrophobic successfully via the 0.02M FAS modifier. The hydrophobic ceramic hollow fiber membranes with different sintering temperature, the membrane which was prepared via 1400 °C sintering has the highest carbon dioxide adsorption about 4.2 × 10-4 (mole/m2s). The membrane prepared via 1500 °C sintering has the carbon dioxide adsorption about 3.8 × 10-3 (mole/m2s),and the membrane prepared via 1600 °C sintering has the lowest carbon dioxide adsorption about 2.68 × 10-3 (mole/m2s).All of them have reusability and in long time operation, the membrane which was prepared via 1600 °C sintering has the smallest pores and also could operate for three days. After the test, the 1600 °C sintering ceramic hollow fiber membrane was most suitable for the factory.Keywords: carbon dioxide capture, membrane contactor, ceramic membrane, ceramic hollow fiber membrane
Procedia PDF Downloads 350499 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple
Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang
Abstract:
The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple
Procedia PDF Downloads 59498 Microfluidic Impedimetric Biochip and Related Methods for Measurement Chip Manufacture and Counting Cells
Authors: Amina Farooq, Nauman Zafar Butt
Abstract:
This paper is about methods and tools for counting particles of interest, such as cells. A microfluidic system with interconnected electronics on a flexible substrate, inlet-outlet ports and interface schemes, sensitive and selective detection of cells specificity, and processing of cell counting at polymer interfaces in a microscale biosensor for use in the detection of target biological and non-biological cells. The development of fluidic channels, planar fluidic contact ports, integrated metal electrodes on a flexible substrate for impedance measurements, and a surface modification plasma treatment as an intermediate bonding layer are all part of the fabrication process. Magnetron DC sputtering is used to deposit a double metal layer (Ti/Pt) over the polypropylene film. Using a photoresist layer, specified and etched zones are established. Small fluid volumes, a reduced detection region, and electrical impedance measurements over a range of frequencies for cell counts improve detection sensitivity and specificity. The procedure involves continuous flow of fluid samples that contain particles of interest through the microfluidic channels, counting all types of particles in a portion of the sample using the electrical differential counter to generate a bipolar pulse for each passing cell—calculating the total number of particles of interest originally in the fluid sample by using MATLAB program and signal processing. It's indeed potential to develop a robust and economical kit for cell counting in whole-blood samples using these methods and similar devices.Keywords: impedance, biochip, cell counting, microfluidics
Procedia PDF Downloads 162497 Effect of Fiddler Crab Burrows on Bacterial Communities of Mangrove Sediments
Authors: Mohammad Mokhtari, Gires Usup, Zaidi Che Cob
Abstract:
Bacteria communities as mediators of the biogeochemical process are the main component of the mangrove ecosystems. Crab burrows by increasing oxic-anoxic interfaces and facilitating the flux rate between sediment and tidal water affect biogeochemical properties of sediments. The effect of fiddler crab burrows on the density and diversity of bacteria were investigated to elucidate the effect of burrow on bacterial distribution. Samples collected from the burrow walls of three species of fiddler crabs including Uca paradussumieri, Uca rosea, and Uca forcipata. Sediment properties including grain size, temperature, Redox potential, pH, chlorophyll, water and organic content were measured from the burrow walls to assess the correlation between environmental variables and bacterial communities. Bacteria were enumerated with epifluorescence microscopy after staining with SYBR green. Bacterial DNA extracted from sediment samples and the community profiles of bacteria were determined with Terminal Restriction Fragment Length Polymorphism (T-RFLP). High endemism was observed among bacterial communities. Among the 152 observed OTU’s, 22 were found only in crab burrows. The highest bacterial density and diversity were recorded in burrow wall. The results of ANOSIM indicated a significant difference between the bacterial communities from the three species of fiddler crab burrows. Only 3% of explained bacteria variability in the constrained ordination model of CCA was contributed to depth, while much of the bacteria’s variability was attributed to coarse sand, pH, and chlorophyll content. Our findings suggest that crab burrows by affecting sediment properties such as redox potential, pH, water, and chlorophyll content induce significant effects on the bacterial communities.Keywords: bioturbation, canonical corresponding analysis, fiddler crab, microbial ecology
Procedia PDF Downloads 157496 Analysis of the Behavior of the Structure Under Internal Anfo Explosion
Authors: Seung-Min Ko, Seung-Jai Choi, Gun Jung, Jang-Ho Jay Kim
Abstract:
Although extensive explosion-related research has been performed in the past several decades, almost no research has focused on internal blasts. However, internal blast research is needed to understand about the behavior of a containment structure or building under internal blast loading, as in the case of the Chornobyl and Fukushima nuclear accidents. Therefore, the internal blast study concentrated on RC and PSC structures is performed. The test data obtained from reinforced concrete (RC) and prestressed concrete (PSC) tubular structures applied with an internal explosion using ammonium nitrate/fuel oil (ANFO) charge are used to assess their deformation resistance and ultimate failure load based on the structural stiffness change under various charge weight. For the internal blast charge weight, ANFO explosive charge weights of 15.88, 20.41, 22.68 and 24.95 kg were selected for the RC tubular structures, and 22.68, 24.95, 27.22, 29.48, and 31.75 kg were selected for PSC tubular structures, which were detonated at the center of cross section at the mid-span with a standoff distance of 1,000mm to the inner wall surface. Then, the test data were used to predict the internal charge weight required to fail a real scale reinforced concrete containment vessels (RCCV) and prestressed concrete containment vessel (PCCV). Then, the analytical results based on the experimental data were derived using the simple assumptions of the models, and another approach using the stiffness, deformation and explosion weight relationship was used to formulate a general method for analyzing internal blasted tubular structures. A model of the internal explosion of a steel tube was used as an example for validation. The proposed method can be used generically, using factors according to the material characteristics of the target structures. The results of the study are discussed in detail in the paper.Keywords: internal blast, reinforced concrete, RCCV, PCCV, stiffness, blast safety
Procedia PDF Downloads 79495 The Marketing Development of Cloth Products Woven in Krasaesin, Songkhla Province
Authors: Auntika Thipjumnong
Abstract:
This research study aimed to investigate the production process and the market target of Kraseasin’s woven cloth including the customers’ behaviors towards the local woven products. The suggestions of a better process of production were recommended in this study. This survey research was conducted by using a questionnaire and interview, which were considered as the practical instruments to collect the data. The 200 Kraseasin’s woven makers and consumers were subjects by using a purposive sampling. Percentages, means and standard deviation were used to analyze data. The findings revealed that only 22 local woven members owned their 18 manual weavers in producing the raw materials like cotton or fiber. The main products were flowery woven cloth e.g. pikul, puangchompoo, pakakrong and ban mai roo roiy, and the others were rainy, glass wall, dice glass ball and yok dok etc. At the present, all local woven products were applied to be modernized but the strong point of those products were keeping the quality standard and firming textures, not thickness. The main objective of producing these local woven products was to earn and increase their extra incomes. Moreover, there were two dominant sales: Firstly, the makers sold their own products by themselves in their community and malls; and secondly, they would weave their products by customers’ orders. The prices’ allocation was on the difficulties in producing process. The government officials and non-government officials in local were normally customers. However the drawback of producing this local product was lack of raw material and this brought about the higher investment. The community’s customers were now lacking of interest in wearing these local products, even though they maintained their quality standard. The factors in customers’ purchasing decision were product (M = 3.93), price (M = 3.74), distribution (M = 3.73) and promotion (M = 3.97) for marketing mix well-known. Suggestion was a designing pattern of products had to be matched to the customers’ needs.Keywords: marketing, consumer behavior, cloth products weaves, Songkhla Thailand
Procedia PDF Downloads 284494 Theoretical Analysis and Design Consideration of Screened Heat Pipes for Low-Medium Concentration Solar Receivers
Authors: Davoud Jafari, Paolo Di Marco, Alessandro Franco, Sauro Filippeschi
Abstract:
This paper summarizes the results of an investigation into the heat pipe heat transfer for solar collector applications. The study aims to show the feasibility of a concentrating solar collector, which is coupled with a heat pipe. Particular emphasis is placed on the capillary and boiling limits in capillary porous structures, with different mesh numbers and wick thicknesses. A mathematical model of a cylindrical heat pipe is applied to study its behaviour when it is exposed to higher heat input at the evaporator. The steady state analytical model includes two-dimensional heat conduction in the HP’s wall, the liquid flow in the wick and vapor hydrodynamics. A sensitivity analysis was conducted by considering different design criteria and working conditions. Different wicks (mesh 50, 100, 150, 200, 250, and, 300), different porosities (0.5, 0.6, 0.7, 0.8, and 0.9) with different wick thicknesses (0.25, 0.5, 1, 1.5, and 2 mm) are analyzed with water as a working fluid. Results show that it is possible to improve heat transfer capability (HTC) of a HP by selecting the appropriate wick thickness, the effective pore radius, and lengths for a given HP configuration, and there exist optimal design criteria (optimal thick, evaporator adiabatic and condenser sections). It is shown that the boiling and wicking limits are connected and occurs in dependence on each other. As different parts of the HP external surface collect different fractions of the total incoming insolation, the analysis of non-uniform heat flux distribution indicates that peak heat flux is not affecting parameter. The parametric investigations are aimed to determine working limits and thermal performance of HP for medium temperature SC application.Keywords: screened heat pipes, analytical model, boiling and capillary limits, concentrating collector
Procedia PDF Downloads 560493 Designing an Exhaust Gas Energy Recovery Module Following Measurements Performed under Real Operating Conditions
Authors: Jerzy Merkisz, Pawel Fuc, Piotr Lijewski, Andrzej Ziolkowski, Pawel Czarkowski
Abstract:
The paper presents preliminary results of the development of an automotive exhaust gas energy recovery module. The aim of the performed analyses was to select the geometry of the heat exchanger that would ensure the highest possible transfer of heat at minimum heat flow losses. The starting point for the analyses was a straight portion of a pipe, from which the exhaust system of the tested vehicle was made. The design of the heat exchanger had a cylindrical cross-section, was 300 mm long and was fitted with a diffuser and a confusor. The model works were performed for the mentioned geometry utilizing the finite volume method based on the Ansys CFX v12.1 and v14 software. This method consisted in dividing of the system into small control volumes for which the exhaust gas velocity and pressure calculations were performed using the Navier-Stockes equations. The heat exchange in the system was modeled based on the enthalpy balance. The temperature growth resulting from the acting viscosity was not taken into account. The heat transfer on the fluid/solid boundary in the wall layer with the turbulent flow was done based on an arbitrarily adopted dimensionless temperature. The boundary conditions adopted in the analyses included the convective condition of heat transfer on the outer surface of the heat exchanger and the mass flow and temperature of the exhaust gas at the inlet. The mass flow and temperature of the exhaust gas were assumed based on the measurements performed in actual traffic using portable PEMS analyzers. The research object was a passenger vehicle fitted with a 1.9 dm3 85 kW diesel engine. The tests were performed in city traffic conditions.Keywords: waste heat recovery, heat exchanger, CFD simulation, pems
Procedia PDF Downloads 574492 Development and Characterization of Controlled Release Photo Cross-Linked Implants for Ocular Delivery of Triamcinolone Acetonide
Authors: Ravi Sheshala, Annie Lee, Ai Lin Ong, Ling Ling Cheu, Thiagarajan Madheswaran, Thankur R. R. Singh
Abstract:
The objectives of the present research work were to develop and characterize biodegradable controlled release photo cross-linked implants of Triamcinolone Acetonide (TA) for the treatment of chronic ocular diseases. The photo cross-linked implants were prepared using film casting technique by mixing TA (2.5%) polyethylene glycol diacrylate (PEGDA 700), pore formers (mannitol, maltose, and gelatin) and the photoinitiator (Irgacure 2959). The resulting mixture was injected into moulds using 21 G and subjected to photocrosslinking at 365 nm. Scanning electron microscopy results demonstrated that more pores were formed in the films with the increase in the concentration of pore formers from 2%-10%. The maximum force required to break the films containing 2-10% of pore formers were determined in both dry and wet conditions using texture analyzer and found that films in a dry condition required a higher force to break compared to wet condition and blank films. In vitro drug release from photo cross-linked films were determined by incubating samples in 50 ml PBS pH 7.4 at 37 C and the samples were analyzed for drug release by HPLC. The films demonstrated a biphasic release profile i.e. an initial burst release (<20%) on the first day followed by a constant and continuous drug release in a controlled manner for 42 days. The drug release from all formulations followed the first-order release pattern and the combination of diffusion and erosion release mechanism. In conclusion, the developed formulations were able to provide controlled drug delivery to treat the chronic ocular diseases.Keywords: controlled release, ophthalmic, PEGDA, photocrosslinking, pore formers
Procedia PDF Downloads 404