Search results for: partical image velocimetry
887 Rural Tourism as a Development Strategy in Communities of the Sierra Gorda of Querétaro
Authors: Eduardo Ruiz-Corzo, Luis Rodrigo Valencia Perez, Jorge Francisco Barragan Lopez
Abstract:
The article shows the pressing conditions of marginalization prevailing in the Sierra Gorda, in the northern state of Queretaro, so it is essential to identify business options that generate a complementary source of income in a sustainable manner, in accordance with the fact that the area is a Biosphere Reserve by UNESCO. In this sense, the study identifies the enormous scenic richness of the area, the growing demand for leisure activities of the urban centers and the multifunctionality that adds, in a complementary way, the traditional activities that up to now have achieved the quality of life levels. From the application of the 43 interviews and 183 surveys, confirms the fact that the post-visit perception exceeds the expectations of the visitors emerges and affirms that the image that has been projected is attractive and timely. In order to understand how the current model of tourism promoted in the region is working, there is a need to evaluate it in a theoretical-methodological framework considering sustainable development assumptions. In order to determine the degree of contribution to business development, strengthening of social capital, and enjoyment and appreciation of cultural and natural heritage in the region.Keywords: marginalization, rural tourism, multifunctionality, sustainability, revenue
Procedia PDF Downloads 147886 Stereo Camera Based Speed-Hump Detection Process for Real Time Driving Assistance System in the Daytime
Authors: Hyun-Koo Kim, Yong-Hun Kim, Soo-Young Suk, Ju H. Park, Ho-Youl Jung
Abstract:
This paper presents an effective speed hump detection process at the day-time. we focus only on round types of speed humps in the day-time dynamic road environment. The proposed speed hump detection scheme consists mainly of two process as stereo matching and speed hump detection process. Our proposed process focuses to speed hump detection process. Speed hump detection process consist of noise reduction step, data fusion step, and speed hemp detection step. The proposed system is tested on Intel Core CPU with 2.80 GHz and 4 GB RAM tested in the urban road environments. The frame rate of test videos is 30 frames per second and the size of each frame of grabbed image sequences is 1280 pixels by 670 pixels. Using object-marked sequences acquired with an on-vehicle camera, we recorded speed humps and non-speed humps samples. Result of the tests, our proposed method can be applied in real-time systems by computation time is 13 ms. For instance; our proposed method reaches 96.1 %.Keywords: data fusion, round types speed hump, speed hump detection, surface filter
Procedia PDF Downloads 510885 Heading for Modern Construction Management: Recommendation for Employers
Authors: Robin Becker, Maike Eilers, Nane Roetmann, Manfred Helmus
Abstract:
The shortage of junior staff in the construction industry is a problem that will be further exacerbated in the coming years by the retirement of the baby-boom generations (1955-1969) from employment. In addition, the current working conditions in the field of construction management are not attractive for young professionals. A survey of students revealed a desire for an increase in flexibility and an improved work-life balance in everyday working life. Students of civil engineering and architecture are basically interested in a career in construction management but have reservations due to the image of the profession and the current working conditions. A survey among experts from the construction industry shows that the profession can become more attractive. This report provides recommendations for action in the form of working modules to improve the working conditions of employees. If these are taken into account, graduates can be attracted to the profession of construction management, and existing staff can be retained more effectively. The aim of this report is to show incentives for employers to respond to the wishes and needs of their current and future employees to the extent that can be implemented.Keywords: modern construction management, construction industry, work modules, shortage of junior staff, sustainable personnel management, making construction management more attractive, working time model
Procedia PDF Downloads 83884 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 184883 Large Strain Compression-Tension Behavior of AZ31B Rolled Sheet in the Rolling Direction
Authors: A. Yazdanmehr, H. Jahed
Abstract:
Being made with the lightest commercially available industrial metal, Magnesium (Mg) alloys are of interest for light-weighting. Expanding their application to different material processing methods requires Mg properties at large strains. Several room-temperature processes such as shot and laser peening and hole cold expansion need compressive large strain data. Two methods have been proposed in the literature to obtain the stress-strain curve at high strains: 1) anti-buckling guides and 2) small cubic samples. In this paper, an anti-buckling fixture is used with the help of digital image correlation (DIC) to obtain the compression-tension (C-T) of AZ31B-H24 rolled sheet at large strain values of up to 10.5%. The effect of the anti-bucking fixture on stress-strain curves is evaluated experimentally by comparing the results with those of the compression tests of cubic samples. For testing cubic samples, a new fixture has been designed to increase the accuracy of testing cubic samples with DIC strain measurements. Results show a negligible effect of anti-buckling on stress-strain curves, specifically at high strain values.Keywords: large strain, compression-tension, loading-unloading, Mg alloys
Procedia PDF Downloads 238882 Sustainability of Telecom Operators Orange-CI, MTN-CI, and MOOV Africa in Cote D’Ivoire
Authors: Odile Amoncou, Djedje-Kossu Zahui
Abstract:
The increased demand for digital communications during the COVID-19 pandemic has seen an unprecedented surge in new telecom infrastructure around the world. The expansion has been more remarkable in countries with developing telecom infrastructures. Particularly, the three telecom operators in Cote d’Ivoire, Orange CI, MTN CI, and MOOV Africa, have considerably scaled up their exploitation technologies and capacities in terms of towers, fiber optic installation, and customer service hubs. The trend will likely continue upward while expanding the carbon footprint of the Ivorian telecom operators. Therefore, the corporate social and environmental responsibilities of these telecommunication companies can no longer be overlooked. This paper assesses the sustainability of the three Ivorian telecommunication network operators by applying a combination of commonly used sustainability management indexes. These tools are streamlined and adapted to the relatively young and developing digital network of Cote D’Ivoire. We trust that this article will push the respective CEOs to make sustainability a top strategic priority and understand the substantial potential returns in terms of saving, new products, and new clients while improving their corporate image. In addition, good sustainability management can increase their stakeholders.Keywords: sustainability of telecom operators, sustainability management index, carbon footprint, digital communications
Procedia PDF Downloads 88881 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals
Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari
Abstract:
Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy
Procedia PDF Downloads 198880 Cultural Event and Urban Regeneration: Lessons from Liverpool as the 2008 European Capital of Culture
Authors: Yi-De Liu
Abstract:
For many European cities, a key motivation in developing event strategies is to use event as a catalyst for urban regeneration. One type of event that is particularly used as a means of urban development is the European Capital of Culture (ECOC) initiative. Based on a case study of the 2008 ECOC Liverpool, this paper aims at conceptualising the significance of major event for a city’s economic, cultural and social regenerations. In terms of economic regeneration, the role of the ECOC is central in creating Liverpool’s visitor economy and reshaping city image. Liverpool planned different themes for eight consecutive years as a way to ensure economic sustainability. As far as cultural regeneration is concerned, the ECOC contributed to the cultural regeneration of Liverpool by stimulating cultural participation and interest from the demand side, as well as improving cultural provision and collaboration within the cultural sector from the supply side. So as to social regeneration, Liverpool treated access development as a policy guideline and considered the ECOC as an opportunity to enhance the sense of place. The most significant lesson learned from Liverpool is its long-term planning and efforts made to integrate the ECOC into the overall urban development strategy. As a result, a more balanced and long-term effect on urban regeneration could be achieved.Keywords: cultural event, urban regeneration, european capital of culture, Liverpool
Procedia PDF Downloads 264879 The Effectiveness of Scalp Cooling Therapy on Reducing Chemotherapy Induced Alopecia: A Critical Literature Review
Authors: M. Krishna
Abstract:
The study was intended to identify if scalp cooling therapy is effective on preventing chemotherapy-induced hair loss among cancer patients. Critical literature of non-randomized controlled trials was used to investigate whether scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. The review identified that scalp cooling therapy is effective on preventing chemotherapy-induced alopecia. Most of the patients receiving chemotherapy experience alopecia. It is also perceived as the worst effect of chemotherapy. This may be severe and lead the patients to withdraw the chemo treatment. The image disturbance caused by alopecia will make the patient depressed and will lead to declined immunity. With the knowledge on effectiveness of scalp cooling therapy on preventing chemotherapy-induced alopecia, patient undergoing chemotherapy will not be hesitant to undergo the treatment. Patients are recommended to go through scalp cooling therapy every chemo cycle and the proper therapy duration is 30 minutes before, during chemo. The suggested duration of the scalp cooling therapy is 45-90 minutes for an effective and positive outcome. This finding is excluding other factors of alopecia such as menopause, therapeutic drugs, poor hair density, liver function problems, and drug regimes.Keywords: alopecia, cancer, chemotherapy, scalp cooling therapy
Procedia PDF Downloads 208878 Change Detection of Vegetative Areas Using Land Use Land Cover Derived from NDVI of Desert Encroached Areas
Authors: T. Garba, T. O. Quddus, Y. Y. Babanyara, M. A. Modibbo
Abstract:
Desertification is define as the changing of productive land into a desert as the result of ruination of land by man-induced soil erosion, which forces famers in the affected areas to move migrate or encourage into reserved areas in search of a fertile land for their farming activities. This study therefore used remote sensing imageries to determine the level of changes in the vegetative areas. To achieve that Normalized Difference of the Vegetative Index (NDVI), classified imageries and image slicing derived from landsat TM 1986, land sat ETM 1999 and Nigeria sat 1 2007 were used to determine changes in vegetations. From the Classified imageries it was discovered that there a more natural vegetation in classified images of 1986 than that of 1999 and 2007. This finding is also future in the three NDVI imageries, it was discovered that there is increased in high positive pixel value from 0.04 in 1986 to 0.22 in 1999 and to 0.32 in 2007. The figures in the three histogram also indicted that there is increased in vegetative areas from 29.15 Km2 in 1986, to 60.58 Km2 in 1999 and then to 109 Km2 in 2007. The study recommends among other things that there is need to restore natural vegetation through discouraging of farming activities in and around the natural vegetation in the study area.Keywords: vegetative index, classified imageries, change detection, landsat, vegetation
Procedia PDF Downloads 360877 Effect of Media Reputation on Financial Performance and Abnormal Returns of Corporate Social Responsibility Winner
Authors: Yu-Chen Wei, Dan-Leng Wang
Abstract:
This study examines whether the reputation from media press affect the financial performance and market abnormal returns around the announcement of corporate social responsibility (CSR) award in the Taiwan Stock Market. The differences between this study and prior literatures are that the media reputation of media coverage and net optimism are constructed by using content analyses. The empirical results show the corporation which won CSR awards could promote financial performance next year. The media coverage and net optimism related to CSR winner are higher than the non-CSR companies prior and after the CSR award is announced, and the differences are significant, but the difference would decrease when the day was closing to announcement. We propose that non-CSR companies may try to manipulate media press to increase the coverage and positive image received by investors compared to the CSR winners. The cumulative real returns and abnormal returns of CSR winners did not significantly higher than the non-CSR samples however the leading returns of CSR winners would higher after the award announcement two months. The comparisons of performances between CSR and non-CSR companies could be the consideration of portfolio management for mutual funds and investors.Keywords: corporate social responsibility, financial performance, abnormal returns, media, reputation management
Procedia PDF Downloads 434876 Correlation of Building Density toward Land Surface Temperature 2018 in Medan City
Authors: Andi Syahputra, R. H. Jatmiko, D. R. Hizbaron
Abstract:
Land surface temperature (LST) in an area is influenced by conditions of vegetation density, building density, and the number of inhabitants who live in the area. Medan City is one of the largest cities in Indonesia, with a high rate of change from vegetation to developed land. This study aims to identify the relationship between the percentage of building density and land surface temperature in Medan City. Pixel image analysis method is carried out to obtain the value of building density in pixel images of Landsat 8 images with the help of WorldView-2 satellite imagery. The results showed the highest land surface temperature in 2018 of 35, 4°C was found in Medan Perjuangan District, and the lowest was 22.5°C in Medan Belawan District. Building density samples with a density level of 889.17 m were also found in Medan Perjuangan District, while the lowest building density sample was found in Medan Timur District. Linear regression analysis of the effect of building density with land surface temperature obtained a correlation (R) was 0.64, and a coefficient of determination (R²) was 0.411 and modeling of building density based on the LST has a correlation (R), and a coefficient of determination (R²) was 0.72 with The RMSE obtained 0.853.Keywords: land surface temperature, Landsat, imagery, building density, vegetation, density
Procedia PDF Downloads 152875 PEINS: A Generic Compression Scheme Using Probabilistic Encoding and Irrational Number Storage
Authors: P. Jayashree, S. Rajkumar
Abstract:
With social networks and smart devices generating a multitude of data, effective data management is the need of the hour for networks and cloud applications. Some applications need effective storage while some other applications need effective communication over networks and data reduction comes as a handy solution to meet out both requirements. Most of the data compression techniques are based on data statistics and may result in either lossy or lossless data reductions. Though lossy reductions produce better compression ratios compared to lossless methods, many applications require data accuracy and miniature details to be preserved. A variety of data compression algorithms does exist in the literature for different forms of data like text, image, and multimedia data. In the proposed work, a generic progressive compression algorithm, based on probabilistic encoding, called PEINS is projected as an enhancement over irrational number stored coding technique to cater to storage issues of increasing data volumes as a cost effective solution, which also offers data security as a secondary outcome to some extent. The proposed work reveals cost effectiveness in terms of better compression ratio with no deterioration in compression time.Keywords: compression ratio, generic compression, irrational number storage, probabilistic encoding
Procedia PDF Downloads 294874 Improving Axial-Attention Network via Cross-Channel Weight Sharing
Authors: Nazmul Shahadat, Anthony S. Maida
Abstract:
In recent years, hypercomplex inspired neural networks improved deep CNN architectures due to their ability to share weights across input channels and thus improve cohesiveness of representations within the layers. The work described herein studies the effect of replacing existing layers in an Axial Attention ResNet with their quaternion variants that use cross-channel weight sharing to assess the effect on image classification. We expect the quaternion enhancements to produce improved feature maps with more interlinked representations. We experiment with the stem of the network, the bottleneck layer, and the fully connected backend by replacing them with quaternion versions. These modifications lead to novel architectures which yield improved accuracy performance on the ImageNet300k classification dataset. Our baseline networks for comparison were the original real-valued ResNet, the original quaternion-valued ResNet, and the Axial Attention ResNet. Since improvement was observed regardless of which part of the network was modified, there is a promise that this technique may be generally useful in improving classification accuracy for a large class of networks.Keywords: axial attention, representational networks, weight sharing, cross-channel correlations, quaternion-enhanced axial attention, deep networks
Procedia PDF Downloads 83873 Study of Aerosol Deposition and Shielding Effects on Fluorescent Imaging Quantitative Evaluation in Protective Equipment Validation
Authors: Shinhao Yang, Hsiao-Chien Huang, Chin-Hsiang Luo
Abstract:
The leakage of protective clothing is an important issue in the occupational health field. There is no quantitative method for measuring the leakage of personal protective equipment. This work aims to measure the quantitative leakage of the personal protective equipment by using the fluorochrome aerosol tracer. The fluorescent aerosols were employed as airborne particulates in a controlled chamber with ultraviolet (UV) light-detectable stickers. After an exposure-and-leakage test, the protective equipment was removed and photographed with UV-scanning to evaluate areas, color depth ratio, and aerosol deposition and shielding effects of the areas where fluorescent aerosols had adhered to the body through the protective equipment. Thus, this work built a calculation software for quantitative leakage ratio of protective clothing based on fluorescent illumination depth/aerosol concentration ratio, illumination/Fa ratio, aerosol deposition and shielding effects, and the leakage area ratio on the segmentation. The results indicated that the two-repetition total leakage rate of the X, Y, and Z type protective clothing for subject T were about 3.05, 4.21, and 3.52 (mg/m2). For five-repetition, the leakage rate of T were about 4.12, 4.52, and 5.11 (mg/m2).Keywords: fluorochrome, deposition, shielding effects, digital image processing, leakage ratio, personal protective equipment
Procedia PDF Downloads 322872 Hardware Implementation of Local Binary Pattern Based Two-Bit Transform Motion Estimation
Authors: Seda Yavuz, Anıl Çelebi, Aysun Taşyapı Çelebi, Oğuzhan Urhan
Abstract:
Nowadays, demand for using real-time video transmission capable devices is ever-increasing. So, high resolution videos have made efficient video compression techniques an essential component for capturing and transmitting video data. Motion estimation has a critical role in encoding raw video. Hence, various motion estimation methods are introduced to efficiently compress the video. Low bit‑depth representation based motion estimation methods facilitate computation of matching criteria and thus, provide small hardware footprint. In this paper, a hardware implementation of a two-bit transformation based low-complexity motion estimation method using local binary pattern approach is proposed. Image frames are represented in two-bit depth instead of full-depth by making use of the local binary pattern as a binarization approach and the binarization part of the hardware architecture is explained in detail. Experimental results demonstrate the difference between the proposed hardware architecture and the architectures of well-known low-complexity motion estimation methods in terms of important aspects such as resource utilization, energy and power consumption.Keywords: binarization, hardware architecture, local binary pattern, motion estimation, two-bit transform
Procedia PDF Downloads 311871 Analysis of Vocal Fold Vibrations from High-Speed Digital Images Based on Dynamic Time Warping
Authors: A. I. A. Rahman, Sh-Hussain Salleh, K. Ahmad, K. Anuar
Abstract:
Analysis of vocal fold vibration is essential for understanding the mechanism of voice production and for improving clinical assessment of voice disorders. This paper presents a Dynamic Time Warping (DTW) based approach to analyze and objectively classify vocal fold vibration patterns. The proposed technique was designed and implemented on a Glottal Area Waveform (GAW) extracted from high-speed laryngeal images by delineating the glottal edges for each image frame. Feature extraction from the GAW was performed using Linear Predictive Coding (LPC). Several types of voice reference templates from simulations of clear, breathy, fry, pressed and hyperfunctional voice productions were used. The patterns of the reference templates were first verified using the analytical signal generated through Hilbert transformation of the GAW. Samples from normal speakers’ voice recordings were then used to evaluate and test the effectiveness of this approach. The classification of the voice patterns using the technique of LPC and DTW gave the accuracy of 81%.Keywords: dynamic time warping, glottal area waveform, linear predictive coding, high-speed laryngeal images, Hilbert transform
Procedia PDF Downloads 239870 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 122869 New Mahalle – A More Urban Green Inclusive Neighborhood
Authors: Eirini Oikonomopoulou
Abstract:
Paper is dealing with gentrification of a poor central historic district of Fener and Balat in Istanbul, Turkey and propose ålans and principles of a neighborhood. Istanbul is located in a special geographic place, just in the meeting of Europe and Asia and it has a long and great history, facts that had affected the urban form of the city. Trough the time different civilizations inhabited in the city and they changed it by giving different character to its parts. The modernization of Istanbul brought western ideas into the historic organic urban fabric and put in the first priority the need for a clear and strong car-road/highway network in order to improve the car accessibility along the city. Following that model, transformation of public spaces was based on the driving experience. New public spaces was formulated to be the new symbol of Turkish Republic, to give a beautiful and clean image of the modern Turkish city, as well as work as landmarks across the highway network. Even if city is upgraded, bad quality neighborhoods still exist, far and near to the historic city center. One of them is Fener/Balat, which is located in Fatih district on the European side of Istanbul. This project aims to analyze the urban qualities of that neighborhood (mahalle) and propose a better, qualitative urban space towards a denser, greener and more inclusive neighborhood which could be an example for the whole city.Keywords: urban design, upgrade neighborhood, Istanbul, sustanability
Procedia PDF Downloads 518868 Identifying the Structural Components of Old Buildings from Floor Plans
Authors: Shi-Yu Xu
Abstract:
The top three risk factors that have contributed to building collapses during past earthquake events in Taiwan are: "irregular floor plans or elevations," "insufficient columns in single-bay buildings," and the "weak-story problem." Fortunately, these unsound structural characteristics can be directly identified from the floor plans. However, due to the vast number of old buildings, conducting manual inspections to identify these compromised structural features in all existing structures would be time-consuming and prone to human errors. This study aims to develop an algorithm that utilizes artificial intelligence techniques to automatically pinpoint the structural components within a building's floor plans. The obtained spatial information will be utilized to construct a digital structural model of the building. This information, particularly regarding the distribution of columns in the floor plan, can then be used to conduct preliminary seismic assessments of the building. The study employs various image processing and pattern recognition techniques to enhance detection efficiency and accuracy. The study enables a large-scale evaluation of structural vulnerability for numerous old buildings, providing ample time to arrange for structural retrofitting in those buildings that are at risk of significant damage or collapse during earthquakes.Keywords: structural vulnerability detection, object recognition, seismic capacity assessment, old buildings, artificial intelligence
Procedia PDF Downloads 89867 The Role of Social Media in Growing Small and Medium Enterprises: An Empirical Study in Jordan
Authors: Hanady Al-Zagheer
Abstract:
The purpose of this paper research is to introduce the role of the social media (face book) in growing small and medium enterprises in Jordan, Today’s developments of information technologies are dazzling. Using information technologies results in having advantages in competition, decreasing costs, gaining time, and getting and sharing information. Now it is possible to state that there are different types of usage within the information technologies. Small and medium enterprises have been grown rapidly in recent years and continue to grow. Jordanian females have played a large role in the growth of entrepreneurship and have made an impact on household economics. Virtual storefronts have allowed these women to balance roles assigned by tradition and culture while becoming successful providers. If you have a small business with a limited public relations and advertising budget, Facebook can be a cost effective way to promote your services because opening an account is free. However, this can work against you if you do not maintain the page. A Face book page without frequent updates can destroy your brand value and image. According to a 2009 Computerworld article by Lisa Hoover, having a Facebook page that looks abandoned is worse than having no page at all. You might need to hire someone or pay an employee to update your business’s Facebook page.Keywords: social media, social media small, medium enterprises, Jordan
Procedia PDF Downloads 327866 High School Female-Adolescents' Weight Control Practices in Hawassa Town, Ethiopia
Authors: Beruk Berhanu Desalegn, Gelana Mulu
Abstract:
Adolescence, especially for females, is a period of an ongoing risk behavior that triggers development of adverse health outcomes during adulthood. This study aimed to investigate the weight control practice and its associated factors among high school female-adolescents in Hawassa town, Ethiopia. A school-based cross-sectional study was conducted on 552 female-adolescents in Hawassa town. The study was conducted between December, 2020 to January, 2021. SPSS version 26 was used to analyse the data from the pre-tested questionnaire of socio-demographic, economic, socio-cultural, and related information. Among the total female-adolescents, 38.6% [95% CI= 34.5-42.8%] took on weight control practices. The study further revealed the condition of the weight control practice to be healthy (20.5%), unhealthy(25.9%, and the rest to be both healthyand unhealthy(7.8%). The multivariate regression model, cutoff p < 0.05, disclosed that predicters like late adolescent age [AOR=1.98; 95% CI=1.33-2.95], middle wealth status [AOR=2.72; 95% CI=1.60-4.63], high wealth status [AOR=5.69; 95% CI=3.43-9.46], normal BMI [AOR=2.36; 95% CI=1.18-4.71], overweight [AOR=2.45; 95% CI=1.13-5.28], mild depression [AOR=1.72; 95% CI=1.12-2.66] and dissatisfied own mid-torso body image [AOR=2.68; 95% CI=1.52-4.73] were found to have significant association with weight control practice. Therefore, it may be benefiting to consider the findings of this study for interventions associated with female adolescents weight control practices.Keywords: female-adolescents, highschool, weight control practice, Ethiopia
Procedia PDF Downloads 71865 Exploratory Study of the Influencing Factors for Hotels' Competitors
Authors: Asma Ameur, Dhafer Malouche
Abstract:
Hotel competitiveness research is an essential phase of the marketing strategy for any hotel. Certainly, knowing the hotels' competitors helps the hotelier to grasp its position in the market and the citizen to make the right choice in picking a hotel. Thus, competitiveness is an important indicator that can be influenced by various factors. In fact, the issue of competitiveness, this ability to cope with competition, remains a difficult and complex concept to define and to exploit. Therefore, the purpose of this article is to make an exploratory study to calculate a competitiveness indicator for hotels. Further on, this paper makes it possible to determine the criteria of direct or indirect effect on the image and the perception of a hotel. The actual research is used to look into the right model for hotel ‘competitiveness. For this reason, we exploit different theoretical contributions in the field of machine learning. Thus, we use some statistical techniques such as the Principal Component Analysis (PCA) to reduce the dimensions, as well as other techniques of statistical modeling. This paper presents a survey covering of the techniques and methods in hotel competitiveness research. Furthermore, this study allows us to deduct the significant variables that influence the determination of hotel’s competitors. Lastly, the discussed experiences in this article found that the hotel competitors are influenced by several factors with different rates.Keywords: competitiveness, e-reputation, hotels' competitors, online hotel’ review, principal component analysis, statistical modeling
Procedia PDF Downloads 119864 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.Keywords: biometrics, euclidean classifier, features extraction, offline signature verification, voting-based classifier
Procedia PDF Downloads 378863 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 106862 RGB Color Based Real Time Traffic Sign Detection and Feature Extraction System
Authors: Kay Thinzar Phu, Lwin Lwin Oo
Abstract:
In an intelligent transport system and advanced driver assistance system, the developing of real-time traffic sign detection and recognition (TSDR) system plays an important part in recent research field. There are many challenges for developing real-time TSDR system due to motion artifacts, variable lighting and weather conditions and situations of traffic signs. Researchers have already proposed various methods to minimize the challenges problem. The aim of the proposed research is to develop an efficient and effective TSDR in real time. This system proposes an adaptive thresholding method based on RGB color for traffic signs detection and new features for traffic signs recognition. In this system, the RGB color thresholding is used to detect the blue and yellow color traffic signs regions. The system performs the shape identify to decide whether the output candidate region is traffic sign or not. Lastly, new features such as termination points, bifurcation points, and 90’ angles are extracted from validated image. This system uses Myanmar Traffic Sign dataset.Keywords: adaptive thresholding based on RGB color, blue color detection, feature extraction, yellow color detection
Procedia PDF Downloads 313861 Extraction of Road Edge Lines from High-Resolution Remote Sensing Images Based on Energy Function and Snake Model
Authors: Zuoji Huang, Haiming Qian, Chunlin Wang, Jinyan Sun, Nan Xu
Abstract:
In this paper, the strategy to extract double road edge lines from acquired road stripe image was explored. The workflow is as follows: the road stripes are acquired by probabilistic boosting tree algorithm and morphological algorithm immediately, and road centerlines are detected by thinning algorithm, so the initial road edge lines can be acquired along the road centerlines. Then we refine the results with big variation of local curvature of centerlines. Specifically, the energy function of edge line is constructed by gradient feature and spectral information, and Dijkstra algorithm is used to optimize the initial road edge lines. The Snake model is constructed to solve the fracture problem of intersection, and the discrete dynamic programming algorithm is used to solve the model. After that, we could get the final road network. Experiment results show that the strategy proposed in this paper can be used to extract the continuous and smooth road edge lines from high-resolution remote sensing images with an accuracy of 88% in our study area.Keywords: road edge lines extraction, energy function, intersection fracture, Snake model
Procedia PDF Downloads 338860 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 181859 Human Action Recognition Using Variational Bayesian HMM with Dirichlet Process Mixture of Gaussian Wishart Emission Model
Authors: Wanhyun Cho, Soonja Kang, Sangkyoon Kim, Soonyoung Park
Abstract:
In this paper, we present the human action recognition method using the variational Bayesian HMM with the Dirichlet process mixture (DPM) of the Gaussian-Wishart emission model (GWEM). First, we define the Bayesian HMM based on the Dirichlet process, which allows an infinite number of Gaussian-Wishart components to support continuous emission observations. Second, we have considered an efficient variational Bayesian inference method that can be applied to drive the posterior distribution of hidden variables and model parameters for the proposed model based on training data. And then we have derived the predictive distribution that may be used to classify new action. Third, the paper proposes a process of extracting appropriate spatial-temporal feature vectors that can be used to recognize a wide range of human behaviors from input video image. Finally, we have conducted experiments that can evaluate the performance of the proposed method. The experimental results show that the method presented is more efficient with human action recognition than existing methods.Keywords: human action recognition, Bayesian HMM, Dirichlet process mixture model, Gaussian-Wishart emission model, Variational Bayesian inference, prior distribution and approximate posterior distribution, KTH dataset
Procedia PDF Downloads 353858 Celebrity Endorsement: How It Works When a Celebrity Fits the Brand and Advertisement
Authors: Göksel Şimşek
Abstract:
Celebrities are admired, appreciated and imitated all over the world. As a natural result of this, today many brands choose to work with celebrities for their advertisements. It can be said that the more the brands include celebrities in their marketing communication strategies, the tougher the competition in this field becomes and they allocate a large portion of their marketing budget to this. Brands invest in celebrities who will represent them in order to build the image they want to create. This study aimed to bring under spotlight the perceptions of Turkish customers regarding the use of celebrities in advertisements and marketing communication and try to understand their possible effects on subsequent purchasing decisions. In addition, consumers’ reactions and perceptions were investigated in the context of the product-celebrity match, to what extent the celebrity conforms to the concept of the advertisement and the celebrity-target audience match. In order to achieve this purpose, a quantitative research was conducted as a case study concerning Mavi Jeans (textile company). Information was obtained through survey. The results from this case study are supported by relevant theories concerning the main subject. The most valuable result would be that instead of creating an advertisement around a celebrity in demand at the time, using a celebrity that fits the concept of the advertisement and feeds the concept rather than replaces it, that is celebrity endorsement, will lead to more striking and positive results.Keywords: celebrity endorsement, product-celebrity match, advertising, social sciences
Procedia PDF Downloads 205