Search results for: non uniform utility computing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2574

Search results for: non uniform utility computing

684 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN

Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy

Abstract:

The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.

Keywords: deep learning, optical Soliton, neural network, partial differential equation

Procedia PDF Downloads 128
683 Studies on Structural and Electrical Properties of Lanthanum Doped Sr₂CoMoO₆₋δ System

Authors: Pravin Kumar, Rajendra K. Singh, Prabhakar Singh

Abstract:

A widespread research work on Mo-based double perovskite systems has been reported as a potential application for electrode materials of solid oxide fuel cells. Mo-based double perovskites studied in form of B-site ordered double perovskite materials, with general formula A₂B′B″O₆ structured by alkaline earth element (A = Sr, Ca, Ba) and heterovalent transition metals (B′ = Fe, Co, Ni, Cr, etc. and B″ = Mo, W, etc.), are raising a significant interest as potential mixed ionic-electronic conductors in the temperature range of 500-800 °C. Such systems reveal higher electrical conductivity, particularly those assigned in form of Sr₂CoMoO₆₋δ (M = Mg, Mn, Fe, Co, Ni, Zn etc.) which were studied in different environments (air/H₂/H₂-Ar/CH₄) at an intermediate temperature. Among them, the Sr₂CoMoO₆₋δ system is a potential candidate as an anode material for solid oxide fuel cells (SOFCs) due to its better electrical conductivity. Therefore, Sr₂CoMoO₆₋δ (SCM) system with La-doped on Sr site has been studied to discover the structural and electrical properties. The double perovskite system Sr₂CoMoO₆₋δ (SCM) and doped system Sr₂-ₓLaₓCoMoO₆₋δ (SLCM, x=0.04) were synthesized by the citrate-nitrate combustion synthesis route. Thermal studies were carried out by thermo-gravimetric analysis. Phase justification was confirmed by powder X-ray diffraction (XRD) as a tetragonal structure with space group I4/m. A minor phase of SrMoO₄ (s.g. I41/a) was identified as a secondary phase using JCPDS card no. 85-0586. Micro-structural investigations revealed the formation of uniform grains. The average grain size of undoped (SCM) and doped (SLCM) compositions was calculated by a linear intercept method and found to be ⁓3.8 μm and 2.7 μm, respectively. The electrical conductivity of SLCM is found higher than SCM in the air within the temperature range of 200-600 °C. SLCM system was also measured in reducing atmosphere (pure H₂) in the temperature range 300-600 °C. SLCM has been showed the higher conductivity in the reducing atmosphere (H₂) than in air and therefore it could be a promising anode material for SOFCs.

Keywords: double perovskite, electrical conductivity, SEM, XRD

Procedia PDF Downloads 132
682 Convergence and Stability in Federated Learning with Adaptive Differential Privacy Preservation

Authors: Rizwan Rizwan

Abstract:

This paper provides an overview of Federated Learning (FL) and its application in enhancing data security, privacy, and efficiency. FL utilizes three distinct architectures to ensure privacy is never compromised. It involves training individual edge devices and aggregating their models on a server without sharing raw data. This approach not only provides secure models without data sharing but also offers a highly efficient privacy--preserving solution with improved security and data access. Also we discusses various frameworks used in FL and its integration with machine learning, deep learning, and data mining. In order to address the challenges of multi--party collaborative modeling scenarios, a brief review FL scheme combined with an adaptive gradient descent strategy and differential privacy mechanism. The adaptive learning rate algorithm adjusts the gradient descent process to avoid issues such as model overfitting and fluctuations, thereby enhancing modeling efficiency and performance in multi-party computation scenarios. Additionally, to cater to ultra-large-scale distributed secure computing, the research introduces a differential privacy mechanism that defends against various background knowledge attacks.

Keywords: federated learning, differential privacy, gradient descent strategy, convergence, stability, threats

Procedia PDF Downloads 33
681 A 3-Dimensional Memory-Based Model for Planning Working Postures Reaching Specific Area with Postural Constraints

Authors: Minho Lee, Donghyun Back, Jaemoon Jung, Woojin Park

Abstract:

The current 3-dimensional (3D) posture prediction models commonly provide only a few optimal postures to achieve a specific objective. The problem with such models is that they are incapable of rapidly providing several optimal posture candidates according to various situations. In order to solve this problem, this paper presents a 3D memory-based posture planning (3D MBPP) model, which is a new digital human model that can analyze the feasible postures in 3D space for reaching tasks that have postural constraints and specific reaching space. The 3D MBPP model can be applied to the types of works that are done with constrained working postures and have specific reaching space. The examples of such works include driving an excavator, driving automobiles, painting buildings, working at an office, pitching/batting, and boxing. For these types of works, a limited amount of space is required to store all of the feasible postures, as the hand reaches boundary can be determined prior to perform the task. This prevents computation time from increasing exponentially, which has been one of the major drawbacks of memory-based posture planning model in 3D space. This paper validates the utility of 3D MBPP model using a practical example of analyzing baseball batting posture. In baseball, batters swing with both feet fixed to the ground. This motion is appropriate for use with the 3D MBPP model since the player must try to hit the ball when the ball is located inside the strike zone (a limited area) in a constrained posture. The results from the analysis showed that the stored and the optimal postures vary depending on the ball’s flying path, the hitting location, the batter’s body size, and the batting objective. These results can be used to establish the optimal postural strategies for achieving the batting objective and performing effective hitting. The 3D MBPP model can also be applied to various domains to determine the optimal postural strategies and improve worker comfort.

Keywords: baseball, memory-based, posture prediction, reaching area, 3D digital human models

Procedia PDF Downloads 216
680 Exploring an Exome Target Capture Method for Cross-Species Population Genetic Studies

Authors: Benjamin A. Ha, Marco Morselli, Xinhui Paige Zhang, Elizabeth A. C. Heath-Heckman, Jonathan B. Puritz, David K. Jacobs

Abstract:

Next-generation sequencing has enhanced the ability to acquire massive amounts of sequence data to address classic population genetic questions for non-model organisms. Targeted approaches allow for cost effective or more precise analyses of relevant sequences; although, many such techniques require a known genome and it can be costly to purchase probes from a company. This is challenging for non-model organisms with no published genome and can be expensive for large population genetic studies. Expressed exome capture sequencing (EecSeq) synthesizes probes in the lab from expressed mRNA, which is used to capture and sequence the coding regions of genomic DNA from a pooled suite of samples. A normalization step produces probes to recover transcripts from a wide range of expression levels. This approach offers low cost recovery of a broad range of genes in the genome. This research project expands on EecSeq to investigate if mRNA from one taxon may be used to capture relevant sequences from a series of increasingly less closely related taxa. For this purpose, we propose to use the endangered Northern Tidewater goby, Eucyclogobius newberryi, a non-model organism that inhabits California coastal lagoons. mRNA will be extracted from E. newberryi to create probes and capture exomes from eight other taxa, including the more at-risk Southern Tidewater goby, E. kristinae, and more divergent species. Captured exomes will be sequenced, analyzed bioinformatically and phylogenetically, then compared to previously generated phylogenies across this group of gobies. This will provide an assessment of the utility of the technique in cross-species studies and for analyzing low genetic variation within species as is the case for E. kristinae. This method has potential applications to provide economical ways to expand population genetic and evolutionary biology studies for non-model organisms.

Keywords: coastal lagoons, endangered species, non-model organism, target capture method

Procedia PDF Downloads 190
679 Enhancing Single Channel Minimum Quantity Lubrication through Bypass Controlled Design for Deep Hole Drilling with Small Diameter Tool

Authors: Yongrong Li, Ralf Domroes

Abstract:

Due to significant energy savings, enablement of higher machining speed as well as environmentally friendly features, Minimum Quantity Lubrication (MQL) has been used for many machining processes efficiently. However, in the deep hole drilling field (small tool diameter D < 5 mm) and long tool (length L > 25xD) it is always a bottle neck for a single channel MQL system. The single channel MQL, based on the Venturi principle, faces a lack of enough oil quantity caused by dropped pressure difference during the deep hole drilling process. In this paper, a system concept based on a bypass design has explored its possibility to dynamically reach the required pressure difference between the air inlet and the inside of aerosol generator, so that the deep hole drilling demanded volume of oil can be generated and delivered to tool tips. The system concept has been investigated in static and dynamic laboratory testing. In the static test, the oil volume with and without bypass control were measured. This shows an oil quantity increasing potential up to 1000%. A spray pattern test has demonstrated the differences of aerosol particle size, aerosol distribution and reaction time between single channel and bypass controlled single channel MQL systems. A dynamic trial machining test of deep hole drilling (drill tool D=4.5mm, L= 40xD) has been carried out with the proposed system on a difficult machining material AlSi7Mg. The tool wear along a 100 meter drilling was tracked and analyzed. The result shows that the single channel MQL with a bypass control can overcome the limitation and enhance deep hole drilling with a small tool. The optimized combination of inlet air pressure and bypass control results in a high quality oil delivery to tool tips with a uniform and continuous aerosol flow.

Keywords: deep hole drilling, green production, Minimum Quantity Lubrication (MQL), near dry machining

Procedia PDF Downloads 206
678 Liaison Psychiatry in Baixo Alentejo, Portugal: Reality and Perspectives

Authors: Mariana Mangas, Yaroslava Martins, M. Suárez, Célia Santos, Ana Matos Pires

Abstract:

Baixo Alentejo is a region of Portugal characterized by an aging population, geographic isolation, social deprivation and a lack of medical staff. It is one of the most problematic regions in regards to mental health, particularly due to the factors mentioned. The aim of this study is a presentation of liaison psychiatry in Hospital José Joaquim Fernandes; a sample of the work done, the current situation and future perspectives. The aim is to present a retrospective study of internal psychiatric emergencies from January 1st, 2016 to August 31st, 2016. Liaison psychiatry of Department of Psychiatry and Mental Health (Psychiatry Service) of ULSBA includes the following activities: internal psychiatry emergencies, HIV consultation (comprised in the general consultation) and liaison psychology (oncology and pain), consisting of a total of 111 internal psychiatry emergencies during the identified period. Gender distribution was uniform. The most prevalent age group was 71-80 years, and 66,6% of patients were 60 years old and over. The majority of the emergency observations was requested by hospital services of medicine (56,8%) and surgery (24,3%). The most frequent reasons for admission were: respiratory disease (18,0%); tumors (15.3%); other surgical and orthopedic pathology (14,5%) and stroke (11,7%). The most frequent psychiatric diagnoses were: neurotic and organic depression (24,3%); delirium (26,1%) and adjustment reaction (14,5%). Major psychiatric pathology (schizophrenia and affective disorders) was found in 10,8%. Antidepressive medication was prescribed in 37,8% patients; antipsychotics in 34,2%. In 9.9% of the cases, no psychotropic drug was prescribed, and 5,4% of patients received psychologic support. Regarding hospital discharge, 42,4% of patients were referred to the general practitioner or to the medical specialist; 22,5% to outpatient gerontopsychiatry; 17,1% to psychiatric outpatient and 14,4% deceased. A future perspective is to start liaison in areas of HIV and psycho oncology in multidisciplinary approach and to improve collaboration with colleagues of other specialties for refining psychiatric referrals.

Keywords: psychiatry, liaison, internal emergency, psychiatric referral

Procedia PDF Downloads 252
677 Diagnostic Contribution of the MMSE-2:EV in the Detection and Monitoring of the Cognitive Impairment: Case Studies

Authors: Cornelia-Eugenia Munteanu

Abstract:

The goal of this paper is to present the diagnostic contribution that the screening instrument, Mini-Mental State Examination-2: Expanded Version (MMSE-2:EV), brings in detecting the cognitive impairment or in monitoring the progress of degenerative disorders. The diagnostic signification is underlined by the interpretation of the MMSE-2:EV scores, resulted from the test application to patients with mild and major neurocognitive disorders. The original MMSE is one of the most widely used screening tools for detecting the cognitive impairment, in clinical settings, but also in the field of neurocognitive research. Now, the practitioners and researchers are turning their attention to the MMSE-2. To enhance its clinical utility, the new instrument was enriched and reorganized in three versions (MMSE-2:BV, MMSE-2:SV and MMSE-2:EV), each with two forms: blue and red. The MMSE-2 was adapted and used successfully in Romania since 2013. The cases were selected from current practice, in order to cover vast and significant neurocognitive pathology: mild cognitive impairment, Alzheimer’s disease, vascular dementia, mixed dementia, Parkinson’s disease, conversion of the mild cognitive impairment into Alzheimer’s disease. The MMSE-2:EV version was used: it was applied one month after the initial assessment, three months after the first reevaluation and then every six months, alternating the blue and red forms. Correlated with age and educational level, the raw scores were converted in T scores and then, with the mean and the standard deviation, the z scores were calculated. The differences of raw scores between the evaluations were analyzed from the point of view of statistic signification, in order to establish the progression in time of the disease. The results indicated that the psycho-diagnostic approach for the evaluation of the cognitive impairment with MMSE-2:EV is safe and the application interval is optimal. The alternation of the forms prevents the learning phenomenon. The diagnostic accuracy and efficient therapeutic conduct derive from the usage of the national test norms. In clinical settings with a large flux of patients, the application of the MMSE-2:EV is a safe and fast psycho-diagnostic solution. The clinicians can draw objective decisions and for the patients: it doesn’t take too much time and energy, it doesn’t bother them and it doesn’t force them to travel frequently.

Keywords: MMSE-2, dementia, cognitive impairment, neuropsychology

Procedia PDF Downloads 515
676 The Students' Mathematical Competency and Attitude towards Mathematics Using the Trachtenberg Speed Math System

Authors: Marlone D. Severo

Abstract:

A pre- and post-test quasi-experimental design was used to test the intervention of Trachtenberg Speed Math on the mathematical competency of sixty (60) matched-paired students with a poor performing grade in Mathematics from one of the biggest public national high school at the South of Metro Manila. Both control and experimental group were administered with the Attitude Towards Mathematics Inventory (ATMI) before the pretest were given and both group showed high dislike for Mathematics. Pretest showed a 53 percent accuracy for the control group and 51 percent for the experimental group using a 15-item long multiplication test without any aid of a computing device. The experimental group were taught how to use the Trachtenberg number-keys and techniques in multiplication between October 2014 to March 2015. Post-test showed an improvement in the experimental group with 96 percent accuracy for the control group and a dismal 57 percent for the control group in long-multiplication. Post-test ATMI were administered. The control group showed a great dislike towards Mathematics, while the experimental group showed a positive attitude towards the subject.

Keywords: attitude towards mathematics, mathematical competency, number-keys, trachtenberg speed math

Procedia PDF Downloads 369
675 Reliability Modeling of Repairable Subsystems in Semiconductor Fabrication: A Virtual Age and General Repair Framework

Authors: Keshav Dubey, Swajeeth Panchangam, Arun Rajendran, Swarnim Gupta

Abstract:

In the semiconductor capital equipment industry, effective modeling of repairable system reliability is crucial for optimizing maintenance strategies and ensuring operational efficiency. However, repairable system reliability modeling using a renewal process is not as popular in the semiconductor equipment industry as it is in the locomotive and automotive industries. Utilization of this approach will help optimize maintenance practices. This paper presents a structured framework that leverages both parametric and non-parametric approaches to model the reliability of repairable subsystems based on operational data, maintenance schedules, and system-specific conditions. Data is organized at the equipment ID level, facilitating trend testing to uncover failure patterns and system degradation over time. For non-parametric modeling, the Mean Cumulative Function (Mean Cumulative Function) approach is applied, offering a flexible method to estimate the cumulative number of failures over time without assuming an underlying statistical distribution. This allows for empirical insights into subsystem failure behavior based on historical data. On the parametric side, virtual age modeling, along with Homogeneous and Non-Homogeneous Poisson Process (Homogeneous Poisson Process and Non-Homogeneous Poisson Process) models, is employed to quantify the effect of repairs and the aging process on subsystem reliability. These models allow for a more structured analysis by characterizing repair effectiveness and system wear-out trends over time. A comparison of various Generalized Renewal Process (GRP) approaches highlights their utility in modeling different repair effectiveness scenarios. These approaches provide a robust framework for assessing the impact of maintenance actions on system performance and reliability. By integrating both parametric and non-parametric methods, this framework offers a comprehensive toolset for reliability engineers to better understand equipment behavior, assess the effectiveness of maintenance activities, and make data-driven decisions that enhance system availability and operational performance in semiconductor fabrication facilities.

Keywords: reliability, maintainability, homegenous poission process, repairable system

Procedia PDF Downloads 24
674 Future of Nanotechnology in Digital MacDraw

Authors: Pejman Hosseinioun, Abolghasem Ghasempour, Elham Gholami, Hamed Sarbazi

Abstract:

Considering the development in global semiconductor technology, it is anticipated that gadgets such as diodes and resonant transistor tunnels (RTD/RTT), Single electron transistors (SET) and quantum cellular automata (QCA) will substitute CMOS (Complementary Metallic Oxide Semiconductor) gadgets in many applications. Unfortunately, these new technologies cannot disembark the common Boolean logic efficiently and are only appropriate for liminal logic. Therefor there is no doubt that with the development of these new gadgets it is necessary to find new MacDraw technologies which are compatible with them. Resonant transistor tunnels (RTD/RTT) and circuit MacDraw with enhanced computing abilities are candida for accumulating Nano criterion in the future. Quantum cellular automata (QCA) are also advent Nano technological gadgets for electrical circuits. Advantages of these gadgets such as higher speed, smaller dimensions, and lower consumption loss are of great consideration. QCA are basic gadgets in manufacturing gates, fuses and memories. Regarding the complex Nano criterion physical entity, circuit designers can focus on logical and constructional design to decrease complication in MacDraw. Moreover Single electron technology (SET) is another noteworthy gadget considered in Nano technology. This article is a survey in future of Nano technology in digital MacDraw.

Keywords: nano technology, resonant transistor tunnels, quantum cellular automata, semiconductor

Procedia PDF Downloads 265
673 Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam

Authors: I. Wlasny, Z. Klusek, A. Wysmolek

Abstract:

Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451.

Keywords: atomic force microscopy, hexagonal boron nitride, optical properties, raman spectroscopy

Procedia PDF Downloads 174
672 Synthesis of TiO₂/Graphene Nanocomposites with Excellent Visible-Light Photocatalytic Activity Based on Chemical Exfoliation Method

Authors: Nhan N. T. Ton, Anh T. N. Dao, Kouichirou Katou, Toshiaki Taniike

Abstract:

Facile electron-hole recombination and the broad band gap are two major drawbacks of titanium dioxide (TiO₂) when applied in visible-light photocatalysis. Hybridization of TiO₂ with graphene is a promising strategy to lessen these pitfalls. Recently, there have been many reports on the synthesis of TiO₂/graphene nanocomposites, in most of which graphene oxide (GO) was used as a starting material. However, the reduction of GO introduced a large number of defects on the graphene framework. In addition, the sensitivity of titanium alkoxide to water (GO usually contains) significantly obstructs the uniform and controlled growth of TiO₂ on graphene. Here, we demonstrate a novel technique to synthesize TiO₂/graphene nanocomposites without the use of GO. Graphene dispersion was obtained through the chemical exfoliation of graphite in titanium tetra-n-butoxide with the aid of ultrasonication. The dispersion was directly used for the sol-gel reaction in the presence of different catalysts. A TiO₂/reduced graphene oxide (TiO₂/rGO) nanocomposite, which was prepared by a solvothermal method from GO, and the commercial TiO₂-P25 were used as references. It was found that titanium alkoxide afforded the graphene dispersion of a high quality in terms of a trace amount of defects and a few layers of dispersed graphene. Moreover, the sol-gel reaction from this dispersion led to TiO₂/graphene nanocomposites featured with promising characteristics for visible-light photocatalysts including: (I) the formation of a TiO₂ nano layer (thickness ranging from 1 nm to 5 nm) that uniformly and thinly covered graphene sheets, (II) a trace amount of defects on the graphene framework (low ID/IG ratio: 0.21), (III) a significant extension of the absorption edge into the visible light region (a remarkable extension of the absorption edge to 578 nm beside the usual edge at 360 nm), and (IV) a dramatic suppression of electron-hole recombination (the lowest photoluminescence intensity compared to reference samples). These advantages were successfully demonstrated in the photocatalytic decomposition of methylene blue under visible light irradiation. The TiO₂/graphene nanocomposites exhibited 15 and 5 times higher activity than TiO₂-P25 and the TiO₂/rGO nanocomposite, respectively.

Keywords: chemical exfoliation, photocatalyst, TiO₂/graphene, sol-gel reaction

Procedia PDF Downloads 160
671 Service Life Modelling of Concrete Deterioration Due to Biogenic Sulphuric Acid (BSA) Attack-State-of-an-Art-Review

Authors: Ankur Bansal, Shashank Bishnoi

Abstract:

Degradation of Sewage pipes, sewage pumping station and Sewage treatment plants(STP) is of major concern due to difficulty in their maintenance and the high cost of replacement. Most of these systems undergo degradation due to Biogenic sulphuric acid (BSA) attack. Since most of Waste water treatment system are underground, detection of this deterioration remains hidden. This paper presents a literature review, outlining the mechanism of this attack focusing on critical parameters of BSA attack, along with available models and software to predict the deterioration due to this attack. This paper critically examines the various steps and equation in various Models of BSA degradation, detail on assumptions and working of different softwares are also highlighted in this paper. The paper also focuses on the service life design technique available through various codes and method to integrate the servile life design with BSA degradation on concrete. In the end, various methods enhancing the resistance of concrete against Biogenic sulphuric acid attack are highlighted. It may be concluded that the effective modelling for degradation phenomena may bring positive economical and environmental impacts. With current computing capabilities integrated degradation models combining the various durability aspects can bring positive change for sustainable society.

Keywords: concrete degradation, modelling, service life, sulphuric acid attack

Procedia PDF Downloads 314
670 Geomechanical Technologies for Assessing Three-Dimensional Stability of Underground Excavations Utilizing Remote-Sensing, Finite Element Analysis, and Scientific Visualization

Authors: Kwang Chun, John Kemeny

Abstract:

Light detection and ranging (LiDAR) has been a prevalent remote-sensing technology applied in the geological fields due to its high precision and ease of use. One of the major applications is to use the detailed geometrical information of underground structures as a basis for the generation of a three-dimensional numerical model that can be used in a geotechnical stability analysis such as FEM or DEM. To date, however, straightforward techniques in reconstructing the numerical model from the scanned data of the underground structures have not been well established or tested. In this paper, we propose a comprehensive approach integrating all the various processes, from LiDAR scanning to finite element numerical analysis. The study focuses on converting LiDAR 3D point clouds of geologic structures containing complex surface geometries into a finite element model. This methodology has been applied to Kartchner Caverns in Arizona, where detailed underground and surface point clouds can be used for the analysis of underground stability. Numerical simulations were performed using the finite element code Abaqus and presented by 3D computing visualization solution, ParaView. The results are useful in studying the stability of all types of underground excavations including underground mining and tunneling.

Keywords: finite element analysis, LiDAR, remote-sensing, scientific visualization, underground stability

Procedia PDF Downloads 176
669 Heat-Induced Uncertainty of Industrial Computed Tomography Measuring a Stainless Steel Cylinder

Authors: Verena M. Moock, Darien E. Arce Chávez, Mariana M. Espejel González, Leopoldo Ruíz-Huerta, Crescencio García-Segundo

Abstract:

Uncertainty analysis in industrial computed tomography is commonly related to metrological trace tools, which offer precision measurements of external part features. Unfortunately, there is no such reference tool for internal measurements to profit from the unique imaging potential of X-rays. Uncertainty approximations for computed tomography are still based on general aspects of the industrial machine and do not adapt to acquisition parameters or part characteristics. The present study investigates the impact of the acquisition time on the dimensional uncertainty measuring a stainless steel cylinder with a circular tomography scan. The authors develop the figure difference method for X-ray radiography to evaluate the volumetric differences introduced within the projected absorption maps of the metal workpiece. The dimensional uncertainty is dominantly influenced by photon energy dissipated as heat causing the thermal expansion of the metal, as monitored by an infrared camera within the industrial tomograph. With the proposed methodology, we are able to show evolving temperature differences throughout the tomography acquisition. This is an early study showing that the number of projections in computer tomography induces dimensional error due to energy absorption. The error magnitude would depend on the thermal properties of the sample and the acquisition parameters by placing apparent non-uniform unwanted volumetric expansion. We introduce infrared imaging for the experimental display of metrological uncertainty in a particular metal part of symmetric geometry. We assess that the current results are of fundamental value to reach the balance between the number of projections and uncertainty tolerance when performing analysis with X-ray dimensional exploration in precision measurements with industrial tomography.

Keywords: computed tomography, digital metrology, infrared imaging, thermal expansion

Procedia PDF Downloads 122
668 Synergy and Complementarity in Technology-Intensive Manufacturing Networks

Authors: Daidai Shen, Jean Claude Thill, Wenjia Zhang

Abstract:

This study explores the dynamics of synergy and complementarity within city networks, specifically focusing on the headquarters-subsidiary relations of firms. We begin by defining these two types of networks and establishing their pivotal roles in shaping city network structures. Utilizing the mesoscale analytic approach of weighted stochastic block modeling, we discern relational patterns between city pairs and determine connection strengths through statistical inference. Furthermore, we introduce a community detection approach to uncover the underlying structure of these networks using advanced statistical methods. Our analysis, based on comprehensive network data up to 2017, reveals the coexistence of both complementarity and synergy networks within China’s technology-intensive manufacturing cities. Notably, firms in technology hardware and office & computing machinery predominantly contribute to the complementarity city networks. In contrast, a distinct synergy city network, underpinned by the cities of Suzhou and Dongguan, emerges amidst the expansive complementarity structures in technology hardware and equipment. These findings provide new insights into the relational dynamics and structural configurations of city networks in the context of technology-intensive manufacturing, highlighting the nuanced interplay between synergy and complementarity.

Keywords: city system, complementarity, synergy network, higher-order network

Procedia PDF Downloads 46
667 Optimized Scheduling of Domestic Load Based on User Defined Constraints in a Real-Time Tariff Scenario

Authors: Madia Safdar, G. Amjad Hussain, Mashhood Ahmad

Abstract:

One of the major challenges of today’s era is peak demand which causes stress on the transmission lines and also raises the cost of energy generation and ultimately higher electricity bills to the end users, and it was used to be managed by the supply side management. However, nowadays this has been withdrawn because of existence of potential in the demand side management (DSM) having its economic and- environmental advantages. DSM in domestic load can play a vital role in reducing the peak load demand on the network provides a significant cost saving. In this paper the potential of demand response (DR) in reducing the peak load demands and electricity bills to the electric users is elaborated. For this purpose the domestic appliances are modeled in MATLAB Simulink and controlled by a module called energy management controller. The devices are categorized into controllable and uncontrollable loads and are operated according to real-time tariff pricing pattern instead of fixed time pricing or variable pricing. Energy management controller decides the switching instants of the controllable appliances based on the results from optimization algorithms. In GAMS software, the MILP (mixed integer linear programming) algorithm is used for optimization. In different cases, different constraints are used for optimization, considering the comforts, needs and priorities of the end users. Results are compared and the savings in electricity bills are discussed in this paper considering real time pricing and fixed tariff pricing, which exhibits the existence of potential to reduce electricity bills and peak loads in demand side management. It is seen that using real time pricing tariff instead of fixed tariff pricing helps to save in the electricity bills. Moreover the simulation results of the proposed energy management system show that the gained power savings lie in high range. It is anticipated that the result of this research will prove to be highly effective to the utility companies as well as in the improvement of domestic DR.

Keywords: controllable and uncontrollable domestic loads, demand response, demand side management, optimization, MILP (mixed integer linear programming)

Procedia PDF Downloads 303
666 A Method of Representing Knowledge of Toolkits in a Pervasive Toolroom Maintenance System

Authors: A. Mohamed Mydeen, Pallapa Venkataram

Abstract:

The learning process needs to be so pervasive to impart the quality in acquiring the knowledge about a subject by making use of the advancement in the field of information and communication systems. However, pervasive learning paradigms designed so far are system automation types and they lack in factual pervasive realm. Providing factual pervasive realm requires subtle ways of teaching and learning with system intelligence. Augmentation of intelligence with pervasive learning necessitates the most efficient way of representing knowledge for the system in order to give the right learning material to the learner. This paper presents a method of representing knowledge for Pervasive Toolroom Maintenance System (PTMS) in which a learner acquires sublime knowledge about the various kinds of tools kept in the toolroom and also helps for effective maintenance of the toolroom. First, we explicate the generic model of knowledge representation for PTMS. Second, we expound the knowledge representation for specific cases of toolkits in PTMS. We have also presented the conceptual view of knowledge representation using ontology for both generic and specific cases. Third, we have devised the relations for pervasive knowledge in PTMS. Finally, events are identified in PTMS which are then linked with pervasive data of toolkits based on relation formulated. The experimental environment and case studies show the accuracy and efficient knowledge representation of toolkits in PTMS.

Keywords: knowledge representation, pervasive computing, agent technology, ECA rules

Procedia PDF Downloads 339
665 Modeling Bessel Beams and Their Discrete Superpositions from the Generalized Lorenz-Mie Theory to Calculate Optical Forces over Spherical Dielectric Particles

Authors: Leonardo A. Ambrosio, Carlos. H. Silva Santos, Ivan E. L. Rodrigues, Ayumi K. de Campos, Leandro A. Machado

Abstract:

In this work, we propose an algorithm developed under Python language for the modeling of ordinary scalar Bessel beams and their discrete superpositions and subsequent calculation of optical forces exerted over dielectric spherical particles. The mathematical formalism, based on the generalized Lorenz-Mie theory, is implemented in Python for its large number of free mathematical (as SciPy and NumPy), data visualization (Matplotlib and PyJamas) and multiprocessing libraries. We also propose an approach, provided by a synchronized Software as Service (SaaS) in cloud computing, to develop a user interface embedded on a mobile application, thus providing users with the necessary means to easily introduce desired unknowns and parameters and see the graphical outcomes of the simulations right at their mobile devices. Initially proposed as a free Android-based application, such an App enables data post-processing in cloud-based architectures and visualization of results, figures and numerical tables.

Keywords: Bessel Beams and Frozen Waves, Generalized Lorenz-Mie Theory, Numerical Methods, optical forces

Procedia PDF Downloads 382
664 Prediction of the Dark Matter Distribution and Fraction in Individual Galaxies Based Solely on Their Rotation Curves

Authors: Ramzi Suleiman

Abstract:

Recently, the author proposed an observationally-based relativity theory termed information relativity theory (IRT). The theory is simple and is based only on basic principles, with no prior axioms and no free parameters. For the case of a body of mass in uniform rectilinear motion relative to an observer, the theory transformations uncovered a matter-dark matter duality, which prescribes that the sum of the densities of the body's baryonic matter and dark matter, as measured by the observer, is equal to the body's matter density at rest. It was shown that the theory transformations were successful in predicting several important phenomena in small particle physics, quantum physics, and cosmology. This paper extends the theory transformations to the cases of rotating disks and spheres. The resulting transformations for a rotating disk are utilized to derive predictions of the radial distributions of matter and dark matter densities in rotationally supported galaxies based solely on their observed rotation curves. It is also shown that for galaxies with flattening curves, good approximations of the radial distributions of matter and dark matter and of the dark matter fraction could be obtained from one measurable scale radius. Test of the model on five galaxies, chosen randomly from the SPARC database, yielded impressive predictions. The rotation curves of all the investigated galaxies emerged as accurate traces of the predicted radial density distributions of their dark matter. This striking result raises an intriguing physical explanation of gravity in galaxies, according to which it is the proximal drag of the stars and gas in the galaxy by its rotating dark matter web. We conclude by alluding briefly to the application of the proposed model to stellar systems and black holes. This study also hints at the potential of the discovered matter-dark matter duality in fixing the standard model of elementary particles in a natural manner without the need for hypothesizing about supersymmetric particles.

Keywords: dark matter, galaxies rotation curves, SPARC, rotating disk

Procedia PDF Downloads 78
663 Fast Estimation of Fractional Process Parameters in Rough Financial Models Using Artificial Intelligence

Authors: Dávid Kovács, Bálint Csanády, Dániel Boros, Iván Ivkovic, Lóránt Nagy, Dalma Tóth-Lakits, László Márkus, András Lukács

Abstract:

The modeling practice of financial instruments has seen significant change over the last decade due to the recognition of time-dependent and stochastically changing correlations among the market prices or the prices and market characteristics. To represent this phenomenon, the Stochastic Correlation Process (SCP) has come to the fore in the joint modeling of prices, offering a more nuanced description of their interdependence. This approach has allowed for the attainment of realistic tail dependencies, highlighting that prices tend to synchronize more during intense or volatile trading periods, resulting in stronger correlations. Evidence in statistical literature suggests that, similarly to the volatility, the SCP of certain stock prices follows rough paths, which can be described using fractional differential equations. However, estimating parameters for these equations often involves complex and computation-intensive algorithms, creating a necessity for alternative solutions. In this regard, the Fractional Ornstein-Uhlenbeck (fOU) process from the family of fractional processes offers a promising path. We can effectively describe the rough SCP by utilizing certain transformations of the fOU. We employed neural networks to understand the behavior of these processes. We had to develop a fast algorithm to generate a valid and suitably large sample from the appropriate process to train the network. With an extensive training set, the neural network can estimate the process parameters accurately and efficiently. Although the initial focus was the fOU, the resulting model displayed broader applicability, thus paving the way for further investigation of other processes in the realm of financial mathematics. The utility of SCP extends beyond its immediate application. It also serves as a springboard for a deeper exploration of fractional processes and for extending existing models that use ordinary Wiener processes to fractional scenarios. In essence, deploying both SCP and fractional processes in financial models provides new, more accurate ways to depict market dynamics.

Keywords: fractional Ornstein-Uhlenbeck process, fractional stochastic processes, Heston model, neural networks, stochastic correlation, stochastic differential equations, stochastic volatility

Procedia PDF Downloads 119
662 Advanced Electron Microscopy Study of Fission Products in a TRISO Coated Particle Neutron Irradiated to 3.6 X 1021 N/cm² Fast Fluence at 1040 ⁰C

Authors: Haiming Wen, Isabella J. Van Rooyen

Abstract:

Tristructural isotropic (TRISO)-coated fuel particles are designed as nuclear fuel for high-temperature gas reactors. TRISO coating consists of layers of carbon buffer, inner pyrolytic carbon (IPyC), SiC, and outer pyrolytic carbon. The TRISO coating, especially the SiC layer, acts as a containment system for fission products produced in the kernel. However, release of certain metallic fission products across intact TRISO coatings has been observed for decades. Despite numerous studies, mechanisms by which fission products migrate across the coating layers remain poorly understood. In this study, scanning transmission electron microscopy (STEM), energy dispersive X-ray spectroscopy (EDS), high-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) were used to examine the distribution, composition and structure of fission products in a TRISO coated particle neutron irradiated to 3.6 x 1021 n/cm² fast fluence at 1040 ⁰C. Precession electron diffraction was used to investigate characters of grain boundaries where specific fission product precipitates are located. The retention fraction of 110mAg in the investigated TRISO particle was estimated to be 0.19. A high density of nanoscale fission product precipitates was observed in the SiC layer close to the SiC-IPyC interface, most of which are rich in Pd, while Ag was not identified. Some Pd-rich precipitates contain U. Precipitates tend to have complex structure and composition. Although a precipitate appears to have uniform contrast in STEM, EDS indicated that there may be composition variations throughout the precipitate, and HRTEM suggested that the precipitate may have several parts different in crystal structure or orientation. Attempts were made to measure charge states of precipitates using EELS and study their possible effect on precipitate transport.

Keywords: TRISO particle, fission product, nuclear fuel, electron microscopy, neutron irradiation

Procedia PDF Downloads 265
661 Disaggregate Travel Behavior and Transit Shift Analysis for a Transit Deficient Metropolitan City

Authors: Sultan Ahmad Azizi, Gaurang J. Joshi

Abstract:

Urban transportation has come to lime light in recent times due to deteriorating travel quality. The economic growth of India has boosted significant rise in private vehicle ownership in cities, whereas public transport systems have largely been ignored in metropolitan cities. Even though there is latent demand for public transport systems like organized bus services, most of the metropolitan cities have unsustainably low share of public transport. Unfortunately, Indian metropolitan cities have failed to maintain balance in mode share of various travel modes in absence of timely introduction of mass transit system of required capacity and quality. As a result, personalized travel modes like two wheelers have become principal modes of travel, which cause significant environmental, safety and health hazard to the citizens. Of late, the policy makers have realized the need to improve public transport system in metro cities for sustaining the development. However, the challenge to the transit planning authorities is to design a transit system for cities that may attract people to switch over from their existing and rather convenient mode of travel to the transit system under the influence of household socio-economic characteristics and the given travel pattern. In this context, the fast-growing industrial city of Surat is taken up as a case for the study of likely shift to bus transit. Deterioration of public transport system of bus after 1998, has led to tremendous growth in two-wheeler traffic on city roads. The inadequate and poor service quality of present bus transit has failed to attract the riders and correct the mode use balance in the city. The disaggregate travel behavior for trip generations and the travel mode choice has been studied for the West Adajan residential sector of city. Mode specific utility functions are calibrated under multi-nominal logit environment for two-wheeler, cars and auto rickshaws with respect to bus transit using SPSS. Estimation of shift to bus transit is carried indicate an average 30% of auto rickshaw users and nearly 5% of 2W users are likely to shift to bus transit if service quality is improved. However, car users are not expected to shift to bus transit system.

Keywords: bus transit, disaggregate travel nehavior, mode choice Behavior, public transport

Procedia PDF Downloads 261
660 Effect of Gravity on the Controlled Cooling of a Steel Block by Impinging Water Jets

Authors: E.K.K. Agyeman, P. Mousseau, A. Sarda, D. Edelin

Abstract:

The uniform and controlled cooling of hot metals by the circulation of water in canals remains a challenge due to the phase change of the water and the high heat fluxes associated with the phase change. This is because, during the cooling process, the phases are not uniformly distributed along the canals with the liquid phase dominating at the entrances of the canals and the gaseous phase dominating towards the exits. The difference in thermal properties between both phases leads to a heterogeneous temperature distribution in the part being cooled. Slowing down the cooling process is also a challenge due to the high heat fluxes associated with the phase change of water. This study investigates the use of multiple water jets for the controlled and homogenous cooling of hot metal parts and the effect of gravity on the effectiveness of the cooling process with a potential application in the cooling of composite forming moulds. A hole is bored at the centre of a steel block along its length. The jets are generated from the holes of a perforated steel pipe which is placed along the centre of the hole bored in the steel block. The evolution of the temperature with respect to time on the external surface of the steel block is measured simultaneously by thermocouples and an infrared camera. Different jet positions are tested in order to identify the jet placement configuration that ensures the most homogenous cooling of the block while the cooling speed is controlled by an intermittent impingement of the jets. In order to study the effect of gravity on the cooling process, a scenario where the jets are oriented in the opposite direction to that of gravity is compared to one where the jets are aligned in the same direction as gravity. It’s observed that orienting the jets in the direction of gravity reduces the effectiveness of the cooling process on the face of the block facing the impinging jets. This is due to the formation of a deeper pool of water due to the effect gravity and of the curved surface of the canal. This deeper pool of water influences the boiling regime characterized by a slower bubble evacuation when compared to the scenario where the jets are opposed to gravity.

Keywords: cooling speed, gravity, homogenous cooling, jet impingement

Procedia PDF Downloads 122
659 Protein-Enrichment of Oilseed Meals by Triboelectrostatic Separation

Authors: Javier Perez-Vaquero, Katryn Junker, Volker Lammers, Petra Foerst

Abstract:

There is increasing importance to accelerate the transition to sustainable food systems by including environmentally friendly technologies. Our work focuses on protein enrichment and fractionation of agricultural side streams by dry triboelectrostatic separation technology. Materials are fed in particulate form into a system dispersed in a highly turbulent gas stream, whereby the high collision rate of particles against surfaces and other particles greatly enhances the electrostatic charge build-up over the particle surface. A subsequent step takes the charged particles to a delimited zone in the system where there is a highly uniform, intense electric field applied. Because the charge polarity acquired by a particle is influenced by its chemical composition, morphology, and structure, the protein-rich and fiber-rich particles of the starting material get opposite charge polarities, thus following different paths as they move through the region where the electric field is present. The output is two material fractions, which differ in their respective protein content. One is a fiber-rich, low-protein fraction, while the other is a high-protein, low-fiber composition. Prior to testing, materials undergo a milling process, and some samples are stored under controlled humidity conditions. In this way, the influence of both particle size and humidity content was established. We used two oilseed meals: lupine and rapeseed. In addition to a lab-scale separator to perform the experiments, the triboelectric separation process could be successfully scaled up to a mid-scale belt separator, increasing the mass feed from g/sec to kg/hour. The triboelectrostatic separation technology opens a huge potential for the exploitation of so far underutilized alternative protein sources. Agricultural side-streams from cereal and oil production, which are generated in high volumes by the industries, can further be valorized by this process.

Keywords: bench-scale processing, dry separation, protein-enrichment, triboelectrostatic separation

Procedia PDF Downloads 191
658 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils

Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente

Abstract:

Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.

Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi

Procedia PDF Downloads 545
657 Studies on Organic and Inorganic Micro/Nano Particle Reinforced Epoxy Composites

Authors: Daniel Karthik, Vijay Baheti, Jiri Militky, Sundaramurthy Palanisamy

Abstract:

Fibre based nano particles are presently considered as one of the potential filler materials for the improvement of mechanical and physical properties of polymer composites. Due to high matrix-filler interfacial area there will be uniform and homogeneous dispersion of nanoparticles. In micro/nano filler reinforced composites, resin material is usually tailored by organic or inorganic nanoparticles to have improved matrix properties. The objective of this study was to compare the potential of reinforcement of different organic and inorganic micro/nano fillers in epoxy composites. Industrial and agricultural waste of fibres like Agave Americana, cornhusk, jute, basalt, carbon, glass and fly ash was utilized to prepare micro/nano particles. Micro/nano particles were obtained using high energy planetary ball milling process in dry condition. Milling time and ball size were kept constant throughout the ball milling process. Composites were fabricated by hand lay method. Particle loading was kept constant to 3% wt. for all composites. In present study, loading of fillers was selected as 3 wt. % for all composites. Dynamic mechanical properties of the nanocomposite films were performed in three-point bending mode with gauge length and sample width of 50 mm and 10 mm respectively. The samples were subjected to an oscillating frequency of 1 Hz, 5 Hz and 10 Hz and 100 % oscillating amplitude in the temperature ranges of 30°C to 150°C at the heating rate of 3°C/min. Damping was found to be higher with the jute composites. Amongst organic fillers lowest damping factor was observed with Agave Americana particles, this means that Agave americana fibre particles have betters interface adhesion with epoxy resin. Basalt, fly ash and glass particles have almost similar damping factors confirming better interface adhesion with epoxy.

Keywords: ball milling, damping factor, matrix-filler interface, particle reinforcements

Procedia PDF Downloads 265
656 The Optimal Order Policy for the Newsvendor Model under Worker Learning

Authors: Sunantha Teyarachakul

Abstract:

We consider the worker-learning Newsvendor Model, under the case of lost-sales for unmet demand, with the research objective of proposing the cost-minimization order policy and lot size, scheduled to arrive at the beginning of the selling-period. In general, the New Vendor Model is used to find the optimal order quantity for the perishable items such as fashionable products or those with seasonal demand or short-life cycles. Technically, it is used when the product demand is stochastic and available for the single selling-season, and when there is only a one time opportunity for the vendor to purchase, with possibly of long ordering lead-times. Our work differs from the classical Newsvendor Model in that we incorporate the human factor (specifically worker learning) and its influence over the costs of processing units into the model. We describe this by using the well-known Wright’s Learning Curve. Most of the assumptions of the classical New Vendor Model are still maintained in our work, such as the constant per-unit cost of leftover and shortage, the zero initial inventory, as well as the continuous time. Our problem is challenging in the way that the best order quantity in the classical model, which is balancing the over-stocking and under-stocking costs, is no longer optimal. Specifically, when adding the cost-saving from worker learning to such expected total cost, the convexity of the cost function will likely not be maintained. This has called for a new way in determining the optimal order policy. In response to such challenges, we found a number of characteristics related to the expected cost function and its derivatives, which we then used in formulating the optimal ordering policy. Examples of such characteristics are; the optimal order quantity exists and is unique if the demand follows a Uniform Distribution; if the demand follows the Beta Distribution with some specific properties of its parameters, the second derivative of the expected cost function has at most two roots; and there exists the specific level of lot size that satisfies the first order condition. Our research results could be helpful for analysis of supply chain coordination and of the periodic review system for similar problems.

Keywords: inventory management, Newsvendor model, order policy, worker learning

Procedia PDF Downloads 417
655 Practice on Design Knowledge Management and Transfer across the Life Cycle of a New-Built Nuclear Power Plant in China

Authors: Danying Gu, Xiaoyan Li, Yuanlei He

Abstract:

As a knowledge-intensive industry, nuclear industry highly values the importance of safety and quality. The life cycle of a NPP (Nuclear Power Plant) can last 100 years from the initial research and design to its decommissioning. How to implement the high-quality knowledge management and how to contribute to a more safe, advanced and economic NPP (Nuclear Power Plant) is the most important issue and responsibility for knowledge management. As the lead of nuclear industry, nuclear research and design institute has competitive advantages of its advanced technology, knowledge and information, DKM (Design Knowledge Management) of nuclear research and design institute is the core of the knowledge management in the whole nuclear industry. In this paper, the study and practice on DKM and knowledge transfer across the life cycle of a new-built NPP in China is introduced. For this digital intelligent NPP, the whole design process is based on a digital design platform which includes NPP engineering and design dynamic analyzer, visualization engineering verification platform, digital operation maintenance support platform and digital equipment design, manufacture integrated collaborative platform. In order to make all the design data and information transfer across design, construction, commissioning and operation, the overall architecture of new-built digital NPP should become a modern knowledge management system. So a digital information transfer model across the NPP life cycle is proposed in this paper. The challenges related to design knowledge transfer is also discussed, such as digital information handover, data center and data sorting, unified data coding system. On the other hand, effective delivery of design information during the construction and operation phase will contribute to the comprehensive understanding of design ideas and components and systems for the construction contractor and operation unit, largely increasing the safety, quality and economic benefits during the life cycle. The operation and maintenance records generated from the NPP operation process have great significance for maintaining the operating state of NPP, especially the comprehensiveness, validity and traceability of the records. So the requirements of an online monitoring and smart diagnosis system of NPP is also proposed, to help utility-owners to improve the safety and efficiency.

Keywords: design knowledge management, digital nuclear power plant, knowledge transfer, life cycle

Procedia PDF Downloads 273