Search results for: impact models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16883

Search results for: impact models

15023 Soap Film Enneper Minimal Surface Model

Authors: Yee Hooi Min, Mohdnasir Abdul Hadi

Abstract:

Tensioned membrane structure in the form of Enneper minimal surface can be considered as a sustainable development for the green environment and technology, it also can be used to support the effectiveness used of energy and the structure. Soap film in the form of Enneper minimal surface model has been studied. The combination of shape and internal forces for the purpose of stiffness and strength is an important feature of membrane surface. For this purpose, form-finding using soap film model has been carried out for Enneper minimal surface models with variables u=v=0.6 and u=v=1.0. Enneper soap film models with variables u=v=0.6 and u=v=1.0 provides an alternative choice for structural engineers to consider the tensioned membrane structure in the form of Enneper minimal surface applied in the building industry. It is expected to become an alternative building material to be considered by the designer.

Keywords: Enneper, minimal surface, soap film, tensioned membrane structure

Procedia PDF Downloads 553
15022 Effect of Molecular Weight Distribution on Toughening Performance of Polybutadiene in Polystyrene

Authors: Mohamad Mohsen Yavarizadeh

Abstract:

Polystyrene (PS) and related homopolymers are brittle materials that typically fail in tensile tests at very low strains. These polymers can be toughened by the addition of rubbery particles which initiate a large number of crazes that produce substantial plastic strain at relatively low stresses. Considerable energy is dissipated in the formation of these crazes, producing a relatively tough material that shows an impact toughness of more than 5 times of pure PS. While cross linking of rubbery phase is necessary in aforementioned mechanism of toughening, another mechanism of toughening was also introduced in which low molecular weight liquid rubbers can also toughen PS when dispersed in the form of small pools in the glassy matrix without any cross linking. However, this new mechanism which is based on local plasticization, fails to act properly at high strain rate deformations, i.e. impact tests. In this work, the idea of combination of these two mechanisms was tried. To do so, Polybutadiene rubbers (PB) with bimodal distribution of molecular weight were prepared in which, comparable fractions of very high and very low molecular weight rubbers were mixed. Incorporation of these materials in PS matrix in a reactive process resulted in more significant increases in toughness of PS. In other words, although low molecular weight PB is ineffective in high strain rate impact test by itself, it showed a significant synergistic effect when combined with high molecular weight PB. Surprisingly, incorporation of just 10% of low molecular weight PB doubled the impact toughness of regular high impact PS (HIPS). It was observed that most of rubbery particles could initiate crazes. The effectiveness of low molecular weight PB in impact test was attributed to low strain rate deformation of each individual craze as a result of producing a large number of crazes in this material. In other words, high molecular weight PB chains make it possible to have an appropriate dispersion of rubbery phase in order to create a large number of crazes in the PS matrix and consequently decrease the velocity of each craze. Low molecular weight PB, in turn, would have enough time to locally plasticize craze fibrils and enhance the energy dissipation.

Keywords: molecular weight distribution, polystyrene, toughness, homopolymer

Procedia PDF Downloads 442
15021 AI-Powered Models for Real-Time Fraud Detection in Financial Transactions to Improve Financial Security

Authors: Shanshan Zhu, Mohammad Nasim

Abstract:

Financial fraud continues to be a major threat to financial institutions across the world, causing colossal money losses and undermining public trust. Fraud prevention techniques, based on hard rules, have become ineffective due to evolving patterns of fraud in recent times. Against such a background, the present study probes into distinct methodologies that exploit emergent AI-driven techniques to further strengthen fraud detection. We would like to compare the performance of generative adversarial networks and graph neural networks with other popular techniques, like gradient boosting, random forests, and neural networks. To this end, we would recommend integrating all these state-of-the-art models into one robust, flexible, and smart system for real-time anomaly and fraud detection. To overcome the challenge, we designed synthetic data and then conducted pattern recognition and unsupervised and supervised learning analyses on the transaction data to identify which activities were fishy. With the use of actual financial statistics, we compare the performance of our model in accuracy, speed, and adaptability versus conventional models. The results of this study illustrate a strong signal and need to integrate state-of-the-art, AI-driven fraud detection solutions into frameworks that are highly relevant to the financial domain. It alerts one to the great urgency that banks and related financial institutions must rapidly implement these most advanced technologies to continue to have a high level of security.

Keywords: AI-driven fraud detection, financial security, machine learning, anomaly detection, real-time fraud detection

Procedia PDF Downloads 42
15020 Modeling Biomass and Biodiversity across Environmental and Management Gradients in Temperate Grasslands with Deep Learning and Sentinel-1 and -2

Authors: Javier Muro, Anja Linstadter, Florian Manner, Lisa Schwarz, Stephan Wollauer, Paul Magdon, Gohar Ghazaryan, Olena Dubovyk

Abstract:

Monitoring the trade-off between biomass production and biodiversity in grasslands is critical to evaluate the effects of management practices across environmental gradients. New generations of remote sensing sensors and machine learning approaches can model grasslands’ characteristics with varying accuracies. However, studies often fail to cover a sufficiently broad range of environmental conditions, and evidence suggests that prediction models might be case specific. In this study, biomass production and biodiversity indices (species richness and Fishers’ α) are modeled in 150 grassland plots for three sites across Germany. These sites represent a North-South gradient and are characterized by distinct soil types, topographic properties, climatic conditions, and management intensities. Predictors used are derived from Sentinel-1 & 2 and a set of topoedaphic variables. The transferability of the models is tested by training and validating at different sites. The performance of feed-forward deep neural networks (DNN) is compared to a random forest algorithm. While biomass predictions across gradients and sites were acceptable (r2 0.5), predictions of biodiversity indices were poor (r2 0.14). DNN showed higher generalization capacity than random forest when predicting biomass across gradients and sites (relative root mean squared error of 0.5 for DNN vs. 0.85 for random forest). DNN also achieved high performance when using the Sentinel-2 surface reflectance data rather than different combinations of spectral indices, Sentinel-1 data, or topoedaphic variables, simplifying dimensionality. This study demonstrates the necessity of training biomass and biodiversity models using a broad range of environmental conditions and ensuring spatial independence to have realistic and transferable models where plot level information can be upscaled to landscape scale.

Keywords: ecosystem services, grassland management, machine learning, remote sensing

Procedia PDF Downloads 218
15019 Disaster Probability Analysis of Banghabandhu Multipurpose Bridge for Train Accidents and Its Socio-Economic Impact on Bangladesh

Authors: Shahab Uddin, Kazi M. Uddin, Hamamah Sadiqa

Abstract:

The paper deals with the Banghabandhu Multipurpose Bridge (BMB), the 11th longest bridge in the world was constructed in 1998 aimed at contributing to promote economic development in Bangladesh. In recent years, however, the high incidence of traffic accidents and injuries at the bridge sites looms as a great safety concern. Investigation into the derailment of nine bogies out of thirteen of Dinajpur-bound intercity train ‘Drutajan Express ’were derailed and inclined on the Banghabandhu Multipurpose Bridge on 28 April 2014. The train accident in Bridge will be deep concern for both structural safety of bridge and people than other vehicles accident. In this study we analyzed the disaster probability of the Banghabandhu Multipurpose Bridge for accidents by checking the fitness of Bridge structure. We found that train accident impact is more risky than other vehicles accidents. We also found that socio-economic impact on Bangladesh will be deep concerned.

Keywords: train accident, derailment, disaster, socio-economic

Procedia PDF Downloads 302
15018 The Impact of Treatment of Latent Tuberculosis on the Incidence: The Case of Algeria

Authors: Schehrazad Selmane

Abstract:

We present a deterministic model which describes the dynamics of tuberculosis in Algerian population where the vaccination program with BCG is in place since 1969 and where the WHO recommendations regarding the DOTS (directly observed treatment, short course) strategy are in application. The impact of an intervention program, targeting recently infected people among all close contacts of active cases and their treatment to prevent endogenous reactivation, on the incidence of tuberculosis, is investigated. We showed that a widespread treatment of latently infected individuals for some years is recommended to shift from higher to lower equilibrium state and thereafter relaxation is recommended.

Keywords: deterministic model, reproduction number, stability, tuberculosis

Procedia PDF Downloads 328
15017 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 309
15016 Anti-Inflammatory, Analgesic and Antipyretic Activity of Terminalia arjuna Roxb. Extract in Animal Models

Authors: Linda Chularojmontri, Seewaboon Sireeratawong, Suvara Wattanapitayakul

Abstract:

Terminalia arjuna Roxb. (family Combretaceae) is commonly known as ‘Sa maw thet’ in Thai. The fruit is used in traditional medicine as natural mild laxatives, carminative and expectorant. Aim of the study: This research aims to study the anti-inflammatory, analgesic and antipyretic activities of Terminalia arjuna extract by using animal models in comparison to the reference drugs. Materials and Methods: The anti-inflammatory study was conducted by two experimental animal models namely ethyl phenylpropionate (EPP)-induced ear edema and carrageenan-induced paw edema. The study of analgesic activity used two methods of pain induction including acetic acid and heat-induced pain. In addition, the antipyretic activity study was performed by induced hyperthermia with yeast. Results: The results showed that the oral administration of Terminalia arjuna extract possessed acute anti-inflammatory effect in carrageenan-induced paw edema. Terminalia arjuna extract showed the analgesic activity in acetic acid-induced writhing response and heat-induced pain. This indicates its peripheral effect by inhibiting the biosynthesis and/or release of some pain mediators and some mechanism through Central nervous system. Moreover, Terminalia arjuna extract at the dose of 1000 and 1500 mg/kg body weight showed the antipyretic activity, which might be because of the inhibition of prostaglandins. Conclusion: The findings of this study indicated that the Terminalia arjuna extract possesses the anti-inflammatory, analgesic and antipyretic activities in animals.

Keywords: analgesic activity, anti-inflammatory activity, antipyretic activity, Terminalia arjuna extract

Procedia PDF Downloads 264
15015 Utilizing Federated Learning for Accurate Prediction of COVID-19 from CT Scan Images

Authors: Jinil Patel, Sarthak Patel, Sarthak Thakkar, Deepti Saraswat

Abstract:

Recently, the COVID-19 outbreak has spread across the world, leading the World Health Organization to classify it as a global pandemic. To save the patient’s life, the COVID-19 symptoms have to be identified. But using an AI (Artificial Intelligence) model to identify COVID-19 symptoms within the allotted time was challenging. The RT-PCR test was found to be inadequate in determining the COVID status of a patient. To determine if the patient has COVID-19 or not, a Computed Tomography Scan (CT scan) of patient is a better alternative. It will be challenging to compile and store all the data from various hospitals on the server, though. Federated learning, therefore, aids in resolving this problem. Certain deep learning models help to classify Covid-19. This paper will have detailed work of certain deep learning models like VGG19, ResNet50, MobileNEtv2, and Deep Learning Aggregation (DLA) along with maintaining privacy with encryption.

Keywords: federated learning, COVID-19, CT-scan, homomorphic encryption, ResNet50, VGG-19, MobileNetv2, DLA

Procedia PDF Downloads 73
15014 Impact of Unconditional Cash Transfer Scheme on the Food Security Status of the Elderly in Ekiti State, Nigeria

Authors: R. O. Babatunde, O. M. Igbalajobi, F. Matambalya

Abstract:

Moderate economic growth in developing and emerging countries has led to improvement in the food consumption and nutrition situation in the last two decades. Nevertheless, about 870 million people, with a quarter of them from Sub-Saharan Africa, are still suffering from hunger worldwide. As part of measures to reduce the widespread poverty and hunger, cash transfer programmes are now being implemented in many countries of the world. While nationwide cash transfer schemes are few in Sub-Saharan Africa generally, the available ones are more concentrated in East and Southern Africa. Much of the available literature on social protection had focused on the poverty impact of cash transfer schemes at the household level, with the larger proportion originating from Latin America. On the contrary, much less empirical studies have been conducted on the poverty impact of cash transfer in Sub-Saharan Africa, let alone on the food security and nutrition impact. To fill this gap in knowledge, this paper examines the impact of cash transfer on food security in Nigeria. As a case study, the paper analysed the Ekiti State Cash Transfer Scheme (ECTS). ECTS is an unconditional transfer scheme which was established in 2011 to directly provide cash transfer to elderly persons aged 65 years and above in Ekiti State of Nigeria. Using survey data collected in 2013, we analysed the impact of the scheme on food availability and dietary diversity of the beneficiary households. Descriptive and Propensity Score Matching (PSM) techniques were used to estimate the Average Treatment Effect (ATE) and Average Treatment Effect on the Treated (ATT) among the beneficiary and control groups. Thereafter, a model to test for the impact of participation in the cash transfer scheme on calorie availability and dietary diversity was estimated. The results indicate that while households in the sample are clearly vulnerable, there were statistically significant differences between the beneficiary and control groups. For instance, monthly expenditure, calorie availability and dietary diversity were significantly larger among the beneficiary and consequently, the prevalence and depth of hunger were lower in the group. Econometric results indicate that the cash transfer has a positive and significant effect on food availability and dietary diversity in the households. Expanding the coverage of the present scheme to cover all eligible households in the country and incorporating cash transfer into a comprehensive hunger reduction policy will make it to have a greater impact at improving food security among the most vulnerable households in the country.

Keywords: calorie availability, cash transfers, dietary diversity, propensity score matching

Procedia PDF Downloads 384
15013 Optimizing Logistics for Courier Organizations with Considerations of Congestions and Pickups: A Courier Delivery System in Amman as Case Study

Authors: Nader A. Al Theeb, Zaid Abu Manneh, Ibrahim Al-Qadi

Abstract:

Traveling salesman problem (TSP) is a combinatorial integer optimization problem that asks "What is the optimal route for a vehicle to traverse in order to deliver requests to a given set of customers?”. It is widely used by the package carrier companies’ distribution centers. The main goal of applying the TSP in courier organizations is to minimize the time that it takes for the courier in each trip to deliver or pick up the shipments during a day. In this article, an optimization model is constructed to create a new TSP variant to optimize the routing in a courier organization with a consideration of congestion in Amman, the capital of Jordan. Real data were collected by different methods and analyzed. Then, concert technology - CPLEX was used to solve the proposed model for some random generated data instances and for the real collected data. At the end, results have shown a great improvement in time compared with the current trip times, and an economic study was conducted afterwards to figure out the impact of using such models.

Keywords: travel salesman problem, congestions, pick-up, integer programming, package carriers, service engineering

Procedia PDF Downloads 429
15012 Anti-Corruption in Adverse Contexts: A Strategic Approach

Authors: Mushtaq H. Khan, Antonio Andreoni, Pallavi Roy

Abstract:

Developing countries are characterized by political settlements where formal rules are generally weakly enforced and widely violated. Conventional anti-corruption strategies that focus on improving the general enforcement of a rule of law and raising the costs of corruption facing individual public officials have typically delivered poor results in these contexts. Our alternative approach is to identify anti-corruption strategies that have a high impact and that are feasible to implement in these contexts. Our alternative approach identifies anti-corruption strategies from the bottom up. This involves identifying the characteristics of the corruption constraining particular development outcomes. By drawing on theories of rents and rent seeking, and theories of political settlements, we can assess the developmental impact of particular anti-corruption strategies and the feasibility of implementing these strategies. We argue that feasible anti-corruption in these contexts cannot be solely based on conventional anti-corruption strategies. In societies that have widespread rule violations, high-impact anti-corruption is only likely to be feasible if the overall strategy succeeds in aligning the interests and capabilities of powerful organizations at the sectoral level to support the enforcement of particular sets of rules. We examine four related strategies for changing these incentives and capabilities of critical stakeholders at the local or sectoral level, and we argue that this can provide a framework for organizing research on the impact and feasibility of anti-corruption activities in different priority areas in particular countries.

Keywords: anti-corruption, development, political settlements analysis, rule of law

Procedia PDF Downloads 419
15011 Generation of High-Quality Synthetic CT Images from Cone Beam CT Images Using A.I. Based Generative Networks

Authors: Heeba A. Gurku

Abstract:

Introduction: Cone Beam CT(CBCT) images play an integral part in proper patient positioning in cancer patients undergoing radiation therapy treatment. But these images are low in quality. The purpose of this study is to generate high-quality synthetic CT images from CBCT using generative models. Material and Methods: This study utilized two datasets from The Cancer Imaging Archive (TCIA) 1) Lung cancer dataset of 20 patients (with full view CBCT images) and 2) Pancreatic cancer dataset of 40 patients (only 27 patients having limited view images were included in the study). Cycle Generative Adversarial Networks (GAN) and its variant Attention Guided Generative Adversarial Networks (AGGAN) models were used to generate the synthetic CTs. Models were evaluated by visual evaluation and on four metrics, Structural Similarity Index Measure (SSIM), Peak Signal Noise Ratio (PSNR) Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), to compare the synthetic CT and original CT images. Results: For pancreatic dataset with limited view CBCT images, our study showed that in Cycle GAN model, MAE, RMSE, PSNR improved from 12.57to 8.49, 20.94 to 15.29 and 21.85 to 24.63, respectively but structural similarity only marginally increased from 0.78 to 0.79. Similar, results were achieved with AGGAN with no improvement over Cycle GAN. However, for lung dataset with full view CBCT images Cycle GAN was able to reduce MAE significantly from 89.44 to 15.11 and AGGAN was able to reduce it to 19.77. Similarly, RMSE was also decreased from 92.68 to 23.50 in Cycle GAN and to 29.02 in AGGAN. SSIM and PSNR also improved significantly from 0.17 to 0.59 and from 8.81 to 21.06 in Cycle GAN respectively while in AGGAN SSIM increased to 0.52 and PSNR increased to 19.31. In both datasets, GAN models were able to reduce artifacts, reduce noise, have better resolution, and better contrast enhancement. Conclusion and Recommendation: Both Cycle GAN and AGGAN were significantly able to reduce MAE, RMSE and PSNR in both datasets. However, full view lung dataset showed more improvement in SSIM and image quality than limited view pancreatic dataset.

Keywords: CT images, CBCT images, cycle GAN, AGGAN

Procedia PDF Downloads 83
15010 Statistical Models and Time Series Forecasting on Crime Data in Nepal

Authors: Dila Ram Bhandari

Abstract:

Throughout the 20th century, new governments were created where identities such as ethnic, religious, linguistic, caste, communal, tribal, and others played a part in the development of constitutions and the legal system of victim and criminal justice. Acute issues with extremism, poverty, environmental degradation, cybercrimes, human rights violations, crime against, and victimization of both individuals and groups have recently plagued South Asian nations. Everyday massive number of crimes are steadfast, these frequent crimes have made the lives of common citizens restless. Crimes are one of the major threats to society and also for civilization. Crime is a bone of contention that can create a societal disturbance. The old-style crime solving practices are unable to live up to the requirement of existing crime situations. Crime analysis is one of the most important activities of the majority of intelligent and law enforcement organizations all over the world. The South Asia region lacks such a regional coordination mechanism, unlike central Asia of Asia Pacific regions, to facilitate criminal intelligence sharing and operational coordination related to organized crime, including illicit drug trafficking and money laundering. There have been numerous conversations in recent years about using data mining technology to combat crime and terrorism. The Data Detective program from Sentient as a software company, uses data mining techniques to support the police (Sentient, 2017). The goals of this internship are to test out several predictive model solutions and choose the most effective and promising one. First, extensive literature reviews on data mining, crime analysis, and crime data mining were conducted. Sentient offered a 7-year archive of crime statistics that were daily aggregated to produce a univariate dataset. Moreover, a daily incidence type aggregation was performed to produce a multivariate dataset. Each solution's forecast period lasted seven days. Statistical models and neural network models were the two main groups into which the experiments were split. For the crime data, neural networks fared better than statistical models. This study gives a general review of the applied statistics and neural network models. A detailed image of each model's performance on the available data and generalizability is provided by a comparative analysis of all the models on a comparable dataset. Obviously, the studies demonstrated that, in comparison to other models, Gated Recurrent Units (GRU) produced greater prediction. The crime records of 2005-2019 which was collected from Nepal Police headquarter and analysed by R programming. In conclusion, gated recurrent unit implementation could give benefit to police in predicting crime. Hence, time series analysis using GRU could be a prospective additional feature in Data Detective.

Keywords: time series analysis, forecasting, ARIMA, machine learning

Procedia PDF Downloads 164
15009 The Impact of Social Protection Intervention on Alleviating Social Vulnerability (Evidence from Ethiopian Rural Households)

Authors: Tewelde Gebresslase Haile, S. P. Singh

Abstract:

To bridge the existing knowledge gap on public intervention implementations, this study estimates the impact of social protection intervention (SPI) on alleviating social vulnerability. Following a multi-stage sampling, primary information was gathered through a self-administered questionnaire, FGD, and interviews from the target households located at four systematically selected districts of Tigrai, Ethiopia. Factor analysis and Propensity Score Matching are applied to construct Social Vulnerability Index (SVI) and measuring the counterfactual impact of selected intervention. As a multidimensional challenge, social vulnerability is found as an important concept used to guide policy evaluation. Accessibility of basic services of Social Affairs, Agriculture, Health and Education sectors, and Food Security Program are commonly used as SPIs. Finally, this study discovers that the households who had access to SPI have scored 9.65% lower SVI than in the absence of the intervention. Finally, this study suggests the provision of integrated, proactive, productive, and evidence-based SPIs to alleviate social vulnerability.

Keywords: social protection, livelihood assets, social vulnerability, public policy SVI

Procedia PDF Downloads 89
15008 The Impact of Social Enterprises on Women Empowerment in South Asia: A Systematic Review

Authors: Saba Aziz

Abstract:

Social enterprises are playing a growing role in transforming the lives of individuals and communities around the world, providing innovative solutions to critical social and environmental issues such as education, job creation, and health care. Women are increasingly utilising services of these enterprises to overcome socio-economic constraints and increase their access to business and market. This article systematically reviews the available literature on the role of social enterprises on women's empowerment in South Asia. Twelve key terms were specified and researched on five databases. Some of the literature was excluded based on the lack of evidence on the involvement of social enterprises. Remaining literature was rated according to the quality; due to methodological inconsistency, the findings are presented in a descriptive form. The relevant studies review the impact of social enterprises on women’s economic, social, relational, health, personal and political aspects of empowerment. In discussion, we outline areas for further research on social enterprises activity that impacts women’s overall empowerment specifically in South Asia.

Keywords: social enterprise, women empowerment, systematic review, well-being, social impact, micro finance, South Asia, Pakistan

Procedia PDF Downloads 172
15007 Focus-Latent Dirichlet Allocation for Aspect-Level Opinion Mining

Authors: Mohsen Farhadloo, Majid Farhadloo

Abstract:

Aspect-level opinion mining that aims at discovering aspects (aspect identification) and their corresponding ratings (sentiment identification) from customer reviews have increasingly attracted attention of researchers and practitioners as it provides valuable insights about products/services from customer's points of view. Instead of addressing aspect identification and sentiment identification in two separate steps, it is possible to simultaneously identify both aspects and sentiments. In recent years many graphical models based on Latent Dirichlet Allocation (LDA) have been proposed to solve both aspect and sentiment identifications in a single step. Although LDA models have been effective tools for the statistical analysis of document collections, they also have shortcomings in addressing some unique characteristics of opinion mining. Our goal in this paper is to address one of the limitations of topic models to date; that is, they fail to directly model the associations among topics. Indeed in many text corpora, it is natural to expect that subsets of the latent topics have higher probabilities. We propose a probabilistic graphical model called focus-LDA, to better capture the associations among topics when applied to aspect-level opinion mining. Our experiments on real-life data sets demonstrate the improved effectiveness of the focus-LDA model in terms of the accuracy of the predictive distributions over held out documents. Furthermore, we demonstrate qualitatively that the focus-LDA topic model provides a natural way of visualizing and exploring unstructured collection of textual data.

Keywords: aspect-level opinion mining, document modeling, Latent Dirichlet Allocation, LDA, sentiment analysis

Procedia PDF Downloads 94
15006 Predictive Analytics Algorithms: Mitigating Elementary School Drop Out Rates

Authors: Bongs Lainjo

Abstract:

Educational institutions and authorities that are mandated to run education systems in various countries need to implement a curriculum that considers the possibility and existence of elementary school dropouts. This research focuses on elementary school dropout rates and the ability to replicate various predictive models carried out globally on selected Elementary Schools. The study was carried out by comparing the classical case studies in Africa, North America, South America, Asia and Europe. Some of the reasons put forward for children dropping out include the notion of being successful in life without necessarily going through the education process. Such mentality is coupled with a tough curriculum that does not take care of all students. The system has completely led to poor school attendance - truancy which continuously leads to dropouts. In this study, the focus is on developing a model that can systematically be implemented by school administrations to prevent possible dropout scenarios. At the elementary level, especially the lower grades, a child's perception of education can be easily changed so that they focus on the better future that their parents desire. To deal effectively with the elementary school dropout problem, strategies that are put in place need to be studied and predictive models are installed in every educational system with a view to helping prevent an imminent school dropout just before it happens. In a competency-based curriculum that most advanced nations are trying to implement, the education systems have wholesome ideas of learning that reduce the rate of dropout.

Keywords: elementary school, predictive models, machine learning, risk factors, data mining, classifiers, dropout rates, education system, competency-based curriculum

Procedia PDF Downloads 175
15005 Prognostic Impact of Pre-transplant Ferritinemia: A Survival Analysis Among Allograft Patients

Authors: Mekni Sabrine, Nouira Mariem

Abstract:

Background and aim: Allogeneic hematopoietic stem cell transplantation is a curative treatment for several hematological diseases; however, it has a non-negligible morbidity and mortality depending on several prognostic factors, including pre-transplant hyperferritinemia. The aim of our study was to estimate the impact of hyperferritinemia on survivals and on the occurrence of post-transplant complications. Methods: It was a longitudinal study conducted over 8 years and including all patients who had a first allograft. The impact of pretransplant hyperferritinemia (ferritinemia ≥1500) on survivals was studied using the Kaplan Meier method and the COX model for uni- and multivariate analysis. The Khi-deux test and binary logistic regression were used to study the association between pretransplant ferritinemia and post-transplant complications. Results: One hundred forty patients were included with an average age of 26.6 years and a sex ratio (M/F)=1.4. Hyperferritinemia was found in 33% of patients. It had no significant impact on either overall survival (p=0.9) or event -free survival (p=0.6). In multivariate analysis, only the type of disease was independently associated with overall survival (p=0.04) and event-free survival (p=0.002). For post-allograft complications: The occurrence of early documented infections was independently associated with pretransplant hyperferritinemia (p=0.02) and the presence of acute graft versus host disease( GVHD) (p<10-3). The occurrence of acute GVHD was associated with early documented infection (p=0.002) and Cytomegalovirus reactivation (p<10-3). The occurrence of chronic GVHD was associated with the presence of Cytomegalovirus reactivation (p=0.006) and graft source (p=0.009). Conclusion: Our study showed the significant impact of pre-transplant hyperferritinemia on the occurrence of early infections but not on survivals. Early and more accurate assessment iron overload by other tests such as liver magnetic resonance imaging with initiation of chelating treatment could prevent the occurrence of such complications after transplantation.

Keywords: allogeneic, transplants, ferritin, survival

Procedia PDF Downloads 66
15004 Patient Care Needs Assessment: An Evidence-Based Process to Inform Quality Care and Decision Making

Authors: Wynne De Jong, Robert Miller, Ross Riggs

Abstract:

Beyond the number of nurses providing care for patients, having nurses with the right skills, experience and education is essential to ensure the best possible outcomes for patients. Research studies continue to link nurse staffing and skill mix with nurse-sensitive patient outcomes; numerous studies clearly show that superior patient outcomes are associated with higher levels of regulated staff. Due to the limited number of tools and processes available to assist nurse leaders with staffing models of care, nurse leaders are constantly faced with the ongoing challenge to ensure their staffing models of care best suit their patient population. In 2009, several hospitals in Ontario, Canada participated in a research study to develop and evaluate an RN/RPN utilization toolkit. The purpose of this study was to develop and evaluate a toolkit for Registered Nurses/Registered Practical Nurses Staff mix decision-making based on the College of Nurses of Ontario, Canada practice standards for the utilization of RNs and RPNs. This paper will highlight how an organization has further developed the Patient Care Needs Assessment (PCNA) questionnaire, a major component of the toolkit. Moreover, it will demonstrate how it has utilized the information from PCNA to clearly identify patient and family care needs, thus providing evidence-based results to assist leaders with matching the best staffing skill mix to their patients.

Keywords: nurse staffing models of care, skill mix, nursing health human resources, patient safety

Procedia PDF Downloads 315
15003 Spatio-Temporal Risk Analysis of Cancer to Assessed Environmental Exposures in Coimbatore, India

Authors: Janani Selvaraj, M. Prashanthi Devi, P. B. Harathi

Abstract:

Epidemiologic studies conducted over several decades have provided evidence to suggest that long-term exposure to elevated ambient levels of particulate air pollution is associated with increased mortality. Air quality risk management is significant in developing countries and it highlights the need to understand the role of ecologic covariates in the association between air pollution and mortality. Several new methods show promise in exploring the geographical distribution of disease and the identification of high risk areas using epidemiological maps. However, the addition of the temporal attribute would further give us an in depth idea of the disease burden with respect to forecasting measures. In recent years, new methods developed in the reanalysis were useful for exploring the spatial structure of the data and the impact of spatial autocorrelation on estimates of risk associated with exposure to air pollution. Based on this, our present study aims to explore the spatial and temporal distribution of the lung cancer cases in the Coimbatore district of Tamil Nadu in relation to air pollution risk areas. A spatio temporal moving average method was computed using the CrimeStat software and visualized in ArcGIS 10.1 to document the spatio temporal movement of the disease in the study region. The random walk analysis performed showed the progress of the peak cancer incidences in the intersection regions of the Coimbatore North and South taluks that include major commercial and residential regions like Gandhipuram, Peelamedu, Ganapathy, etc. Our study shows evidence that daily exposure to high air pollutant concentration zones may lead to the risk of lung cancer. The observations from the present study will be useful in delineating high risk zones of environmental exposure that contribute to the increase of cancer among daily commuters. Through our study we suggest that spatially resolved exposure models in relevant time frames will produce higher risks zones rather than solely on statistical theory about the impact of measurement error and the empirical findings.

Keywords: air pollution, cancer, spatio-temporal analysis, India

Procedia PDF Downloads 513
15002 Foreign Debt and Firm Performance: Evidence from French Non-Financial Firms

Authors: Salma Mefteh-Wali, Marie-Josephe Rigobert

Abstract:

We investigate the impact of foreign currency debt on firm performance for a sample of non-financial French firms studied over the period 2002 to 2012. As foreign currency debt is both a financing and hedging instrument against foreign exchange risk, we mobilize optimal hedging theory and capital structure theory. When we study the impact on firm value, our main results show that before and after the financial crisis of 2008, foreign debt had the same behavior as domestic debt. We find that during the crisis period, foreign debt positively affects firm value. Investors perceive foreign debt as a natural hedging instrument that is likely to reduce the costs of underinvestment, alleviate cash flow volatility, limit the costs of financial distress, and generate tax shield benefits. Also, our results show that foreign leverage negatively affects the firm performance proxied by ROA and ROE, during and after the financial crisis. However, this impact is positive in the pre-crisis period.

Keywords: foreign currency derivatives, foreign currency debt, foreign currency hedging, firm performance

Procedia PDF Downloads 312
15001 Impact Evaluation of Intellectual Capital on Business Performance Using Composite Ratios: Longitudinal Analysis in Latvia, Estonia and Lithuania

Authors: Nellija Titova

Abstract:

Latvia, Lithuania, and Estonia, as Baltic Countries, have gone throughout transformational changes since 90s leading to the high level of economic development. As countries departing Soviet Union with industrialization policy moved to service economies, the issues of intangibles, human capital, structural capital, and innovation capital have gained impetus. Following the growing demand of practitioners and later academia, intellectual capital as a discipline, which appeared in 90s, became fundamental nowadays. Aim of the paper is to analyze the Baltic companies entering stock markets at Nasdaq Baltic from the perspective of Intellectual Capital. Methodology of the research is based on a longitudinal analysis of the companies using composite ratios of Intellectual Capital and Business performance in the period 2012-2019. Data for 2020 as COVID year) were excluded from the analysis. Findings allow concluding there is a pattern of influence and companies clearly experience the systemic impact of IC on business performance, identifying also time effect investing in intangibles.

Keywords: intellectual capital, impact analysis, longitudinal effect, composite ratios

Procedia PDF Downloads 103
15000 Revisionism in Literature: Deconstructing Patriarchal Ideals in Margaret Atwood's The Penelopiad

Authors: Essam Abdelhamid Hegazy

Abstract:

This paper aims to read Margaret Atwood's The Penelopiad (2005) via a revisionist and deconstructive approach. This novel is a postmodernist exploration of the grand-narrative myth The Odyssey (800 BC) by Homer, who portrayed the heroic warrior and the faithful wife as the epitome of perfect male and female models _examples whom all must follow and mimic. In Atwood's narrative, the same two hero models are the two great tricksters who are willing to perform any sort of obnoxious act for achieving their goals. This research tries to examine how Atwood tried to synthesize the change in character’s narratives leading to the humanization of the perfect hero and the ideal wife. The researcher has used a multidisciplinary approach where the feminist, revisionist and deconstructive theories were implemented to identify and find out the new interpretations of the myths that center the experiences and perspectives of women. Research findings are that revisionist approach was applied through giving an opportunity to the victimized and the voiceless to speak out and retaliate against their prosecutions.

Keywords: margret atwood, patriarchal, penelopiad, revisionism

Procedia PDF Downloads 83
14999 Impact Force Difference on Natural Grass Versus Synthetic Turf Football Fields

Authors: Nathaniel C. Villanueva, Ian K. H. Chun, Alyssa S. Fujiwara, Emily R. Leibovitch, Brennan E. Yamamoto, Loren G. Yamamoto

Abstract:

Introduction: In previous studies of high school sports, over 15% of concussions were attributed to contact with the playing surface. While artificial turf fields are increasing in popularity due to lower maintenance costs, artificial turf has been associated with more ankle and knee injuries, with inconclusive data on concussions. In this study, natural grass and artificial football fields were compared in terms of deceleration on fall impact. Methods: Accelerometers were placed on the forehead, apex of the head, and right ear of a Century Body Opponent Bag (BOB) manikin. A Riddell HITS football helmet was secured onto the head of the manikin over the accelerometers. This manikin was dropped onto natural grass (n = 10) and artificial turf (n = 9) high school football fields. The manikin was dropped from a stationary position at a height of 60 cm onto its front, back, and left side. Each of these drops was conducted 10 times at the 40-yard line, 20-yard line, and endzone. The net deceleration on impact was calculated as a net vector from each of the three accelerometers’ x, y, and z vectors from the three different locations on the manikin’s head (9 vector measurements per drop). Results: Mean values for the multiple drops were calculated for each accelerometer and drop type for each field. All accelerometers in forward and backward falls and one accelerometer in side falls showed significantly greater impact force on synthetic turf compared to the natural grass surfaces. Conclusion: Impact force was higher on synthetic fields for all drop types for at least one of the accelerometer locations. These findings suggest that concussion risk might be higher for athletes playing on artificial turf fields.

Keywords: concussion, football, biomechanics, sports

Procedia PDF Downloads 158
14998 Reverse Supply Chain Analysis of Lithium-Ion Batteries Considering Economic and Environmental Aspects

Authors: Aravind G., Arshinder Kaur, Pushpavanam S.

Abstract:

There is a strong emphasis on shifting to electric vehicles (EVs) throughout the globe for reducing the impact on global warming following the Paris climate accord. Lithium-ion batteries (LIBs) are predominantly used in EVs, and these can be a significant threat to the environment if not disposed of safely. Lithium is also a valuable resource not widely available. There are several research groups working on developing an efficient recycling process for LIBs. Two routes - pyrometallurgical and hydrometallurgical processes have been proposed for recycling LIBs. In this paper, we focus on life cycle assessment (LCA) as a tool to quantify the environmental impact of these recycling processes. We have defined the boundary of the LCA to include only the recycling phase of the end-of-life (EoL) of the battery life cycle. The analysis is done assuming ideal conditions for the hydrometallurgical and a combined hydrometallurgical and pyrometallurgical process in the inventory analysis. CML-IA method is used for quantifying the impact assessment across eleven indicators. Our results show that cathode, anode, and foil contribute significantly to the impact. The environmental impacts of both hydrometallurgical and combined recycling processes are similar across all the indicators. Further, the results of LCA are used in developing a multi-objective optimization model for the design of lithium-ion battery recycling network. Greenhouse gas emissions and cost are the two parameters minimized for the optimization study.

Keywords: life cycle assessment, lithium-ion battery recycling, multi-objective optimization, network design, reverse supply chain

Procedia PDF Downloads 157
14997 Identification and Prioritisation of Students Requiring Literacy Intervention and Subsequent Communication with Key Stakeholders

Authors: Emilie Zimet

Abstract:

During networking and NCCD moderation meetings, best practices for identifying students who require Literacy Intervention are often discussed. Once these students are identified, consideration is given to the most effective process for prioritising those who have the greatest need for Literacy Support and the allocation of resources, tracking of intervention effectiveness and communicating with teachers/external providers/parents. Through a workshop, the group will investigate best practices to identify students who require literacy support and strategies to communicate and track their progress. In groups, participants will examine what they do in their settings and then compare with other models, including the researcher’s model, to decide the most effective path to identification and communication. Participants will complete a worksheet at the beginning of the session to deeply consider their current approaches. The participants will be asked to critically analyse their own identification processes for Literacy Intervention, ensuring students are not overlooked if they fall into the borderline category. A cut-off for students to access intervention will be considered so as not to place strain on already stretched resources along with the most effective allocation of resources. Furthermore, communicating learning needs and differentiation strategies to staff is paramount to the success of an intervention, and participants will look at the frequency of communication to share such strategies and updates. At the end of the session, the group will look at creating or evolving models that allow for best practices for the identification and communication of Literacy Interventions. The proposed outcome for this research is to develop a model of identification of students requiring Literacy Intervention that incorporates the allocation of resources and communication to key stakeholders. This will be done by pooling information and discussing a variety of models used in the participant's school settings.

Keywords: identification, student selection, communication, special education, school policy, planning for intervention

Procedia PDF Downloads 47
14996 Simulation on Fuel Metering Unit Used for TurboShaft Engine Model

Authors: Bin Wang, Hengyu Ji, Zhifeng Ye

Abstract:

Fuel Metering Unit (FMU) in fuel system of an aeroengine sometimes has direct influence on the engine performance, which is neglected for the sake of easy access to mathematical model of the engine in most cases. In order to verify the influence of FMU on an engine model, this paper presents a co-simulation of a stepping motor driven FMU (digital FMU) in a turboshaft aeroengine, using AMESim and MATLAB to obtain the steady and dynamic characteristics of the FMU. For this method, mechanical and hydraulic section of the unit is modeled through AMESim, while the stepping motor is mathematically modeled through MATLAB/Simulink. Combining these two sub-models yields an AMESim/MATLAB co-model of the FMU. A simplified component level model for the turboshaft engine is established and connected with the FMU model. Simulation results on the full model show that the engine model considering FMU characteristics describes the engine more precisely especially in its transition state. An FMU dynamics will cut down the rotation speed of the high pressure shaft and the inlet pressure of the combustor during the step response. The work in this paper reveals the impact of FMU on engine operation characteristics and provides a reference to an engine model for ground tests.

Keywords: fuel metering unit, stepping motor, AMESim/Matlab, full digital simulation

Procedia PDF Downloads 249
14995 The Impact of Citizens’ Involvement on Their Perception of the Brand’s Image: The Case of the City of Casablanca

Authors: Abderrahmane Mousstain, Ez-Zohra Belkadi

Abstract:

Many authors support more participatory and inclusive place branding practices that empower stakeholders’ participation. According to this participatory point of view, the effectiveness of place branding strategies cannot be achieved without citizen involvement. However, the role of all residents as key participants in the city branding process has not been widely discussed. The aim of this paper was to determine how citizens’ involvement impacts their perceptions of the city's image, using a multivariate model. To test our hypotheses hypothetical-deductive reasoning by the quantitative method was chosen. Our investigation is based on data collected through a survey among 200 citizens of Casablanca. Results show that the more citizens are involved, the more they tend to evaluate the image of the brand positively. Additionally, the degree of involvement seems to impact satisfaction and a sense of belonging. As well, the more citizen develops a sense of belonging to the city, the more favorable his or her perception of the brand image is. Ultimately, the role of citizens shouldn’t be limited to reception. They are also Co-creators of the brand, who ensure the correlation of the brand with authentic place roots.

Keywords: citybranding, sense of belonging, satisfaction, impact, brand’s image

Procedia PDF Downloads 176
14994 Special Case of Trip Distribution Model and Its Use for Estimation of Detailed Transport Demand in the Czech Republic

Authors: Jiri Dufek

Abstract:

The national model of the Czech Republic has been modified in a detailed way to get detailed travel demand in the municipality level (cities, villages over 300 inhabitants). As a technique for this detailed modelling, three-dimensional procedure for calibrating gravity models, was used. Besides of zone production and attraction, which is usual in gravity models, the next additional parameter for trip distribution was introduced. Usually it is called by “third dimension”. In the model, this parameter is a demand between regions. The distribution procedure involved calculation of appropriate skim matrices and its multiplication by three coefficients obtained by iterative balancing of production, attraction and third dimension. This type of trip distribution was processed in R-project and the results were used in the Czech Republic transport model, created in PTV Vision. This process generated more precise results in local level od the model (towns, villages)

Keywords: trip distribution, three dimension, transport model, municipalities

Procedia PDF Downloads 131