Search results for: marketing intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2541

Search results for: marketing intelligence

711 Design of a Cooperative Neural Network, Particle Swarm Optimization (PSO) and Fuzzy Based Tracking Control for a Tilt Rotor Unmanned Aerial Vehicle

Authors: Mostafa Mjahed

Abstract:

Tilt Rotor UAVs (Unmanned Aerial Vehicles) are naturally unstable and difficult to maneuver. The purpose of this paper is to design controllers for the stabilization and trajectory tracking of this type of UAV. To this end, artificial intelligence methods have been exploited. First, the dynamics of this UAV was modeled using the Lagrange-Euler method. The conventional method based on Proportional, Integral and Derivative (PID) control was applied by decoupling the different flight modes. To improve stability and trajectory tracking of the Tilt Rotor, the fuzzy approach and the technique of multilayer neural networks (NN) has been used. Thus, Fuzzy Proportional Integral and Derivative (FPID) and Neural Network-based Proportional Integral and Derivative controllers (NNPID) have been developed. The meta-heuristic approach based on Particle Swarm Optimization (PSO) method allowed adjusting the setting parameters of NNPID controller, giving us an improved NNPID-PSO controller. Simulation results under the Matlab environment show the efficiency of the approaches adopted. Besides, the Tilt Rotor UAV has become stable and follows different types of trajectories with acceptable precision. The Fuzzy, NN and NN-PSO-based approaches demonstrated their robustness because the presence of the disturbances did not alter the stability or the trajectory tracking of the Tilt Rotor UAV.

Keywords: neural network, fuzzy logic, PSO, PID, trajectory tracking, tilt-rotor UAV

Procedia PDF Downloads 120
710 A Novel Approach to Design and Implement Context Aware Mobile Phone

Authors: G. S. Thyagaraju, U. P. Kulkarni

Abstract:

Context-aware computing refers to a general class of computing systems that can sense their physical environment, and adapt their behaviour accordingly. Context aware computing makes systems aware of situations of interest, enhances services to users, automates systems and personalizes applications. Context-aware services have been introduced into mobile devices, such as PDA and mobile phones. In this paper we are presenting a novel approaches used to realize the context aware mobile. The context aware mobile phone (CAMP) proposed in this paper senses the users situation automatically and provides user context required services. The proposed system is developed by using artificial intelligence techniques like Bayesian Network, fuzzy logic and rough sets theory based decision table. Bayesian Network to classify the incoming call (high priority call, low priority call and unknown calls), fuzzy linguistic variables and membership degrees to define the context situations, the decision table based rules for service recommendation. To exemplify and demonstrate the effectiveness of the proposed methods, the context aware mobile phone is tested for college campus scenario including different locations like library, class room, meeting room, administrative building and college canteen.

Keywords: context aware mobile, fuzzy logic, decision table, Bayesian probability

Procedia PDF Downloads 365
709 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 130
708 Optimizing AI Voice for Adolescent Health Education: Preferences and Trustworthiness Across Teens and Parent

Authors: Yu-Lin Chen, Kimberly Koester, Marissa Raymond-Flesh, Anika Thapar, Jay Thapar

Abstract:

Purpose: Effectively communicating adolescent health topics to teens and their parents is crucial. This study emphasizes critically evaluating the optimal use of artificial intelligence tools (AI), which are increasingly prevalent in disseminating health information. By fostering a deeper understanding of AI voice preference in the context of health, the research aspires to have a ripple effect, enhancing the collective health literacy and decision-making capabilities of both teenagers and their parents. This study explores AI voices' potential within health learning modules for annual well-child visits. We aim to identify preferred voice characteristics and understand factors influencing perceived trustworthiness, ultimately aiming to improve health literacy and decision-making in both demographics. Methods: A cross-sectional study assessed preferences and trust perceptions of AI voices in learning modules among teens (11-18) and their parents/guardians in Northern California. The study involved the development of four distinct learning modules covering various adolescent health-related topics, including general communication, sexual and reproductive health communication, parental monitoring, and well-child check-ups. Participants were asked to evaluate eight AI voices across the modules, considering a set of six factors such as intelligibility, naturalness, prosody, social impression, trustworthiness, and overall appeal, using Likert scales ranging from 1 to 10 (the higher, the better). They were also asked to select their preferred choice of voice for each module. Descriptive statistics summarized participant demographics. Chi-square/t-tests explored differences in voice preferences between groups. Regression models identified factors impacting the perceived trustworthiness of the top-selected voice per module. Results: Data from 104 participants (teen=63; adult guardian = 41) were included in the analysis. The mean age is 14.9 for teens (54% male) and 41.9 for the parent/guardian (12% male). At the same time, similar voice quality ratings were observed across groups, and preferences varied by topic. For instance, in general communication, teens leaned towards young female voices, while parents preferred mature female tones. Interestingly, this trend reversed for parental monitoring, with teens favoring mature male voices and parents opting for mature female ones. Both groups, however, converged on mature female voices for sexual and reproductive health topics. Beyond preferences, the study delved into factors influencing perceived trustworthiness. Interestingly, social impression and sound appeal emerged as the most significant contributors across all modules, jointly explaining 71-75% of the variance in trustworthiness ratings. Conclusion: The study emphasizes the importance of catering AI voices to specific audiences and topics. Social impression and sound appeal emerged as critical factors influencing perceived trustworthiness across all modules. These findings highlight the need to tailor AI voices by age and the specific health information being delivered. Ensuring AI voices resonate with both teens and their parents can foster their engagement and trust, ultimately leading to improved health literacy and decision-making for both groups. Limitations and future research: This study lays the groundwork for understanding AI voice preferences for teenagers and their parents in healthcare settings. However, limitations exist. The sample represents a specific geographic location, and cultural variations might influence preferences. Additionally, the modules focused on topics related to well-child visits, and preferences might differ for more sensitive health topics. Future research should explore these limitations and investigate the long-term impact of AI voice on user engagement, health outcomes, and health behaviors.

Keywords: artificial intelligence, trustworthiness, voice, adolescent

Procedia PDF Downloads 55
707 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127
706 Measuring Corporate Brand Loyalties in Business Markets: A Case for Caution

Authors: Niklas Bondesson

Abstract:

Purpose: This paper attempts to examine how different facets of attitudinal brand loyalty are determined by different brand image elements in business markets. Design/Methodology/Approach: Statistical analysis is employed to data from a web survey, covering 226 professional packaging buyers in eight countries. Findings: The results reveal that different brand loyalty facets have different antecedents. Affective brand loyalties (or loyalty 'feelings') are mainly driven by customer associations to service relationships, whereas customers’ loyalty intentions (to purchase and recommend a brand) are triggered by associations to the general reputation of the company. The findings also indicate that willingness to pay a price premium is a distinct form of loyalty, with unique determinants. Research implications: Theoretically, the paper suggests that corporate B2B brand loyalty needs to be conceptualised with more refinement than has been done in extant B2B branding work. Methodologically, the paper highlights that single-item approaches can be fruitful when measuring B2B brand loyalty, and that multi-item scales can conceal important nuances in terms of understanding why customers are loyal. Practical implications: The idea of a loyalty 'silver metric' is an attractive idea, but this study indicates that firms who rely too much on one single type of brand loyalty risk to miss important building blocks. Originality/Value/Contribution: The major contribution is a more multi-faceted conceptualisation, and measurement, of corporate B2B brand loyalty and its brand image determinants than extant work has provided.

Keywords: brand equity, business-to-business branding, industrial marketing, buying behaviour

Procedia PDF Downloads 414
705 Functionality of Promotional and Advertising Texts: Pragmatic Implications for English-Arabic Translation

Authors: Jamal Gaber Abdalla

Abstract:

In business promotion and advertising, language is used intentionally to create a powerful influence over people and their behavior. In commercial and marketing activities, the choice of language to convey specific messages with the intention of influencing people is pragmatically important. Design and visual content in promotional and advertising texts also have a great persuasive impact on consumers. It is the functional combination of design, language and visual content that helps people to identify a product or service and remember it. Translating promotional and advertising texts between structurally and culturally different languages, such as English and Arabic, usually involves pragmatic/functional shifts that decide the quality of translation. This study explores some of these shifts in translating promotional and advertising texts between English and Arabic and their implications for translation quality. The study is based on a contrastive analysis of data collected from real samples of English-Arabic translations of promotional and advertising texts. The samples cover different promotional and advertising text types and different business domains. The aim is to identify the most recurrent translation shifts and most used translation approaches/strategies that achieve quality in view of the functional nature of promotional and advertising texts and target language culture conventions. The study shows that linguistic shifts and visual shifts are recurrent in English-Arabic translations of promotional and advertising texts. The study also shows that the most commonly used translation approaches/strategies are functional translation, domestication, communicative translation.

Keywords: advertising, Arabic, English, functional translation, promotion

Procedia PDF Downloads 361
704 Football Smart Coach: Analyzing Corner Kicks Using Computer Vision

Authors: Arth Bohra, Marwa Mahmoud

Abstract:

In this paper, we utilize computer vision to develop a tool for youth coaches to formulate set-piece tactics for their players. We used the Soccernet database to extract the ResNet features and camera calibration data for over 3000 corner kick across 500 professional matches in the top 6 European leagues (English Premier League, UEFA Champions League, Ligue 1, La Liga, Serie A, Bundesliga). Leveraging the provided homography matrix, we construct a feature vector representing the formation of players on these corner kicks. Additionally, labeling the videos manually, we obtained the pass-trajectory of each of the 3000+ corner kicks by segmenting the field into four zones. Next, after determining the localization of the players and ball, we used event data to give the corner kicks a rating on a 1-4 scale. By employing a Convolutional Neural Network, our model managed to predict the success of a corner kick given the formations of players. This suggests that with the right formations, teams can optimize the way they approach corner kicks. By understanding this, we can help coaches formulate set-piece tactics for their own teams in order to maximize the success of their play. The proposed model can be easily extended; our method could be applied to even more game situations, from free kicks to counterattacks. This research project also gives insight into the myriad of possibilities that artificial intelligence possesses in transforming the domain of sports.

Keywords: soccer, corner kicks, AI, computer vision

Procedia PDF Downloads 173
703 Smart Growth Through Innovation Programs: Challenges and Opportunities

Authors: Hanadi Mubarak Al-Mubaraki, Michael Busler

Abstract:

Innovation is the powerful tools for economic growth and diversification, which lead to smart growth. The objective of this paper is to identify the opportunities and challenges of innovation programs discuss and analyse the implementation of the innovation program in the United States (US) and United Kingdom (UK). To achieve the objectives, the research used a mixed methods approach, quantitative (survey), and qualitative (multi-case study) to examine innovation best practices in developed countries. In addition, the selection of 4 interview case studies of innovation organisations based on the best practices and successful implementation worldwide. The research findings indicated the two challenges such as 1) innovation required business ecosystem support to deliver innovation outcomes such as new product and new services, and 2) foster the climate of innovation &entrepreneurship for economic growth and diversification. Although the two opportunities such as 1) sustainability of the innovation events which lead smart growth, and 2) establish the for fostering the artificial intelligence hub entrepreneurship networking at multi-levels. The research adds value to academicians and practitioners such as government, funded organizations, institutions, and policymakers. The authors aim to conduct future research a comparative study of innovation case studies between developed and developing countries for policy implications worldwide. The Originality of This study contributes to current literature about the innovation best practice in developed and developing countries.

Keywords: economic development, technology transfer, entrepreneurship, innovation program

Procedia PDF Downloads 145
702 The Impact of Online Advertising on Generation Y’s Purchase Decision in Malaysia

Authors: Mui Joo Tang, Eang Teng Chan

Abstract:

Advertising is commonly used to foster sales and reputation of an institution. It is at first the growth of print advertising that has increased the population and number of periodicals of newspaper and its circulation. The rise of Internet and online media has somehow blurred the role of media and advertising though the intention is still to reach out to audience and to increase sales. The relationship between advertising and audience on a product purchase through persuasion has been developing from print media to online media. From the changing media environment and audience, it is the concern of this research to study the impact of online advertising to such a relationship cycle. The content of online advertisements is much of text, multimedia, photo, audio and video. The messages of such content format may indeed bring impacts to its audience and its credibility. This study is therefore reflecting the effectiveness of online advertisement and its influences on generation Y in their purchasing behavior. This study uses Media Dependency Theory to analyze the relationship between the impact of online advertisement and media usage pattern of generation Y. Hierarchy of Effectiveness Model is used as a marketing communication model to study the effectiveness of advertising and further to determine the impact of online advertisement on generation Y in their purchasing decision making. This research uses online survey to reach out the sample of generation Y. The results have shown that online advertisements do not affect much on purchase decision making even though generation Y relies much on the media content including online advertisement for its information and believing in its credibility. There are few other external factors that may interrupt the effectiveness of online advertising. The very obvious influence of purchasing behavior is actually derived from the peers.

Keywords: generation Y, purchase decision, print media, online advertising, persuasion

Procedia PDF Downloads 527
701 Artificial Intelligence Approach to Water Treatment Processes: Case Study of Daspoort Treatment Plant, South Africa

Authors: Olumuyiwa Ojo, Masengo Ilunga

Abstract:

Artificial neural network (ANN) has broken the bounds of the convention programming, which is actually a function of garbage in garbage out by its ability to mimic the human brain. Its ability to adopt, adapt, adjust, evaluate, learn and recognize the relationship, behavior, and pattern of a series of data set administered to it, is tailored after the human reasoning and learning mechanism. Thus, the study aimed at modeling wastewater treatment process in order to accurately diagnose water control problems for effective treatment. For this study, a stage ANN model development and evaluation methodology were employed. The source data analysis stage involved a statistical analysis of the data used in modeling in the model development stage, candidate ANN architecture development and then evaluated using a historical data set. The model was developed using historical data obtained from Daspoort Wastewater Treatment plant South Africa. The resultant designed dimensions and model for wastewater treatment plant provided good results. Parameters considered were temperature, pH value, colour, turbidity, amount of solids and acidity. Others are total hardness, Ca hardness, Mg hardness, and chloride. This enables the ANN to handle and represent more complex problems that conventional programming is incapable of performing.

Keywords: ANN, artificial neural network, wastewater treatment, model, development

Procedia PDF Downloads 149
700 Artificially Intelligent Context Aware Personal Computer Assistant (ACPCA)

Authors: Abdul Mannan Akhtar

Abstract:

In this paper a novel concept of a self learning smart personalized computer assistant (ACPCA) is established which is a context aware system. Based on user habits, moods, and other routines/situational reactions the system will manage various services and suggestions at appropriate times including what schedule to follow, what to watch, what software to be used, what should be deleted etc. This system will utilize a hybrid fuzzyNeural model to predict what the user will do next and support his actions. This will be done by establishing fuzzy sets of user activities, choices, preferences etc. and utilizing their combinations to predict his moods and immediate preferences. Various application of context aware systems exist separately e.g. on certain websites for music or multimedia suggestions but a personalized autonomous system that could adapt to user’s personality does not exist at present. Due to the novelty and massiveness of this concept, this paper will primarily focus on the problem establishment, product features and its functionality; however a small mini case is also implemented on MATLAB to demonstrate some of the aspects of ACPCA. The mini case involves prediction of user moods, activity, routine and food preference using a hybrid fuzzy-Neural soft computing technique.

Keywords: context aware systems, APCPCA, soft computing techniques, artificial intelligence, fuzzy logic, neural network, mood detection, face detection, activity detection

Procedia PDF Downloads 464
699 Digital Innovation and Business Transformation

Authors: Bisola Stella Sonde

Abstract:

Digital innovation has emerged as a pivotal driver of business transformation in the contemporary landscape. This case study research explores the dynamic interplay between digital innovation and the profound metamorphosis of businesses across industries. It delves into the multifaceted dimensions of digital innovation, elucidating its impact on organizational structures, customer experiences, and operational paradigms. The study investigates real-world instances of businesses harnessing digital technologies to enhance their competitiveness, agility, and sustainability. It scrutinizes the strategic adoption of digital platforms, data analytics, artificial intelligence, and emerging technologies as catalysts for transformative change. The cases encompass a diverse spectrum of industries, spanning from traditional enterprises to disruptive startups, offering insights into the universal relevance of digital innovation. Moreover, the research scrutinizes the challenges and opportunities posed by the digital era, shedding light on the intricacies of managing cultural shifts, data privacy, and cybersecurity concerns in the pursuit of innovation. It unveils the strategies that organizations employ to adapt, thrive, and lead in the era of digital disruption. In summary, this case study research underscores the imperative of embracing digital innovation as a cornerstone of business transformation. It offers a comprehensive exploration of the contemporary digital landscape, offering valuable lessons for organizations striving to navigate the ever-evolving terrain of the digital age.

Keywords: business transformation, digital innovation, emerging technologies, organizational structures

Procedia PDF Downloads 60
698 Low-Cost Mechatronic Design of an Omnidirectional Mobile Robot

Authors: S. Cobos-Guzman

Abstract:

This paper presents the results of a mechatronic design based on a 4-wheel omnidirectional mobile robot that can be used in indoor logistic applications. The low-level control has been selected using two open-source hardware (Raspberry Pi 3 Model B+ and Arduino Mega 2560) that control four industrial motors, four ultrasound sensors, four optical encoders, a vision system of two cameras, and a Hokuyo URG-04LX-UG01 laser scanner. Moreover, the system is powered with a lithium battery that can supply 24 V DC and a maximum current-hour of 20Ah.The Robot Operating System (ROS) has been implemented in the Raspberry Pi and the performance is evaluated with the selection of the sensors and hardware selected. The mechatronic system is evaluated and proposed safe modes of power distribution for controlling all the electronic devices based on different tests. Therefore, based on different performance results, some recommendations are indicated for using the Raspberry Pi and Arduino in terms of power, communication, and distribution of control for different devices. According to these recommendations, the selection of sensors is distributed in both real-time controllers (Arduino and Raspberry Pi). On the other hand, the drivers of the cameras have been implemented in Linux and a python program has been implemented to access the cameras. These cameras will be used for implementing a deep learning algorithm to recognize people and objects. In this way, the level of intelligence can be increased in combination with the maps that can be obtained from the laser scanner.

Keywords: autonomous, indoor robot, mechatronic, omnidirectional robot

Procedia PDF Downloads 175
697 Parallels between the Glass and Lavender Ceilings

Authors: Paul E. Olsen

Abstract:

Researchers, businesses, and governments study the glass ceiling faced by women and members of minority groups at work, but the experiences of gay men, lesbians, and bisexual men and women with the lavender ceiling have not received similar attention. This qualitative research traces similarities between the lavender ceiling and the glass ceiling. More specifically, it presents a study designed to elucidate the experiences of gay men at work and compare them with those of women and minority group members, as reported in research literature on the glass ceiling. This research asked: 1) What have gay men experienced in the workplace? 2) What experiences have they had with recruitment, mentors, corporate climate, advancement opportunities, performance evaluation, social activities, harassment, and task force and committee assignments? 3) How do these experiences compare with those of women and minorities who have described their experiences with the glass ceiling? Purposeful and convenience sampling were used as participant selection strategies. Participants were diverse in terms of age, education, and industry. Data for this study were collected through semi-structured individual interviews with eight self-identified gay men working in human services, manufacturing, marketing, finance, government, the nonprofit sector, and retail. The gay men in the study described workplace experiences similar to descriptions of the glass ceiling faced by women and minorities. The lavender ceiling parallels the glass ceiling in corporate climates, harassment, mentors, social activities, promotions and performance appraisal, and task force and committee assignments at work. Women and most minorities do not, however, face the disclosure dilemma: Should one reveal his sexual orientation at work?

Keywords: discrimination, diversity, gay and lesbian, human resource

Procedia PDF Downloads 267
696 An Electrocardiography Deep Learning Model to Detect Atrial Fibrillation on Clinical Application

Authors: Jui-Chien Hsieh

Abstract:

Background:12-lead electrocardiography(ECG) is one of frequently-used tools to detect atrial fibrillation (AF), which might degenerate into life-threaten stroke, in clinical Practice. Based on this study, the AF detection by the clinically-used 12-lead ECG device has only 0.73~0.77 positive predictive value (ppv). Objective: It is on great demand to develop a new algorithm to improve the precision of AF detection using 12-lead ECG. Due to the progress on artificial intelligence (AI), we develop an ECG deep model that has the ability to recognize AF patterns and reduce false-positive errors. Methods: In this study, (1) 570-sample 12-lead ECG reports whose computer interpretation by the ECG device was AF were collected as the training dataset. The ECG reports were interpreted by 2 senior cardiologists, and confirmed that the precision of AF detection by the ECG device is 0.73.; (2) 88 12-lead ECG reports whose computer interpretation generated by the ECG device was AF were used as test dataset. Cardiologist confirmed that 68 cases of 88 reports were AF, and others were not AF. The precision of AF detection by ECG device is about 0.77; (3) A parallel 4-layer 1 dimensional convolutional neural network (CNN) was developed to identify AF based on limb-lead ECGs and chest-lead ECGs. Results: The results indicated that this model has better performance on AF detection than traditional computer interpretation of the ECG device in 88 test samples with 0.94 ppv, 0.98 sensitivity, 0.80 specificity. Conclusions: As compared to the clinical ECG device, this AI ECG model promotes the precision of AF detection from 0.77 to 0.94, and can generate impacts on clinical applications.

Keywords: 12-lead ECG, atrial fibrillation, deep learning, convolutional neural network

Procedia PDF Downloads 114
695 Academic Literacy: A Study of L2 Academic Reading Literacy among a Group of EFL/ESL Postgraduate Arab Learners in a British University

Authors: Hanadi Khadawardi

Abstract:

The current study contributes to research on foreign/second language (L2) academic reading by presenting a significant case study, which seeks to investigate specific groups of international (Arab) postgraduate students’ L2 academic reading practices in the UK educational context. In particular, the study scrutinises postgraduate students’ L2 paper-based and digital-based academic reading strategies, and their use of digital aids while engaged in L2 academic reading. To this end, the study investigates Arab readers’ attitudes toward digital L2 academic reading. The study aims to compare between paper and digital L2 academic reading strategies that the students employ and which reading formats they prefer. This study tracks Masters-level students and examines the way in which their reading strategies and attitudes change throughout their Masters programme in the UK educational context. The academic reading strategies and attitudes of five students from four different disciplines (Health Science, Psychology, Management, and Education) are investigated at two points during their one-year Masters programmes. In addition, the study investigates the same phenomenon with 15 Saudi PhD students drawn from seven different disciplines (Computer Science, Engineering, Psychology, Management, Marketing, Health Science, and Applied Linguistics) at one period of their study in the same context. The study uses think-aloud protocol, field notes, stimulated recall, and semi-structured interviews to collect data. The data is analysed qualitatively. The results of the study will explain the process of learning in terms of reading L2 paper and digital academic texts in the L2 context.

Keywords: EFL: English as a foreign language, ESL: English as a second language, L: Language

Procedia PDF Downloads 381
694 India, Pakistan and the US in the Afghan Imbroglio: The Way Forward

Authors: Saroj Kumar Rath

Abstract:

When insurgency erupted in Kashmir in 1989, it was quickly backed by Pakistan. Kashmir witnessed terrorism for more than a decade till 2004 when Indian forces decimated militancy. After the US pressure in 1992, terrorist training camps of Pakistan shifted to Afghanistan and al Qaeda and the Taliban had taken over training of Kashmiri militants in Afghanistan after 1997 as part of their global jihad. The Indo-Pak rivalry over Kashmir dispute had taken a new turn in the aftermath of 9/11 developments. Islamabad viewed its Afghan policy through the prism of denying India any advantage in Kabul. Pakistan was successful in refuting Indian presence in Kabul for a decade through the Taliban. After the 9/11 attacks the Inter Services Intelligence (ISI) saw Northern Alliance, supported by the Americans and all of Pakistan’s regional rivals – India, Iran, and Russia – as claiming victory in Kabul. For Pakistan’s military regime, this was a strategic disaster and prompted the ISI to give refuge to the escaping Taliban, while denying full support to Hamid Karzai. The new development in Afghanistan prompted India to establish a foothold it had lost nearly a decade earlier. India established diplomatic contacts with Afghanistan; supported the Karzai government and funded aid programs. Pakistan alleged that Indian agents are training Baloch and Sindhi dissidents in Pakistan through Afghanistan. Kabul had suddenly become the new Kashmir – the new battleground for India-Pakistan rivalry.

Keywords: Afghan imbroglio, Kashmir conflict, Indo-Pak rivalry, US policy in South Asia

Procedia PDF Downloads 433
693 Logistic Regression Based Model for Predicting Students’ Academic Performance in Higher Institutions

Authors: Emmanuel Osaze Oshoiribhor, Adetokunbo MacGregor John-Otumu

Abstract:

In recent years, there has been a desire to forecast student academic achievement prior to graduation. This is to help them improve their grades, particularly for individuals with poor performance. The goal of this study is to employ supervised learning techniques to construct a predictive model for student academic achievement. Many academics have already constructed models that predict student academic achievement based on factors such as smoking, demography, culture, social media, parent educational background, parent finances, and family background, to name a few. This feature and the model employed may not have correctly classified the students in terms of their academic performance. This model is built using a logistic regression classifier with basic features such as the previous semester's course score, attendance to class, class participation, and the total number of course materials or resources the student is able to cover per semester as a prerequisite to predict if the student will perform well in future on related courses. The model outperformed other classifiers such as Naive bayes, Support vector machine (SVM), Decision Tree, Random forest, and Adaboost, returning a 96.7% accuracy. This model is available as a desktop application, allowing both instructors and students to benefit from user-friendly interfaces for predicting student academic achievement. As a result, it is recommended that both students and professors use this tool to better forecast outcomes.

Keywords: artificial intelligence, ML, logistic regression, performance, prediction

Procedia PDF Downloads 97
692 Between Reality and Fiction: Self-Representation as an Avatar and Its Effects on Self-Presence

Authors: Leonie Laskowitz

Abstract:

A self-confident appearance is a basic prerequisite for success in the world of work 4.0. Within a few seconds, people convey a first impression that usually lasts. Artificial intelligence is making it increasingly important how our virtual selves appear and communicate (nonverbally) in digital worlds such as the metaverse. In addition to the modified creation of an avatar, the field of photogrammetry is developing fast, creating exact likenesses of ourselves in virtual environments. Given the importance of self-representation in virtual space for future collaborations, it is important to investigate the impact of phenotype in virtual worlds and how an avatar type can profitably be used situationally. We analyzed the effect of self-similar versus desirable self-presentation as an avatar on one's self-awareness, considering various theoretical constructs in the area of self-awareness and stress stimuli. The avatars were arbitrarily created on the one hand and scanned on the other hand with the help of a lidar sensor, the state-of-the-art photogrammetry method. All subjects were exposed to the established Trier Social Stress Test. The results showed that especially insecure people prefer to create rather than be scanned when confronted with a stressful work situation. (1) If they are in a casual work environment and a relaxed situation, they prefer a 3D photorealistic avatar that reflects them in detail. (2) Confident people will give their avatar their true appearance in any situation, while insecure people would only do so for honesty and authenticity. (3) Thus, the choice of avatar type has considerable impact on self-confidence in different situations.

Keywords: avatar, virtual identity, self-presentation, metaverse, virtual reality, self-awareness

Procedia PDF Downloads 148
691 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study

Authors: Almutasim Billa A. Alanazi, Hal S. Tharp

Abstract:

Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%- 40% compared to a traditional RL model.

Keywords: control system, hydroponics, machine learning, reinforcement learning

Procedia PDF Downloads 185
690 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework

Authors: Raymond Xu, Cindy Jingru Wang

Abstract:

Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.

Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis

Procedia PDF Downloads 254
689 Design of Smart Urban Lighting by Using Social Sustainability Approach

Authors: Mohsen Noroozi, Maryam Khalili

Abstract:

Creating cities, objects and spaces that are economically, environmentally and socially sustainable and which meet the challenge of social interaction and generation change will be one of the biggest tasks of designers. Social sustainability is about how individuals, communities and societies live with each other and set out to achieve the objectives of development model which they have chosen for themselves. Urban lightning as one of the most important elements of urban furniture that people constantly interact with it in public spaces; can be a significant object for designers. Using intelligence by internet of things for urban lighting makes it more interactive in public environments. It can encourage individuals to carry out appropriate behaviors and provides them the social awareness through new interactions. The greatest strength of this technology is its strong impact on many aspects of everyday life and users' behaviors. The analytical phase of the research is based on a multiple method survey strategy. Smart lighting proposed in this paper is an urban lighting designed on results obtained from a collective point of view about the social sustainability. In this paper, referring to behavioral design methods, the social behaviors of the people has been studied. Data show that people demands for a deeper experience of social participation, safety perception and energy saving with the meaningful use of interactive and colourful lighting effects. By using intelligent technology, some suggestions are provided in the field of future lighting to consider the new forms of social sustainability.

Keywords: behavior pattern, internet of things, social sustainability, urban lighting

Procedia PDF Downloads 194
688 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
687 Foreign Direct Investment and its Role in Globalisation

Authors: Gupta Indu

Abstract:

This paper aims to examine the relationship between foreign direct investment and globalization. Foreign direct investment plays an important role in globalization. It is dramatically increasing in the age of globalization. It has played an important role for economic growth in this global process. It can provide new markets and marketing channels, cheaper production facilities, access to new technology, products to a firm. FDI has come to play a major role in the internationalization of business. FDI has become even more important than trade. Growing liberalization of the national regulatory framework governing investment in enterprises and changes in capital markets profound changes have occurred in the size, scope and methods of FDI. New information technology systems, decline in global communication costs have made management of foreign investments far easier than in the past. FDI provide opportunities to host countries to enhance their economic development and opens new opportunities to home countries to optimize their earnings by employing their ideal resources. Smaller and weaker economies can drive out much local competition. For small and medium sized companies, FDI represents an opportunity to become more actively involved in international business activities. In the past decade, foreign direct investment has expanded its role by change in trade policy, investment policy, tariff liberalization, easing of restrictions on foreign investment and acquisition in many nations, and the deregulation and privatization of many industries. In present competitive scenario, FDI has become a prominent external source of finance for developing countries.

Keywords: foreign direct investment, globalization, economic development, information technology systems new opportunities

Procedia PDF Downloads 230
686 Commercial Automobile Insurance: A Practical Approach of the Generalized Additive Model

Authors: Nicolas Plamondon, Stuart Atkinson, Shuzi Zhou

Abstract:

The insurance industry is usually not the first topic one has in mind when thinking about applications of data science. However, the use of data science in the finance and insurance industry is growing quickly for several reasons, including an abundance of reliable customer data, ferocious competition requiring more accurate pricing, etc. Among the top use cases of data science, we find pricing optimization, customer segmentation, customer risk assessment, fraud detection, marketing, and triage analytics. The objective of this paper is to present an application of the generalized additive model (GAM) on a commercial automobile insurance product: an individually rated commercial automobile. These are vehicles used for commercial purposes, but for which there is not enough volume to apply pricing to several vehicles at the same time. The GAM model was selected as an improvement over GLM for its ease of use and its wide range of applications. The model was trained using the largest split of the data to determine model parameters. The remaining part of the data was used as testing data to verify the quality of the modeling activity. We used the Gini coefficient to evaluate the performance of the model. For long-term monitoring, commonly used metrics such as RMSE and MAE will be used. Another topic of interest in the insurance industry is to process of producing the model. We will discuss at a high level the interactions between the different teams with an insurance company that needs to work together to produce a model and then monitor the performance of the model over time. Moreover, we will discuss the regulations in place in the insurance industry. Finally, we will discuss the maintenance of the model and the fact that new data does not come constantly and that some metrics can take a long time to become meaningful.

Keywords: insurance, data science, modeling, monitoring, regulation, processes

Procedia PDF Downloads 76
685 Experimental Study and Evaluation of Farm Environmental Monitoring System Based on the Internet of Things, Sudan

Authors: Farid Eltom A. E., Mustafa Abdul-Halim, Abdalla Markaz, Sami Atta, Mohamed Azhari, Ahmed Rashed

Abstract:

Smart environment sensors integrated with ‘Internet of Things’ (IoT) technology can provide a new concept in tracking, sensing, and monitoring objects in the environment. The aim of the study is to evaluate the farm environmental monitoring system based on (IoT) and to realize the automated management of agriculture and the implementation of precision production. Until now, irrigation monitoring operations in Sudan have been carried out using traditional methods, which is a very costly and unreliable mechanism. However, by utilizing soil moisture sensors, irrigation can be conducted only when needed without fear of plant water stress. The result showed that software application allows farmers to display current and historical data on soil moisture and nutrients in the form of line charts. Design measurements of the soil factors: moisture, electrical, humidity, conductivity, temperature, pH, phosphorus, and potassium; these factors, together with a timestamp, are sent to the data server using the Lora WAN interface. It is considered scientifically agreed upon in the modern era that artificial intelligence works to arrange the necessary procedures to take care of the terrain, predict the quality and quantity of production through deep analysis of the various operations in agricultural fields, and also support monitoring of weather conditions.

Keywords: smart environment, monitoring systems, IoT, LoRa Gateway, center pivot

Procedia PDF Downloads 48
684 Employees and Their Perception of Soft Skills on Their Employability

Authors: Sukrita Mukherjee, Anindita Chaudhuri

Abstract:

Soft skills are a crucial aspect for employees, and these skills are not confined to any particular field rather, it guarantees further career growth and job opportunities for employees who are seeking growth. Soft skills are also regarded as personality-specific skills that are observable and are qualitative in nature, which determines an employee’s strengths as a leader. When an employee intends to hold his job, then the person must make effective use of his personal resources, that, in turn, impacts his employability in a positive manner. An employee at his workplace is expected to make effective use of his personal resources. The resources that are to be used by the employee are generally of two types. First type of resources are occupation related, which is related with the educational background of the employee, and the second type of resources are the psychological resources of the employee, such as self-knowledge, career orientation awareness, sense of purpose and emotional literacy, that are considered crucial for an employee in his workplace. The present study is a qualitative study which includes 10 individuals working in IT Sector and Service Industry, respectively. For IT sector, graduate people are considered, and for the Service Industry, individuals who have done a Professional course in order to get into the industry are considered. The emerging themes from the findings after thematic analysis reveal that different aspect of Soft skills such as communication, decision making, constant learning, keeping oneself updated with the latest technological advancement, emotional intelligence are some of the important factors that helps an employee not only to sustain his job, but also grow in his workplace.

Keywords: employabiliy, soft skils, employees, resources, workplace

Procedia PDF Downloads 63
683 Society and Cinema in Iran

Authors: Seyedeh Rozhano Azimi Hashemi

Abstract:

There is no doubt that ‘Art’ is a social phenomena and cinema is the most social kind of art. Hence, it’s clear that we can analyze the relation’s of cinema and art from different aspects. In this paper sociological cinema will be investigated which, is a subdivision of sociological art. This term will be discussed by two main approaches. One of these approaches is focused on the effects of cinema on the society, which is known as “Effects Theory” and the second one, which is dealing with the reflection of social issues in cinema is called ” Reflection Theory”. "Reflect theory" approach, unlike "Effects theory" is considering movies as documents, in which social life is reflected, and by analyzing them, the changes and tendencies of a society are understood. Criticizing these approaches to cinema and society doesn’t mean that they are not real. Conversely, it proves the fact that for better understanding of cinema and society’s relation, more complicated models are required, which should consider two aspects. First, they should be bilinear and they should provide a dynamic and active relation between cinema and society, as for the current concept social life and cinema have bi-linear effects on each other, and that’s how they fit in a dialectic and dynamic process. Second, it should pay attention to the role of inductor elements such as small social institutions, marketing, advertisements, cultural pattern, art’s genres and popular cinema in society. In the current study, image of middle class in cinema of Iran and changing the role of women in cinema and society which were two bold issue that cinema and society faced since 1979 revolution till 80s are analyzed. Films as an artwork on one hand, are reflections of social changes and with their effects on the society on the other hand, are trying to speed up the trends of these changes. Cinema by the illustration of changes in ideologies and approaches in exaggerated ways and through it’s normalizing functions, is preparing the audiences and public opinions for the acceptance of these changes. Consequently, audience takes effect from this process, which is a bi-linear and interactive process.

Keywords: Iranian Cinema, Cinema and Society, Middle Class, Woman’s Role

Procedia PDF Downloads 340
682 Cognitive Benefits of Being Bilingual: The Effect of Language Learning on the Working Memory in Emerging Miao-Mandarin Juveniles in Rural Regions of China

Authors: Peien Ma

Abstract:

Bilingual effect/advantage theorized the positive effect of being bilingual on general cognitive abilities, but it was unknown which factors tend to modulate these bilingualism effects on working memory capacity. This study imposed empirical field research on a group of low-SES emerging bilinguals, Miao people, in the hill tribes of rural China to investigate whether bilingualism affected their verbal working memory performance. 20 Miao-Chinese bilinguals (13 girls and 7 boys with a mean age of 11.45, SD=1.67) and 20 Chinese monolingual peers (13 girls and 7 boys with a mean age of 11.6, SD=0.68) were recruited. These bilingual and monolingual juveniles, matched on age, sex, socioeconomic status, and educational status, completed a language background questionnaire and a standard forward and backward digit span test adapted from Wechsler Adult Intelligence Scale-Revised (WAIS-R). The results showed that bilinguals earned a significantly higher overall mean score of the task, suggesting the superiority of working memory ability over the monolinguals. And bilingual cognitive benefits were independent of proficiency levels in learners’ two languages. The results suggested that bilingualism enhances working memory in sequential bilinguals from low SES backgrounds and shed light on our understanding of the bilingual advantage from a psychological and social perspective.

Keywords: bilingual effects, heritage language, Miao/Hmong language Mandarin, working memory

Procedia PDF Downloads 157