Search results for: mapping algorithm
2838 Enhancing Throughput for Wireless Multihop Networks
Authors: K. Kalaiarasan, B. Pandeeswari, A. Arockia John Francis
Abstract:
Wireless, Multi-hop networks consist of one or more intermediate nodes along the path that receive and forward packets via wireless links. The backpressure algorithm provides throughput optimal routing and scheduling decisions for multi-hop networks with dynamic traffic. Xpress, a cross-layer backpressure architecture was designed to reach the capacity of wireless multi-hop networks and it provides well coordination between layers of network by turning a mesh network into a wireless switch. Transmission over the network is scheduled using a throughput-optimal backpressure algorithm. But this architecture operates much below their capacity due to out-of-order packet delivery and variable packet size. In this paper, we present Xpress-T, a throughput optimal backpressure architecture with TCP support designed to reach maximum throughput of wireless multi-hop networks. Xpress-T operates at the IP layer, and therefore any transport protocol, including TCP, can run on top of Xpress-T. The proposed design not only avoids bottlenecks but also handles out-of-order packet delivery and variable packet size, optimally load-balances traffic across them when needed, improving fairness among competing flows. Our simulation results shows that Xpress-T gives 65% more throughput than Xpress.Keywords: backpressure scheduling and routing, TCP, congestion control, wireless multihop network
Procedia PDF Downloads 5182837 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 1162836 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time
Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla
Abstract:
Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time
Procedia PDF Downloads 1772835 A Hybrid Data Mining Algorithm Based System for Intelligent Defence Mission Readiness and Maintenance Scheduling
Authors: Shivam Dwivedi, Sumit Prakash Gupta, Durga Toshniwal
Abstract:
It is a challenging task in today’s date to keep defence forces in the highest state of combat readiness with budgetary constraints. A huge amount of time and money is squandered in the unnecessary and expensive traditional maintenance activities. To overcome this limitation Defence Intelligent Mission Readiness and Maintenance Scheduling System has been proposed, which ameliorates the maintenance system by diagnosing the condition and predicting the maintenance requirements. Based on new data mining algorithms, this system intelligently optimises mission readiness for imminent operations and maintenance scheduling in repair echelons. With modified data mining algorithms such as Weighted Feature Ranking Genetic Algorithm and SVM-Random Forest Linear ensemble, it improves the reliability, availability and safety, alongside reducing maintenance cost and Equipment Out of Action (EOA) time. The results clearly conclude that the introduced algorithms have an edge over the conventional data mining algorithms. The system utilizing the intelligent condition-based maintenance approach improves the operational and maintenance decision strategy of the defence force.Keywords: condition based maintenance, data mining, defence maintenance, ensemble, genetic algorithms, maintenance scheduling, mission capability
Procedia PDF Downloads 2972834 A Stochastic Vehicle Routing Problem with Ordered Customers and Collection of Two Similar Products
Authors: Epaminondas G. Kyriakidis, Theodosis D. Dimitrakos, Constantinos C. Karamatsoukis
Abstract:
The vehicle routing problem (VRP) is a well-known problem in Operations Research and has been widely studied during the last fifty-five years. The context of the VRP is that of delivering or collecting products to or from customers who are scattered in a geographical area and have placed orders for these products. A vehicle or a fleet of vehicles start their routes from a depot and visit the customers in order to satisfy their demands. Special attention has been given to the capacitated VRP in which the vehicles have limited carrying capacity for the goods that are delivered or collected. In the present work, we present a specific capacitated stochastic vehicle routing problem which has many realistic applications. We develop and analyze a mathematical model for a specific vehicle routing problem in which a vehicle starts its route from a depot and visits N customers according to a particular sequence in order to collect from them two similar but not identical products. We name these products, product 1 and product 2. Each customer possesses items either of product 1 or product 2 with known probabilities. The number of the items of product 1 or product 2 that each customer possesses is a discrete random variable with known distribution. The actual quantity and the actual type of product that each customer possesses are revealed only when the vehicle arrives at the customer’s site. It is assumed that the vehicle has two compartments. We name these compartments, compartment 1 and compartment 2. It is assumed that compartment 1 is suitable for loading product 1 and compartment 2 is suitable for loading product 2. However, it is permitted to load items of product 1 into compartment 2 and items of product 2 into compartment 1. These actions cause costs that are due to extra labor. The vehicle is allowed during its route to return to the depot to unload the items of both products. The travel costs between consecutive customers and the travel costs between the customers and the depot are known. The objective is to find the optimal routing strategy, i.e. the routing strategy that minimizes the total expected cost among all possible strategies for servicing all customers. It is possible to develop a suitable dynamic programming algorithm for the determination of the optimal routing strategy. It is also possible to prove that the optimal routing strategy has a specific threshold-type strategy. Specifically, it is shown that for each customer the optimal actions are characterized by some critical integers. This structural result enables us to design a special-purpose dynamic programming algorithm that operates only over these strategies having this structural property. Extensive numerical results provide strong evidence that the special-purpose dynamic programming algorithm is considerably more efficient than the initial dynamic programming algorithm. Furthermore, if we consider the same problem without the assumption that the customers are ordered, numerical experiments indicate that the optimal routing strategy can be computed if N is smaller or equal to eight.Keywords: dynamic programming, similar products, stochastic demands, stochastic preferences, vehicle routing problem
Procedia PDF Downloads 2572833 Evaluation of a Data Fusion Algorithm for Detecting and Locating a Radioactive Source through Monte Carlo N-Particle Code Simulation and Experimental Measurement
Authors: Hadi Ardiny, Amir Mohammad Beigzadeh
Abstract:
Through the utilization of a combination of various sensors and data fusion methods, the detection of potential nuclear threats can be significantly enhanced by extracting more information from different data. In this research, an experimental and modeling approach was employed to track a radioactive source by combining a surveillance camera and a radiation detector (NaI). To run this experiment, three mobile robots were utilized, with one of them equipped with a radioactive source. An algorithm was developed in identifying the contaminated robot through correlation between camera images and camera data. The computer vision method extracts the movements of all robots in the XY plane coordinate system, and the detector system records the gamma-ray count. The position of the robots and the corresponding count of the moving source were modeled using the MCNPX simulation code while considering the experimental geometry. The results demonstrated a high level of accuracy in finding and locating the target in both the simulation model and experimental measurement. The modeling techniques prove to be valuable in designing different scenarios and intelligent systems before initiating any experiments.Keywords: nuclear threats, radiation detector, MCNPX simulation, modeling techniques, intelligent systems
Procedia PDF Downloads 1232832 A Novel Spectral Index for Automatic Shadow Detection in Urban Mapping Based on WorldView-2 Satellite Imagery
Authors: Kaveh Shahi, Helmi Z. M. Shafri, Ebrahim Taherzadeh
Abstract:
In remote sensing, shadow causes problems in many applications such as change detection and classification. It is caused by objects which are elevated, thus can directly affect the accuracy of information. For these reasons, it is very important to detect shadows particularly in urban high spatial resolution imagery which created a significant problem. This paper focuses on automatic shadow detection based on a new spectral index for multispectral imagery known as Shadow Detection Index (SDI). The new spectral index was tested on different areas of World-View 2 images and the results demonstrated that the new spectral index has a massive potential to extract shadows effectively and automatically.Keywords: spectral index, shadow detection, remote sensing images, World-View 2
Procedia PDF Downloads 5382831 A Coupled System of Caputo-Type Katugampola Fractional Differential Equations with Integral Boundary Conditions
Authors: Yacine Arioua
Abstract:
In this paper, we investigate the existence and uniqueness of solutions for a coupled system of nonlinear Caputo-type Katugampola fractional differential equations with integral boundary conditions. Based upon a contraction mapping principle, Schauders fixed point theorems, some new existence and uniqueness results of solutions for the given problems are obtained. For application, some examples are given to illustrate the usefulness of our main results.Keywords: fractional differential equations, coupled system, Caputo-Katugampola derivative, fixed point theorems, existence, uniqueness
Procedia PDF Downloads 2642830 A Privacy Protection Scheme Supporting Fuzzy Search for NDN Routing Cache Data Name
Authors: Feng Tao, Ma Jing, Guo Xian, Wang Jing
Abstract:
Named Data Networking (NDN) replaces IP address of traditional network with data name, and adopts dynamic cache mechanism. In the existing mechanism, however, only one-to-one search can be achieved because every data has a unique name corresponding to it. There is a certain mapping relationship between data content and data name, so if the data name is intercepted by an adversary, the privacy of the data content and user’s interest can hardly be guaranteed. In order to solve this problem, this paper proposes a one-to-many fuzzy search scheme based on order-preserving encryption to reduce the query overhead by optimizing the caching strategy. In this scheme, we use hash value to ensure the user’s query safe from each node in the process of search, so does the privacy of the requiring data content.Keywords: NDN, order-preserving encryption, fuzzy search, privacy
Procedia PDF Downloads 4842829 In-Plume H₂O, CO₂, H₂S and SO₂ in the Fumarolic Field of La Fossa Cone (Vulcano Island, Aeolian Archipelago)
Authors: Cinzia Federico, Gaetano Giudice, Salvatore Inguaggiato, Marco Liuzzo, Maria Pedone, Fabio Vita, Christoph Kern, Leonardo La Pica, Giovannella Pecoraino, Lorenzo Calderone, Vincenzo Francofonte
Abstract:
The periods of increased fumarolic activity at La Fossa volcano have been characterized, since early 80's, by changes in the gas chemistry and in the output rate of fumaroles. Excepting the direct measurements of the steam output from fumaroles performed from 1983 to 1995, the mass output of the single gas species has been recently measured, with various methods, only sporadically or for short periods. Since 2008, a scanning DOAS system is operating in the Palizzi area for the remote measurement of the in-plume SO₂ flux. On these grounds, the need of a cross-comparison of different methods for the in situ measurement of the output rate of different gas species is envisaged. In 2015, two field campaigns have been carried out, aimed at: 1. The mapping of the concentration of CO₂, H₂S and SO₂ in the fumarolic plume at 1 m from the surface, by using specific open-path diode tunable lasers (GasFinder Boreal Europe Ltd.) and an Active DOAS for SO₂, respectively; these measurements, coupled to simultaneous ultrasonic wind speed and meteorological data, have been elaborated to obtain the dispersion map and the output rate of single species in the overall fumarolic field; 2. The mapping of the concentrations of CO₂, H₂S, SO₂, H₂O in the fumarolic plume at 0.5 m from the soil, by using an integrated system, including IR spectrometers and specific electrochemical sensors; this has provided the concentration ratios of the analysed gas species and their distribution in the fumarolic field; 3. The in-fumarole sampling of vapour and measurement of the steam output, to validate the remote measurements. The dispersion map of CO₂, obtained from the tunable laser measurements, shows a maximum CO₂ concentration at 1m from the soil of 1000 ppmv along the rim, and 1800 ppmv in the inner slopes. As observed, the largest contribution derives from a wide fumarole of the inner-slope, despite its present outlet temperature of 230°C, almost 200°C lower than those measured at the rim fumaroles. Actually, fumaroles in the inner slopes are among those emitting the largest amount of magmatic vapour and, during the 1989-1991 crisis, reached the temperature of 690°C. The estimated CO₂ and H₂S fluxes are 400 t/d and 4.4 t/d, respectively. The coeval SO₂ flux, measured by the scanning DOAS system, is 9±1 t/d. The steam output, recomputed from CO₂ flux measurements, is about 2000 t/d. The various direct and remote methods (as described at points 1-3) have produced coherent results, which encourage to the use of daily and automatic DOAS SO₂ data, coupled with periodic in-plume measurements of different acidic gases, to obtain the total mass rates.Keywords: DOAS, fumaroles, plume, tunable laser
Procedia PDF Downloads 3992828 Classification of Myoelectric Signals Using Multilayer Perceptron Neural Network with Back-Propagation Algorithm in a Wireless Surface Myoelectric Prosthesis of the Upper-Limb
Authors: Kevin D. Manalo, Jumelyn L. Torres, Noel B. Linsangan
Abstract:
This paper focuses on a wireless myoelectric prosthesis of the upper-limb that uses a Multilayer Perceptron Neural network with back propagation. The algorithm is widely used in pattern recognition. The network can be used to train signals and be able to use it in performing a function on their own based on sample inputs. The paper makes use of the Neural Network in classifying the electromyography signal that is produced by the muscle in the amputee’s skin surface. The gathered data will be passed on through the Classification Stage wirelessly through Zigbee Technology. The signal will be classified and trained to be used in performing the arm positions in the prosthesis. Through programming using Verilog and using a Field Programmable Gate Array (FPGA) with Zigbee, the EMG signals will be acquired and will be used for classification. The classified signal is used to produce the corresponding Hand Movements (Open, Pick, Hold, and Grip) through the Zigbee controller. The data will then be processed through the MLP Neural Network using MATLAB which then be used for the surface myoelectric prosthesis. Z-test will be used to display the output acquired from using the neural network.Keywords: field programmable gate array, multilayer perceptron neural network, verilog, zigbee
Procedia PDF Downloads 3892827 Coastal Resources Spatial Planning and Potential Oil Risk Analysis: Case Study of Misratah’s Coastal Resources, Libya
Authors: Abduladim Maitieg, Kevin Lynch, Mark Johnson
Abstract:
The goal of the Libyan Environmental General Authority (EGA) and National Oil Corporation (Department of Health, Safety & Environment) during the last 5 years has been to adopt a common approach to coastal and marine spatial planning. Protection and planning of the coastal zone is a significant for Libya, due to the length of coast and, the high rate of oil export, and spills’ potential negative impacts on coastal and marine habitats. Coastal resource scenarios constitute an important tool for exploring the long-term and short-term consequences of oil spill impact and available response options that would provide an integrated perspective on mitigation. To investigate that, this paper reviews the Misratah coastal parameters to present the physical and human controls and attributes of coastal habitats as the first step in understanding how they may be damaged by an oil spill. This paper also investigates costal resources, providing a better understanding of the resources and factors that impact the integrity of the ecosystem. Therefore, the study described the potential spatial distribution of oil spill risk and the coastal resources value, and also created spatial maps of coastal resources and their vulnerability to oil spills along the coast. This study proposes an analysis of coastal resources condition at a local level in the Misratah region of the Mediterranean Sea, considering the implementation of coastal and marine spatial planning over time as an indication of the will to manage urban development. Oil spill contamination analysis and their impact on the coastal resources depend on (1) oil spill sequence, (2) oil spill location, (3) oil spill movement near the coastal area. The resulting maps show natural, socio-economic activity, environmental resources along of the coast, and oil spill location. Moreover, the study provides significant geodatabase information which is required for coastal sensitivity index mapping and coastal management studies. The outcome of study provides the information necessary to set an Environmental Sensitivity Index (ESI) for the Misratah shoreline, which can be used for management of coastal resources and setting boundaries for each coastal sensitivity sectors, as well as to help planners measure the impact of oil spills on coastal resources. Geographic Information System (GIS) tools were used in order to store and illustrate the spatial convergence of existing socio-economic activities such as fishing, tourism, and the salt industry, and ecosystem components such as sea turtle nesting area, Sabkha habitats, and migratory birds feeding sites. These geodatabases help planners investigate the vulnerability of coastal resources to an oil spill.Keywords: coastal and marine spatial planning advancement training, GIS mapping, human uses, ecosystem components, Misratah coast, Libyan, oil spill
Procedia PDF Downloads 3622826 Adaptive Power Control of the City Bus Integrated Photovoltaic System
Authors: Piotr Kacejko, Mariusz Duk, Miroslaw Wendeker
Abstract:
This paper presents an adaptive controller to track the maximum power point of a photovoltaic modules (PV) under fast irradiation change on the city-bus roof. Photovoltaic systems have been a prominent option as an additional energy source for vehicles. The Municipal Transport Company (MPK) in Lublin has installed photovoltaic panels on its buses roofs. The solar panels turn solar energy into electric energy and are used to load the buses electric equipment. This decreases the buses alternators load, leading to lower fuel consumption and bringing both economic and ecological profits. A DC–DC boost converter is selected as the power conditioning unit to coordinate the operating point of the system. In addition to the conversion efficiency of a photovoltaic panel, the maximum power point tracking (MPPT) method also plays a main role to harvest most energy out of the sun. The MPPT unit on a moving vehicle must keep tracking accuracy high in order to compensate rapid change of irradiation change due to dynamic motion of the vehicle. Maximum power point track controllers should be used to increase efficiency and power output of solar panels under changing environmental factors. There are several different control algorithms in the literature developed for maximum power point tracking. However, energy performances of MPPT algorithms are not clarified for vehicle applications that cause rapid changes of environmental factors. In this study, an adaptive MPPT algorithm is examined at real ambient conditions. PV modules are mounted on a moving city bus designed to test the solar systems on a moving vehicle. Some problems of a PV system associated with a moving vehicle are addressed. The proposed algorithm uses a scanning technique to determine the maximum power delivering capacity of the panel at a given operating condition and controls the PV panel. The aim of control algorithm was matching the impedance of the PV modules by controlling the duty cycle of the internal switch, regardless of changes of the parameters of the object of control and its outer environment. Presented algorithm was capable of reaching the aim of control. The structure of an adaptive controller was simplified on purpose. Since such a simple controller, armed only with an ability to learn, a more complex structure of an algorithm can only improve the result. The presented adaptive control system of the PV system is a general solution and can be used for other types of PV systems of both high and low power. Experimental results obtained from comparison of algorithms by a motion loop are presented and discussed. Experimental results are presented for fast change in irradiation and partial shading conditions. The results obtained clearly show that the proposed method is simple to implement with minimum tracking time and high tracking efficiency proving superior to the proposed method. This work has been financed by the Polish National Centre for Research and Development, PBS, under Grant Agreement No. PBS 2/A6/16/2013.Keywords: adaptive control, photovoltaic energy, city bus electric load, DC-DC converter
Procedia PDF Downloads 2112825 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 3082824 Stray Light Reduction Methodology by a Sinusoidal Light Modulation and Three-Parameter Sine Curve Fitting Algorithm for a Reflectance Spectrometer
Authors: Hung Chih Hsieh, Cheng Hao Chang, Yun Hsiang Chang, Yu Lin Chang
Abstract:
In the applications of the spectrometer, the stray light that comes from the environment affects the measurement results a lot. Hence, environment and instrument quality control for the stray reduction is critical for the spectral reflectance measurement. In this paper, a simple and practical method has been developed to correct a spectrometer's response for measurement errors arising from the environment's and instrument's stray light. A sinusoidal modulated light intensity signal was incident on a tested sample, and then the reflected light was collected by the spectrometer. Since a sinusoidal signal modulated the incident light, the reflected light also had a modulated frequency which was the same as the incident signal. Using the three-parameter sine curve fitting algorithm, we can extract the primary reflectance signal from the total measured signal, which contained the primary reflectance signal and the stray light from the environment. The spectra similarity between the extracted spectra by this proposed method with extreme environment stray light is 99.98% similar to the spectra without the environment's stray light. This result shows that we can measure the reflectance spectra without the affection of the environment's stray light.Keywords: spectrometer, stray light, three-parameter sine curve fitting, spectra extraction
Procedia PDF Downloads 2482823 Spatial Pattern of Environmental Noise Levels and Auditory Ailments in Abeokuta Metropolis, Southwestern Nigeria
Authors: Olusegun Oguntoke, Aramide Y. Tijani, Olayide R. Adetunji
Abstract:
Environmental noise has become a major threat to the quality of human life, and it is generally more severe in cities. This study assessed the level of environmental noise, mapped the spatial pattern at different times of the day and examined the association with morbidity of auditory ailments in Abeokuta metropolis. The entire metropolis was divided into 80 cells (areas) of 1000 m by 1000 m; out of which 33 were randomly selected for noise levels assessment. Portable noise meter (AR824) was used to measure noise level, and Global Positioning System (Garmin GPS-72H) was employed to take the coordinates of the sample sites for mapping. Risk map of the noise levels was produced using Kriging interpolation techniques based on the spatial spread of measured noise values across the study area. Data on cases of hearing impairments were collected from four major hospitals in the city. Data collected from field measurements and medical records were subjected to descriptive (frequency and percentage) and inferential (mean, ANOVA and correlation) statistics using SPSS (version 20.0). ArcMap 10.1 was employed for spatial analysis and mapping. Results showed mean noise levels range at morning (42.4 ± 4.14 – 88.2 ± 15.1 dBA), afternoon (45.0 ± 6.72– 86.4 ± 12.5 dBA) and evening (51.0 ± 6.55–84.4 ± 5.19 dBA) across the study area. The interpolated maps identified Kuto, Okelowo, Isale-Igbein, and Sapon as high noise risk areas. These are the central business district and nucleus of Abeokuta metropolis where commercial activities, high traffic volume, and clustered buildings exist. The monitored noise levels varied significantly among the sampled areas in the morning, afternoon and evening (p < 0.05). A significant correlation was found between diagnosed cases of auditory ailments and noise levels measured in the morning (r=0.39 at p < 0.05). Common auditory ailments found across the metropolis included impaired hearing (25.8%), tinnitus (16.4%) and otitis (15.0%). The most affected age groups were between 11-30 years while the male gender had more cases of hearing impairments (51.2%) than the females. The study revealed that environmental noise levels exceeded the recommended standards in the morning, afternoon and evening in 60.6%, 61% and 72.7% of the sampled areas respectively. Summarily, environmental noise in the study area is high and contributes to the morbidity of auditory ailments. Areas identified as hot spots of noise pollution should be avoided in the location of noise sensitive activities while environmental noise monitoring should be included as part of the mandate of the regulatory agencies in Nigeria.Keywords: noise pollution, associative analysis, auditory impairment, urban, human exposure
Procedia PDF Downloads 1442822 The Trajectory of the Ball in Football Game
Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar
Abstract:
Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter
Procedia PDF Downloads 4612821 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models
Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh
Abstract:
In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals
Procedia PDF Downloads 3022820 Wildland Fire in Terai Arc Landscape of Lesser Himalayas Threatning the Tiger Habitat
Authors: Amit Kumar Verma
Abstract:
The present study deals with fire prediction model in Terai Arc Landscape, one of the most dramatic ecosystems in Asia where large, wide-ranging species such as tiger, rhinos, and elephant will thrive while bringing economic benefits to the local people. Forest fires cause huge economic and ecological losses and release considerable quantities of carbon into the air and is an important factor inflating the global burden of carbon emissions. Forest fire is an important factor of behavioral cum ecological habit of tiger in wild. Post fire changes i.e. micro and macro habitat directly affect the tiger habitat or land. Vulnerability of fire depicts the changes in microhabitat (humus, soil profile, litter, vegetation, grassland ecosystem). Microorganism like spider, annelids, arthropods and other favorable microorganism directly affect by the forest fire and indirectly these entire microorganisms are responsible for the development of tiger (Panthera tigris) habitat. On the other hand, fire brings depletion in prey species and negative movement of tiger from wild to human- dominated areas, which may leads the conflict i.e. dangerous for both tiger & human beings. Early forest fire prediction through mapping the risk zones can help minimize the fire frequency and manage forest fires thereby minimizing losses. Satellite data plays a vital role in identifying and mapping forest fire and recording the frequency with which different vegetation types are affected. Thematic hazard maps have been generated by using IDW technique. A prediction model for fire occurrence is developed for TAL. The fire occurrence records were collected from state forest department from 2000 to 2014. Disciminant function models was used for developing a prediction model for forest fires in TAL, random points for non-occurrence of fire have been generated. Based on the attributes of points of occurrence and non-occurrence, the model developed predicts the fire occurrence. The map of predicted probabilities classified the study area into five classes very high (12.94%), high (23.63%), moderate (25.87%), low(27.46%) and no fire (10.1%) based upon the intensity of hazard. model is able to classify 78.73 percent of points correctly and hence can be used for the purpose with confidence. Overall, also the model works correctly with almost 69% of points. This study exemplifies the usefulness of prediction model of forest fire and offers a more effective way for management of forest fire. Overall, this study depicts the model for conservation of tiger’s natural habitat and forest conservation which is beneficial for the wild and human beings for future prospective.Keywords: fire prediction model, forest fire hazard, GIS, landsat, MODIS, TAL
Procedia PDF Downloads 3522819 The Data-Driven Localized Wave Solution of the Fokas-Lenells Equation using PINN
Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta, Sudipta Nandy
Abstract:
The physics informed neural network (PINN) method opens up an approach for numerically solving nonlinear partial differential equations leveraging fast calculating speed and high precession of modern computing systems. We construct the PINN based on strong universal approximation theorem and apply the initial-boundary value data and residual collocation points to weekly impose initial and boundary condition to the neural network and choose the optimization algorithms adaptive moment estimation (ADAM) and Limited-memory Broyden-Fletcher-Golfard-Shanno (L-BFGS) algorithm to optimize learnable parameter of the neural network. Next, we improve the PINN with a weighted loss function to obtain both the bright and dark soliton solutions of Fokas-Lenells equation (FLE). We find the proposed scheme of adjustable weight coefficients into PINN has a better convergence rate and generalizability than the basic PINN algorithm. We believe that the PINN approach to solve the partial differential equation appearing in nonlinear optics would be useful to study various optical phenomena.Keywords: deep learning, optical Soliton, neural network, partial differential equation
Procedia PDF Downloads 1262818 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 4412817 An Insite to the Probabilistic Assessment of Reserves in Conventional Reservoirs
Authors: Sai Sudarshan, Harsh Vyas, Riddhiman Sherlekar
Abstract:
The oil and gas industry has been unwilling to adopt stochastic definition of reserves. Nevertheless, Monte Carlo simulation methods have gained acceptance by engineers, geoscientists and other professionals who want to evaluate prospects or otherwise analyze problems that involve uncertainty. One of the common applications of Monte Carlo simulation is the estimation of recoverable hydrocarbon from a reservoir.Monte Carlo Simulation makes use of random samples of parameters or inputs to explore the behavior of a complex system or process. It finds application whenever one needs to make an estimate, forecast or decision where there is significant uncertainty. First, the project focuses on performing Monte-Carlo Simulation on a given data set using U. S Department of Energy’s MonteCarlo Software, which is a freeware e&p tool. Further, an algorithm for simulation has been developed for MATLAB and program performs simulation by prompting user for input distributions and parameters associated with each distribution (i.e. mean, st.dev, min., max., most likely, etc.). It also prompts user for desired probability for which reserves are to be calculated. The algorithm so developed and tested in MATLAB further finds implementation in Python where existing libraries on statistics and graph plotting have been imported to generate better outcome. With PyQt designer, codes for a simple graphical user interface have also been written. The graph so plotted is then validated with already available results from U.S DOE MonteCarlo Software.Keywords: simulation, probability, confidence interval, sensitivity analysis
Procedia PDF Downloads 3822816 Radio Based Location Detection
Authors: M. Pallikonda Rajasekaran, J. Joshapath, Abhishek Prasad Shaw
Abstract:
Various techniques has been employed to find location such as GPS, GLONASS, Galileo, and Beidou (compass). This paper currently deals with finding location using the existing FM signals that operates between 88-108 MHz. The location can be determined based on the received signal strength of nearby existing FM stations by mapping the signal strength values using trilateration concept. Thus providing security to users data and maintains eco-friendly environment at zero installation cost as this technology already existing FM stations operating in commercial FM band 88-108 MHZ. Along with the signal strength based trilateration it also finds azimuthal angle of the transmitter by employing directional antenna like Yagi-Uda antenna at the receiver side.Keywords: location, existing FM signals, received signal strength, trilateration, security, eco-friendly, direction, privacy, zero installation cost
Procedia PDF Downloads 5192815 Automatic Generating CNC-Code for Milling Machine
Authors: Chalakorn Chitsaart, Suchada Rianmora, Mann Rattana-Areeyagon, Wutichai Namjaiprasert
Abstract:
G-code is the main factor in computer numerical control (CNC) machine for controlling the tool-paths and generating the profile of the object’s features. For obtaining high surface accuracy of the surface finish, non-stop operation is required for CNC machine. Recently, to design a new product, the strategy that concerns about a change that has low impact on business and does not consume lot of resources has been introduced. Cost and time for designing minor changes can be reduced since the traditional geometric details of the existing models are applied. In order to support this strategy as the alternative channel for machining operation, this research proposes the automatic generating codes for CNC milling operation. Using this technique can assist the manufacturer to easily change the size and the geometric shape of the product during the operation where the time spent for setting up or processing the machine are reduced. The algorithm implemented on MATLAB platform is developed by analyzing and evaluating the geometric information of the part. Codes are created rapidly to control the operations of the machine. Comparing to the codes obtained from CAM, this developed algorithm can shortly generate and simulate the cutting profile of the part.Keywords: geometric shapes, milling operation, minor changes, CNC Machine, G-code, cutting parameters
Procedia PDF Downloads 3492814 An Improved Image Steganography Technique Based on Least Significant Bit Insertion
Authors: Olaiya Folorunsho, Comfort Y. Daramola, Joel N. Ugwu, Lawrence B. Adewole, Olufisayo S. Ekundayo
Abstract:
In today world, there is a tremendous rise in the usage of internet due to the fact that almost all the communication and information sharing is done over the web. Conversely, there is a continuous growth of unauthorized access to confidential data. This has posed a challenge to information security expertise whose major goal is to curtail the menace. One of the approaches to secure the safety delivery of data/information to the rightful destination without any modification is steganography. Steganography is the art of hiding information inside an embedded information. This research paper aimed at designing a secured algorithm with the use of image steganographic technique that makes use of Least Significant Bit (LSB) algorithm for embedding the data into the bit map image (bmp) in order to enhance security and reliability. In the LSB approach, the basic idea is to replace the LSB of the pixels of the cover image with the Bits of the messages to be hidden without destroying the property of the cover image significantly. The system was implemented using C# programming language of Microsoft.NET framework. The performance evaluation of the proposed system was experimented by conducting a benchmarking test for analyzing the parameters like Mean Squared Error (MSE) and Peak Signal to Noise Ratio (PSNR). The result showed that image steganography performed considerably in securing data hiding and information transmission over the networks.Keywords: steganography, image steganography, least significant bits, bit map image
Procedia PDF Downloads 2662813 From User's Requirements to UML Class Diagram
Authors: Zeineb Ben Azzouz, Wahiba Ben Abdessalem Karaa
Abstract:
The automated extraction of UML class diagram from natural language requirements is a highly challenging task. Many approaches, frameworks and tools have been presented in this field. Nonetheless, the experiments of these tools have shown that there is no approach that can work best all the time. In this context, we propose a new accurate approach to facilitate the automatic mapping from textual requirements to UML class diagram. Our new approach integrates the best properties of statistical Natural Language Processing (NLP) techniques to reduce ambiguity when analysing natural language requirements text. In addition, our approach follows the best practices defined by conceptual modelling experts to determine some patterns indispensable for the extraction of basic elements and concepts of the class diagram. Once the relevant information of class diagram is captured, a XMI document is generated and imported with a CASE tool to build the corresponding UML class diagram.Keywords: class diagram, user’s requirements, XMI, software engineering
Procedia PDF Downloads 4712812 Effect of an Interface Defect in a Patch/Layer Joint under Dynamic Time Harmonic Load
Authors: Elisaveta Kirilova, Wilfried Becker, Jordanka Ivanova, Tatyana Petrova
Abstract:
The study is a continuation of the research on the hygrothermal piezoelectric response of a smart patch/layer joint with undesirable interface defect (gap) at dynamic time harmonic mechanical and electrical load and environmental conditions. In order to find the axial displacements, shear stress and interface debond length in a closed analytical form for different positions of the interface gap, the 1D modified shear lag analysis is used. The debond length is represented as a function of many parameters (frequency, magnitude, electric displacement, moisture and temperature, joint geometry, position of the gap along the interface, etc.). Then the Genetic algorithm (GA) is implemented to find this position of the gap along the interface at which a vanishing/minimal debond length is ensured, e.g to find the most harmless position for the safe work of the structure. The illustrative example clearly shows that analytical shear-lag solutions and GA method can be combined successfully to give an effective prognosis of interface shear stress and interface delamination in patch/layer structure at combined loading with existing defects. To show the effect of the position of the interface gap, all obtained results are given in figures and discussed.Keywords: genetic algorithm, minimal delamination, optimal gap position, shear lag solution
Procedia PDF Downloads 3012811 RoboWeedSupport-Semi-Automated Unmanned Aerial System for Cost Efficient High Resolution in Sub-Millimeter Scale Acquisition of Weed Images
Authors: Simon L. Madsen, Mads Dyrmann, Morten S. Laursen, Rasmus N. Jørgensen
Abstract:
Recent advances in the Unmanned Aerial System (UAS) safety and perception systems enable safe low altitude autonomous terrain following flights recently demonstrated by the consumer DJI Mavic PRO and Phamtom 4 Pro drones. This paper presents the first prototype system utilizing this functionality in form of semi-automated UAS based collection of crop/weed images where the embedded perception system ensures a significantly safer and faster gathering of weed images with sub-millimeter resolution. The system is to be used when the weeds are at cotyledon stage and prior to the harvest recognizing the grass weed species, which cannot be discriminated at the cotyledon stage.Keywords: weed mapping, UAV, DJI SDK, automation, cotyledon plants
Procedia PDF Downloads 3092810 Co-Seismic Deformation Using InSAR Sentinel-1A: Case Study of the 6.5 Mw Pidie Jaya, Aceh, Earthquake
Authors: Jefriza, Habibah Lateh, Saumi Syahreza
Abstract:
The 2016 Mw 6.5 Pidie Jaya earthquake is one of the biggest disasters that has occurred in Aceh within the last five years. This earthquake has caused severe damage to many infrastructures such as schools, hospitals, mosques, and houses in the district of Pidie Jaya and surrounding areas. Earthquakes commonly occur in Aceh Province due to the Aceh-Sumatra is located in the convergent boundaries of the Sunda Plate subducted beneath the Indo-Australian Plate. This convergence is responsible for the intensification of seismicity in this region. The plates are tilted at a speed of 63 mm per year and the right lateral component is accommodated by strike- slip faulting within Sumatra, mainly along the great Sumatran fault. This paper presents preliminary findings of InSAR study aimed at investigating the co-seismic surface deformation pattern in Pidie Jaya, Aceh-Indonesia. Coseismic surface deformation is rapid displacement that occurs at the time of an earthquake. Coseismic displacement mapping is required to study the behavior of seismic faults. InSAR is a powerful tool for measuring Earth surface deformation to a precision of a few centimetres. In this study, two radar images of the same area but at two different times are required to detect changes in the Earth’s surface. The ascending and descending Sentinel-1A (S1A) synthetic aperture radar (SAR) data and Sentinels application platform (SNAP) toolbox were used to generate SAR interferogram image. In order to visualize the InSAR interferometric, the S1A from both master (26 Nov 2016) and slave data-sets (26 Dec 2016) were utilized as the main data source for mapping the coseismic surface deformation. The results show that the fringes of phase difference have appeared in the border region as a result of the movement that was detected with interferometric technique. On the other hand, the dominant fringes pattern also appears near the coastal area, this is consistent with the field investigations two days after the earthquake. However, the study has also limitations of resolution and atmospheric artefacts in SAR interferograms. The atmospheric artefacts are caused by changes in the atmospheric refractive index of the medium, as a result, has limitation to produce coherence image. Low coherence will be affected the result in creating fringes (movement can be detected by fringes). The spatial resolution of the Sentinel satellite has not been sufficient for studying land surface deformation in this area. Further studies will also be investigated using both ALOS and TerraSAR-X. ALOS and TerraSAR-X improved the spatial resolution of SAR satellite.Keywords: earthquake, InSAR, interferometric, Sentinel-1A
Procedia PDF Downloads 1962809 Use of Satellite Imaging to Understand Earth’s Surface Features: A Roadmap
Authors: Sabri Serkan Gulluoglu
Abstract:
It is possible with Geographic Information Systems (GIS) that the information about all natural and artificial resources on the earth is obtained taking advantage of satellite images are obtained by remote sensing techniques. However, determination of unknown sources, mapping of the distribution and efficient evaluation of resources are defined may not be possible with the original image. For this reasons, some process steps are needed like transformation, pre-processing, image enhancement and classification to provide the most accurate assessment numerically and visually. Many studies which present the phases of obtaining and processing of the satellite images have examined in the literature study. The research showed that the determination of the process steps may be followed at this subject with the existence of a common whole may provide to progress the process rapidly for the necessary and possible studies which will be.Keywords: remote sensing, satellite imaging, gis, computer science, information
Procedia PDF Downloads 318