Search results for: brainwave signal analysis
27130 Kinetic Parameter Estimation from Thermogravimetry and Microscale Combustion Calorimetry
Authors: Rhoda Afriyie Mensah, Lin Jiang, Solomon Asante-Okyere, Xu Qiang, Cong Jin
Abstract:
Flammability analysis of extruded polystyrene (XPS) has become crucial due to its utilization as insulation material for energy efficient buildings. Using the Kissinger-Akahira-Sunose and Flynn-Wall-Ozawa methods, the degradation kinetics of two pure XPS from the local market, red and grey ones, were obtained from the results of thermogravity analysis (TG) and microscale combustion calorimetry (MCC) experiments performed under the same heating rates. From the experiments, it was discovered that red XPS released more heat than grey XPS and both materials showed two mass loss stages. Consequently, the kinetic parameters for red XPS were higher than grey XPS. A comparative evaluation of activation energies from MCC and TG showed an insignificant degree of deviation signifying an equivalent apparent activation energy from both methods. However, different activation energy profiles as a result of the different chemical pathways were presented when the dependencies of the activation energies on extent of conversion for TG and MCC were compared.Keywords: flammability, microscale combustion calorimetry, thermogravity analysis, thermal degradation, kinetic analysis
Procedia PDF Downloads 17727129 Preliminary Study of Material Composition of Wreathed Hornbill (Rhycticeros undulatus) Nest Cover Entrance in Mount Ungaran
Authors: Margareta Rahayuningsih, Siti Alimah, Novita Hermayani, Misbahul Munir
Abstract:
Wreathed Hornbill (Rhycticeros undulatus) was a protected bird that we can found in Mount Ungaran. It is known that the bird have been breeding and nesting on the mountain. The objective of the research was to analysis the materials composition of the Wreathed Hornbill nest wall plaster. The study was carried out in Curug Lawe and Gunung Gentong, Mount Ungaran Central Java. Nest wall plaster samples were collected from nest cavities were used by hornbill but after they left from the nest. The nest tree species on Gunung Gentong was Syzygium antisepticum and Syzigium glabratum on Curug Lawe. Materials analysis used proximate analysis and have been done on Chemistry Laboratory of Semarang State University. The result of proximate analysis showed that the material composition of nest wall plaster such as water, proteins. lipid, carbohydrate, and ash between Curug Lawe and Gunung Gentong was different. Except Carbohidrate, the highest componen showed in the nest wall plaster on Gunung Gentong.Keywords: Mount Ungaran, nest cover entrance, Rhyticeros undulatus, proximate analysis
Procedia PDF Downloads 24727128 Nonlinear Analysis of Reinforced Concrete Arched Structures Considering Soil-Structure Interaction
Authors: Mohamed M. El Gendy, Ibrahim A. El Arabi, Rafeek W. Abdel-Missih, Omar A. Kandil
Abstract:
Nonlinear analysis is one of the most important design and safety tools in structural engineering. Based on the finite-element method, a geometrical and material nonlinear analysis of large span reinforced concrete arches is carried out considering soil-structure interaction. The concrete section details and reinforcement distribution are taken into account. The behavior of soil is considered via Winkler's and continuum models. A computer program (NARC II) is specially developed in order to follow the structural behavior of large span reinforced concrete arches up to failure. The results obtained by the proposed model are compared with available literature for verification. This work confirmed that the geometrical and material nonlinearities, as well as soil structure interaction, have considerable influence on the structural response of reinforced concrete arches.Keywords: nonlinear analysis, reinforced concrete arched structure, soil-structure interaction, geotechnical engineering
Procedia PDF Downloads 43827127 The Effect of Transactional Analysis Group Training on Self-Knowledge and Its Ego States (The Child, Parent, and Adult): A Quasi-Experimental Study Applied to Counselors of Tehran
Authors: Mehravar Javid, Sadrieh Khajavi Mazanderani, Kelly Gleischman, Zoe Andris
Abstract:
The present study was conducted with the aim of investigating the effectiveness of transactional analysis group training on self-knowledge and Its dimensions (self, child, and adult) in counselors working in public and private high schools in Tehran. Counseling has become an important job for society, and there is a need for consultants in organizations. Providing better and more efficient counseling is one of the goals of the education system. The personal characteristics of counselors are important for the success of the therapy. In TA, humans have three ego states, which are named parent, adult, and child, and the main concept in the transactional analysis is self-state, which means a stable feeling and pattern of thinking related to behavioral patterns. Self-knowledge, considered a prerequisite to effective communication, fosters psychological growth, and recognizing it, is pivotal for emotional development, leading to profound insights. The research sample included 30 working counselors (22 women and 8 men) in the academic year 2019-2020 who achieved the lowest scores on the self-knowledge questionnaire. The research method was quasi-experimental with a control group (15 people in the experimental group and 15 people in the control group). The research tool was a self-awareness questionnaire with 29 questions and three subscales (child, parent, and adult Ego state). The experimental group was exposed to transactional analysis training for 10 once-weekly 2-hour sessions; the questionnaire was implemented in both groups (post-test). Multivariate covariance analysis was used to analyze the data. The data showed that the level of self-awareness of counselors who received transactional analysis training is higher than that of counselors who did not receive any training (p<0.01). The result obtained from this analysis shows that transactional analysis training is an effective therapy for enhancing self-knowledge and its subscales (Adult ego state, Parent ego state, and Child ego state). Teaching transactional analysis increases self-knowledge, and self-realization and helps people to achieve independence and remove irresponsibility to improve intra-personal and interpersonal relationships.Keywords: ego state, group, transactional analysis, self-knowledge
Procedia PDF Downloads 7627126 Data Quality Enhancement with String Length Distribution
Authors: Qi Xiu, Hiromu Hota, Yohsuke Ishii, Takuya Oda
Abstract:
Recently, collectable manufacturing data are rapidly increasing. On the other hand, mega recall is getting serious as a social problem. Under such circumstances, there are increasing needs for preventing mega recalls by defect analysis such as root cause analysis and abnormal detection utilizing manufacturing data. However, the time to classify strings in manufacturing data by traditional method is too long to meet requirement of quick defect analysis. Therefore, we present String Length Distribution Classification method (SLDC) to correctly classify strings in a short time. This method learns character features, especially string length distribution from Product ID, Machine ID in BOM and asset list. By applying the proposal to strings in actual manufacturing data, we verified that the classification time of strings can be reduced by 80%. As a result, it can be estimated that the requirement of quick defect analysis can be fulfilled.Keywords: string classification, data quality, feature selection, probability distribution, string length
Procedia PDF Downloads 31827125 A Students' Ability Analysis Methods, Devices, Electronic Equipment and Storage Media Design
Authors: Dequn Teng, Tianshuo Yang, Mingrui Wang, Qiuyu Chen, Xiao Wang, Katie Atkinson
Abstract:
Currently, many students are kind of at a loss in the university due to the complex environment within the campus, where every information within the campus is isolated with fewer interactions with each other. However, if the on-campus resources are gathered and combined with the artificial intelligence modelling techniques, there will be a bridge for not only students in understanding themselves, and the teachers will understand students in providing a much efficient approach in education. The objective of this paper is to provide a competency level analysis method, apparatus, electronic equipment, and storage medium. It uses a user’s target competency level analysis model from a plurality of predefined candidate competency level analysis models by obtaining a user’s promotion target parameters, promotion target parameters including at least one of the following parameters: target profession, target industry, and the target company, according to the promotion target parameters. According to the parameters, the model analyzes the user’s ability level, determines the user’s ability level, realizes the quantitative and personalized analysis of the user’s ability level, and helps the user to objectively position his ability level.Keywords: artificial intelligence, model, university, education, recommendation system, evaluation, job hunting
Procedia PDF Downloads 14427124 The Classification of Parkinson Tremor and Essential Tremor Based on Frequency Alteration of Different Activities
Authors: Chusak Thanawattano, Roongroj Bhidayasiri
Abstract:
This paper proposes a novel feature set utilized for classifying the Parkinson tremor and essential tremor. Ten ET and ten PD subjects are asked to perform kinetic, postural and resting tests. The empirical mode decomposition (EMD) is used to decompose collected tremor signal to a set of intrinsic mode functions (IMF). The IMFs are used for reconstructing representative signals. The feature set is composed of peak frequencies of IMFs and reconstructed signals. Hypothesize that the dominant frequency components of subjects with PD and ET change in different directions for different tests, difference of peak frequencies of IMFs and reconstructed signals of pairwise based tests (kinetic-resting, kinetic-postural and postural-resting) are considered as potential features. Sets of features are used to train and test by classifier including the quadratic discriminant classifier (QLC) and the support vector machine (SVM). The best accuracy, the best sensitivity and the best specificity are 90%, 87.5%, and 92.86%, respectively.Keywords: tremor, Parkinson, essential tremor, empirical mode decomposition, quadratic discriminant, support vector machine, peak frequency, auto-regressive, spectrum estimation
Procedia PDF Downloads 44327123 Co-Gasification Process for Green and Blue Hydrogen Production: Innovative Process Development, Economic Analysis, and Exergy Assessment
Authors: Yousaf Ayub
Abstract:
A co-gasification process, which involves the utilization of both biomass and plastic waste, has been developed to enable the production of blue and green hydrogen. To support this endeavor, an Aspen Plus simulation model has been meticulously created, and sustainability analysis is being conducted, focusing on economic viability, energy efficiency, advanced exergy considerations, and exergoeconomics evaluations. In terms of economic analysis, the process has demonstrated strong economic sustainability, as evidenced by an internal rate of return (IRR) of 8% at a process efficiency level of 70%. At present, the process has the potential to generate approximately 1100 kWh of electric power, with any excess electricity, beyond meeting the process requirements, capable of being harnessed for green hydrogen production via an alkaline electrolysis cell (AEC). This surplus electricity translates to a potential daily hydrogen production of around 200 kg. The exergy analysis of the model highlights that the gasifier component exhibits the lowest exergy efficiency, resulting in the highest energy losses, amounting to approximately 40%. Additionally, advanced exergy analysis findings pinpoint the gasifier as the primary source of exergy destruction, totaling around 9000 kW, with associated exergoeconomics costs amounting to 6500 $/h. Consequently, improving the gasifier's performance is a critical focal point for enhancing the overall sustainability of the process, encompassing energy, exergy, and economic considerations.Keywords: blue hydrogen, green hydrogen, co-gasification, waste valorization, exergy analysis
Procedia PDF Downloads 6527122 Fractal Analysis of Polyacrylamide-Graphene Oxide Composite Gels
Authors: Gülşen Akın Evingür, Önder Pekcan
Abstract:
The fractal analysis is a bridge between the microstructure and macroscopic properties of gels. Fractal structure is usually provided to define the complexity of crosslinked molecules. The complexity in gel systems is described by the fractal dimension (Df). In this study, polyacrylamide- graphene oxide (GO) composite gels were prepared by free radical crosslinking copolymerization. The fractal analysis of polyacrylamide- graphene oxide (GO) composite gels were analyzed in various GO contents during gelation and were investigated by using Fluorescence Technique. The analysis was applied to estimate Df s of the composite gels. Fractal dimension of the polymer composite gels were estimated based on the power law exponent values using scaling models. In addition, here we aimed to present the geometrical distribution of GO during gelation. And we observed that as gelation proceeded GO plates first organized themselves into 3D percolation cluster with Df=2.52, then goes to diffusion limited clusters with Df =1.4 and then lines up to Von Koch curve with random interval with Df=1.14. Here, our goal is to try to interpret the low conductivity and/or broad forbidden gap of GO doped PAAm gels, by the distribution of GO in the final form of the produced gel.Keywords: composite gels, fluorescence, fractal, scaling
Procedia PDF Downloads 30727121 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan
Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad
Abstract:
Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules
Procedia PDF Downloads 10727120 A Brain Controlled Robotic Gait Trainer for Neurorehabilitation
Authors: Qazi Umer Jamil, Abubakr Siddique, Mubeen Ur Rehman, Nida Aziz, Mohsin I. Tiwana
Abstract:
This paper discusses a brain controlled robotic gait trainer for neurorehabilitation of Spinal Cord Injury (SCI) patients. Patients suffering from Spinal Cord Injuries (SCI) become unable to execute motion control of their lower proximities due to degeneration of spinal cord neurons. The presented approach can help SCI patients in neuro-rehabilitation training by directly translating patient motor imagery into walkers motion commands and thus bypassing spinal cord neurons completely. A non-invasive EEG based brain-computer interface is used for capturing patient neural activity. For signal processing and classification, an open source software (OpenVibe) is used. Classifiers categorize the patient motor imagery (MI) into a specific set of commands that are further translated into walker motion commands. The robotic walker also employs fall detection for ensuring safety of patient during gait training and can act as a support for SCI patients. The gait trainer is tested with subjects, and satisfactory results were achieved.Keywords: brain computer interface (BCI), gait trainer, spinal cord injury (SCI), neurorehabilitation
Procedia PDF Downloads 16127119 A Network Approach to Analyzing Financial Markets
Authors: Yusuf Seedat
Abstract:
The necessity to understand global financial markets has increased following the unfortunate spread of the recent financial crisis around the world. Financial markets are considered to be complex systems consisting of highly volatile move-ments whose indexes fluctuate without any clear pattern. Analytic methods of stock prices have been proposed in which financial markets are modeled using common network analysis tools and methods. It has been found that two key components of social network analysis are relevant to modeling financial markets, allowing us to forecast accurate predictions of stock prices within the financial market. Financial markets have a number of interacting components, leading to complex behavioral patterns. This paper describes a social network approach to analyzing financial markets as a viable approach to studying the way complex stock markets function. We also look at how social network analysis techniques and metrics are used to gauge an understanding of the evolution of financial markets as well as how community detection can be used to qualify and quantify in-fluence within a network.Keywords: network analysis, social networks, financial markets, stocks, nodes, edges, complex networks
Procedia PDF Downloads 19127118 Humeral Head and Scapula Detection in Proton Density Weighted Magnetic Resonance Images Using YOLOv8
Authors: Aysun Sezer
Abstract:
Magnetic Resonance Imaging (MRI) is one of the advanced diagnostic tools for evaluating shoulder pathologies. Proton Density (PD)-weighted MRI sequences prove highly effective in detecting edema. However, they are deficient in the anatomical identification of bones due to a trauma-induced decrease in signal-to-noise ratio and blur in the traumatized cortices. Computer-based diagnostic systems require precise segmentation, identification, and localization of anatomical regions in medical imagery. Deep learning-based object detection algorithms exhibit remarkable proficiency in real-time object identification and localization. In this study, the YOLOv8 model was employed to detect humeral head and scapular regions in 665 axial PD-weighted MR images. The YOLOv8 configuration achieved an overall success rate of 99.60% and 89.90% for detecting the humeral head and scapula, respectively, with an intersection over union (IoU) of 0.5. Our findings indicate a significant promise of employing YOLOv8-based detection for the humerus and scapula regions, particularly in the context of PD-weighted images affected by both noise and intensity inhomogeneity.Keywords: YOLOv8, object detection, humerus, scapula, IRM
Procedia PDF Downloads 6627117 Comparison of Power Generation Status of Photovoltaic Systems under Different Weather Conditions
Authors: Zhaojun Wang, Zongdi Sun, Qinqin Cui, Xingwan Ren
Abstract:
Based on multivariate statistical analysis theory, this paper uses the principal component analysis method, Mahalanobis distance analysis method and fitting method to establish the photovoltaic health model to evaluate the health of photovoltaic panels. First of all, according to weather conditions, the photovoltaic panel variable data are classified into five categories: sunny, cloudy, rainy, foggy, overcast. The health of photovoltaic panels in these five types of weather is studied. Secondly, a scatterplot of the relationship between the amount of electricity produced by each kind of weather and other variables was plotted. It was found that the amount of electricity generated by photovoltaic panels has a significant nonlinear relationship with time. The fitting method was used to fit the relationship between the amount of weather generated and the time, and the nonlinear equation was obtained. Then, using the principal component analysis method to analyze the independent variables under five kinds of weather conditions, according to the Kaiser-Meyer-Olkin test, it was found that three types of weather such as overcast, foggy, and sunny meet the conditions for factor analysis, while cloudy and rainy weather do not satisfy the conditions for factor analysis. Therefore, through the principal component analysis method, the main components of overcast weather are temperature, AQI, and pm2.5. The main component of foggy weather is temperature, and the main components of sunny weather are temperature, AQI, and pm2.5. Cloudy and rainy weather require analysis of all of their variables, namely temperature, AQI, pm2.5, solar radiation intensity and time. Finally, taking the variable values in sunny weather as observed values, taking the main components of cloudy, foggy, overcast and rainy weather as sample data, the Mahalanobis distances between observed value and these sample values are obtained. A comparative analysis was carried out to compare the degree of deviation of the Mahalanobis distance to determine the health of the photovoltaic panels under different weather conditions. It was found that the weather conditions in which the Mahalanobis distance fluctuations ranged from small to large were: foggy, cloudy, overcast and rainy.Keywords: fitting, principal component analysis, Mahalanobis distance, SPSS, MATLAB
Procedia PDF Downloads 14427116 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 7727115 Accessibility and Visibility through Space Syntax Analysis of the Linga Raj Temple in Odisha, India
Authors: S. Pramanik
Abstract:
Since the early ages, the Hindu temples have been interpreted through various Vedic philosophies. These temples are visited by pilgrims which demonstrate the rituals and religious belief of communities, reflecting a variety of actions and behaviors. Darsana— a direct seeing, is a part of the pilgrimage activity. During the process of Darsana, a devotee is prepared for entry in the temple to realize the cognizing Truth culminating in visualizing the idol of God, placed at the Garbhagriha (sanctum sanctorum). For this, the pilgrim must pass through a sequential arrangement of spaces. During the process of progress, the pilgrims visualize the spaces differently from various points of views. The viewpoints create a variety of spatial patterns in the minds of pilgrims coherent to the Hindu philosophies. The space organization and its order are perceived by various techniques of spatial analysis. A temple, as examples of Kalinga stylistic variations, has been chosen for the study. This paper intends to demonstrate some visual patterns generated during the process of Darsana (visibility) and its accessibility by Point Isovist Studies and Visibility Graph Analysis from the entrance (Simha Dwara) to The Sanctum sanctorum (Garbhagriha).Keywords: Hindu temple architecture, point isovist, space syntax analysis, visibility graph analysis
Procedia PDF Downloads 12027114 Tracing the Evolution of English and Urdu Languages: A Linguistic and Cultural Analysis
Authors: Aamna Zafar
Abstract:
Through linguistic and cultural analysis, this study seeks to trace the development of the English and Urdu languages. Along with examining how the vocabulary and syntax of English and Urdu have evolved over time and the linguistic trends that may be seen in these changes, this study will also look at the historical and cultural influences that have shaped the languages throughout time. The study will also look at how English and Urdu have changed over time, both in terms of language use and communication inside each other's cultures and globally. We'll research how these changes affect social relations and cultural identity, as well as how they might affect the future of these languages.Keywords: linguistic and cultural analysis, historical factors, cultural factors, vocabulary, syntax, significance
Procedia PDF Downloads 7527113 Simplifying Seismic Vulnerability Analysis for Existing Reinforced Concrete Buildings
Authors: Maryam Solgi, Behzad Shahmohammadi, Morteza Raissi Dehkordi
Abstract:
One of the main steps for seismic retrofitting of buildings is to determine the vulnerability of structures. While current procedures for evaluating existing buildings are complicated, and there is no limitation between short, middle-high, and tall buildings. This research utilizes a simplified method for assessing structures, which is adequate for existing reinforced concrete buildings. To approach this aim, Simple Lateral Mechanisms Analysis (SLaMA) procedure proposed by NZSEE (New Zealand Society for Earthquake Engineering) has been carried out. In this study, three RC moment-resisting frame buildings are determined. First, these buildings have been evaluated by inelastic static procedure (Pushover) based on acceptance criteria. Then, Park-Ang Damage Index is determined for the whole members of each building by Inelastic Time History Analysis. Next, the Simple Lateral Mechanisms Analysis procedure, a hand method, is carried out to define the capacity of structures. Ultimately, existing procedures are compared with Peak Ground Acceleration caused to fail (PGAfail). The results of this comparison emphasize that the Pushover procedure and SLaMA method define a greater value of PGAfail than the Park-Ang Damage model.Keywords: peak ground acceleration caused to fail, reinforced concrete moment-frame buildings, seismic vulnerability analysis, simple lateral mechanisms analysis
Procedia PDF Downloads 9327112 Effect of Aryl Imidazolium Ionic Liquids as Asphaltene Dispersants
Authors: Raghda Ahmed El-Nagar
Abstract:
Oil spills are one of the most serious environmental issues that have occurred during the production and transportation of petroleum crude oil. Chemical asphaltene dispersants are hazardous to the marine environment, so Ionic liquids (ILs) as asphaltene dispersants are a critical area of study. In this work, different aryl imidazolium ionic liquids were synthesized with high yield and elucidated via tools of analysis (Elemental analysis, FT-IR, and 1H-NMR). Thermogravimetric analysis confirmed that the prepared ILs posses high thermal stability. The critical micelle concentration (CMC), surface tension, and emulsification index were investigated. Evaluation of synthesized ILs as asphaltene dispersants were assessed at various concentrations, and data reveals high dispersion efficiency.Keywords: ionic liquids, oil spill, asphaltene dispersants, CMC, efficiency
Procedia PDF Downloads 19427111 Optimization of Element Type for FE Model and Verification of Analyses with Physical Tests
Authors: Mustafa Tufekci, Caner Guven
Abstract:
In Automotive Industry, sliding door systems that are also used as body closures, are safety members. Extreme product tests are realized to prevent failures in a design process, but these tests realized experimentally result in high costs. Finite element analysis is an effective tool used for the design process. These analyses are used before production of a prototype for validation of design according to customer requirement. In result of this, the substantial amount of time and cost is saved. Finite element model is created for geometries that are designed in 3D CAD programs. Different element types as bar, shell and solid, can be used for creating mesh model. The cheaper model can be created by the selection of element type, but combination of element type that was used in model, number and geometry of element and degrees of freedom affects the analysis result. Sliding door system is a good example which used these methods for this study. Structural analysis was realized for sliding door mechanism by using FE models. As well, physical tests that have same boundary conditions with FE models were realized. Comparison study for these element types, were done regarding test and analyses results then the optimum combination was achieved.Keywords: finite element analysis, sliding door mechanism, element type, structural analysis
Procedia PDF Downloads 32927110 An Improved Adaptive Dot-Shape Beamforming Algorithm Research on Frequency Diverse Array
Authors: Yanping Liao, Zenan Wu, Ruigang Zhao
Abstract:
Frequency diverse array (FDA) beamforming is a technology developed in recent years, and its antenna pattern has a unique angle-distance-dependent characteristic. However, the beam is always required to have strong concentration, high resolution and low sidelobe level to form the point-to-point interference in the concentrated set. In order to eliminate the angle-distance coupling of the traditional FDA and to make the beam energy more concentrated, this paper adopts a multi-carrier FDA structure based on proposed power exponential frequency offset to improve the array structure and frequency offset of the traditional FDA. The simulation results show that the beam pattern of the array can form a dot-shape beam with more concentrated energy, and its resolution and sidelobe level performance are improved. However, the covariance matrix of the signal in the traditional adaptive beamforming algorithm is estimated by the finite-time snapshot data. When the number of snapshots is limited, the algorithm has an underestimation problem, which leads to the estimation error of the covariance matrix to cause beam distortion, so that the output pattern cannot form a dot-shape beam. And it also has main lobe deviation and high sidelobe level problems in the case of limited snapshot. Aiming at these problems, an adaptive beamforming technique based on exponential correction for multi-carrier FDA is proposed to improve beamforming robustness. The steps are as follows: first, the beamforming of the multi-carrier FDA is formed under linear constrained minimum variance (LCMV) criteria. Then the eigenvalue decomposition of the covariance matrix is performed to obtain the diagonal matrix composed of the interference subspace, the noise subspace and the corresponding eigenvalues. Finally, the correction index is introduced to exponentially correct the small eigenvalues of the noise subspace, improve the divergence of small eigenvalues in the noise subspace, and improve the performance of beamforming. The theoretical analysis and simulation results show that the proposed algorithm can make the multi-carrier FDA form a dot-shape beam at limited snapshots, reduce the sidelobe level, improve the robustness of beamforming, and have better performance.Keywords: adaptive beamforming, correction index, limited snapshot, multi-carrier frequency diverse array, robust
Procedia PDF Downloads 13027109 Flashover Detection Algorithm Based on Mother Function
Authors: John A. Morales, Guillermo Guidi, B. M. Keune
Abstract:
Electric Power supply is a crucial topic for economic and social development. Power outages statistics show that discharges atmospherics are imperative phenomena to produce those outages. In this context, it is necessary to correctly detect when overhead line insulators are faulted. In this paper, an algorithm to detect if a lightning stroke generates or not permanent fault on insulator strings is proposed. On top of that, lightning stroke simulations developed by using the Alternative Transients Program, are used. Based on these insights, a novel approach is designed that depends on mother functions analysis corresponding to the given variance-covariance matrix. Signals registered at the insulator string are projected on corresponding axes by the means of Principal Component Analysis. By exploiting these new axes, it is possible to determine a flashover characteristic zone useful to a good insulation design. The proposed methodology for flashover detection extends the existing approaches for the analysis and study of lightning performance on transmission lines.Keywords: mother function, outages, lightning, sensitivity analysis
Procedia PDF Downloads 58727108 Evaluation of Long Term Evolution Mobile Signal Propagation Models and Vegetation Attenuation in the Livestock Department at Escuela Superior Politécnica de Chimborazo
Authors: Cinthia Campoverde, Mateo Benavidez, Victor Arias, Milton Torres
Abstract:
This article evaluates and compares three propagation models: the Okumura-Hata model, the Ericsson 9999 model, and the SUI model. The inclusion of vegetation attenuation in the area is also taken into account. These mathematical models aim to predict the power loss between a transmitting antenna (Tx) and a receiving antenna (Rx). The study was conducted in the open areas of the Livestock Department at the Escuela Superior Politécnica de Chimborazo (ESPOCH) University, located in the city of Riobamba, Ecuador. The necessary parameters for each model were calculated, considering LTE technology. The transmitting antenna belongs to the mobile phone company ”TUENTI” in Band 2, operating at a frequency of 1940 MHz. The reception power data in the area were empirically measured using the ”Network Cell Info” application. A total of 170 samples were collected, distributed across 19 radius, forming concentric circles around the transmitting antenna. The results demonstrate that the Okumura Hata urban model provides the best fit to the measured data.Keywords: propagation models, reception power, LTE, power losses, correction factor
Procedia PDF Downloads 8227107 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.Keywords: landslide, limit analysis, artificial neural network, soil properties
Procedia PDF Downloads 20727106 Advancement of Computer Science Research in Nigeria: A Bibliometric Analysis of the Past Three Decades
Authors: Temidayo O. Omotehinwa, David O. Oyewola, Friday J. Agbo
Abstract:
This study aims to gather a proper perspective of the development landscape of Computer Science research in Nigeria. Therefore, a bibliometric analysis of 4,333 bibliographic records of Computer Science research in Nigeria in the last 31 years (1991-2021) was carried out. The bibliographic data were extracted from the Scopus database and analyzed using VOSviewer and the bibliometrix R package through the biblioshiny web interface. The findings of this study revealed that Computer Science research in Nigeria has a growth rate of 24.19%. The most developed and well-studied research areas in the Computer Science field in Nigeria are machine learning, data mining, and deep learning. The social structure analysis result revealed that there is a need for improved international collaborations. Sparsely established collaborations are largely influenced by geographic proximity. The funding analysis result showed that Computer Science research in Nigeria is under-funded. The findings of this study will be useful for researchers conducting Computer Science related research. Experts can gain insights into how to develop a strategic framework that will advance the field in a more impactful manner. Government agencies and policymakers can also utilize the outcome of this research to develop strategies for improved funding for Computer Science research.Keywords: bibliometric analysis, biblioshiny, computer science, Nigeria, science mapping
Procedia PDF Downloads 11227105 Experiment and Analytical Study on Fire Resistance Performance of Slot Type Concrete-Filled Tube
Authors: Bum Yean Cho, Heung-Youl Kim, Ki-Seok Kwon, Kang-Su Kim
Abstract:
In this study, a full-scale test and analysis (numerical analysis) of fire resistance performance of bare CFT column on which slot was used instead of existing welding method to connect the steel pipe on the concrete-filled tube were conducted. Welded CFT column is known to be vulnerable to high or low temperature because of low brittleness of welding part. As a result of a fire resistance performance test of slot CFT column after removing the welding part and fixing it by a slot which was folded into the tube, slot type CFT column indicated the improved fire resistance performance than welded CFT column by 28% or more. And as a result of conducting finite element analysis of slot type column using ABAQUS, analysis result proved the reliability of the test result in predicting the fire behavior and fire resistance hour.Keywords: CFT (concrete-filled tube) column, fire resistance performance, slot, weld
Procedia PDF Downloads 18427104 Decision Support Tool for Green Roofs Selection: A Multicriteria Analysis
Authors: I. Teotónio, C.O. Cruz, C.M. Silva, M. Manso
Abstract:
Diverse stakeholders show different concerns when choosing green roof systems. Also, green roof solutions vary in their cost and performance. Therefore, decision-makers continually face the difficult task of balancing benefits against green roofs costs. Decision analysis methods, as multicriteria analysis, can be used when the decision‑making process includes different perspectives, multiple objectives, and uncertainty. The present study adopts a multicriteria decision model to evaluate the installation of green roofs in buildings, determining the solution with the best trade-off between costs and benefits in agreement with the preferences of the users/investors. This methodology was applied to a real decision problem, assessing the preferences between different green roof systems in an existing building in Lisbon. This approach supports the decision-making process on green roofs and enables robust and informed decisions on urban planning while optimizing buildings retrofitting.Keywords: decision making, green roofs, investors preferences, multicriteria analysis, sustainable development
Procedia PDF Downloads 18427103 Design and Implementation of Image Super-Resolution for Myocardial Image
Authors: M. V. Chidananda Murthy, M. Z. Kurian, H. S. Guruprasad
Abstract:
Super-resolution is the technique of intelligently upscaling images, avoiding artifacts or blurring, and deals with the recovery of a high-resolution image from one or more low-resolution images. Single-image super-resolution is a process of obtaining a high-resolution image from a set of low-resolution observations by signal processing. While super-resolution has been demonstrated to improve image quality in scaled down images in the image domain, its effects on the Fourier-based technique remains unknown. Super-resolution substantially improved the spatial resolution of the patient LGE images by sharpening the edges of the heart and the scar. This paper aims at investigating the effects of single image super-resolution on Fourier-based and image based methods of scale-up. In this paper, first, generate a training phase of the low-resolution image and high-resolution image to obtain dictionary. In the test phase, first, generate a patch and then difference of high-resolution image and interpolation image from the low-resolution image. Next simulation of the image is obtained by applying convolution method to the dictionary creation image and patch extracted the image. Finally, super-resolution image is obtained by combining the fused image and difference of high-resolution and interpolated image. Super-resolution reduces image errors and improves the image quality.Keywords: image dictionary creation, image super-resolution, LGE images, patch extraction
Procedia PDF Downloads 37527102 A Study of the Relationship between Time Management Behaviour and Job Satisfaction of Higher Education Institutes in India
Authors: Sania K. Rao, Feza T. Azmi
Abstract:
The purpose of the present study is to explore the relationship between time management behaviour and job satisfaction of academicians of higher education institutes in India. The analyses of this study were carried out with AMOS (version 20.0); and Confirmatory Factor Analysis (CFA) and Structural Equation Modelling (SEM) were conducted. The factor analysis and findings show that perceived control of time serves as the partial mediating factor to have a significant and positive influence on job satisfaction. Further, at the end, a number of suggestions to improve one’s time management behaviour were provided.Keywords: time management behaviour, job satisfaction, higher education, India, mediation analysis
Procedia PDF Downloads 38927101 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation
Authors: Tokihiko Akita, Seiichi Mita
Abstract:
A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation
Procedia PDF Downloads 93