Search results for: sub-pixel accuracy
3613 Malignancy Assessment of Brain Tumors Using Convolutional Neural Network
Authors: Chung-Ming Lo, Kevin Li-Chun Hsieh
Abstract:
The central nervous system in the World Health Organization defines grade 2, 3, 4 gliomas according to the aggressiveness. For brain tumors, using image examination would have a lower risk than biopsy. Besides, it is a challenge to extract relevant tissues from biopsy operation. Observing the whole tumor structure and composition can provide a more objective assessment. This study further proposed a computer-aided diagnosis (CAD) system based on a convolutional neural network to quantitatively evaluate a tumor's malignancy from brain magnetic resonance imaging. A total of 30 grade 2, 43 grade 3, and 57 grade 4 gliomas were collected in the experiment. Transferred parameters from AlexNet were fine-tuned to classify the target brain tumors and achieved an accuracy of 98% and an area under the receiver operating characteristics curve (Az) of 0.99. Without pre-trained features, only 61% of accuracy was obtained. The proposed convolutional neural network can accurately and efficiently classify grade 2, 3, and 4 gliomas. The promising accuracy can provide diagnostic suggestions to radiologists in the clinic.Keywords: convolutional neural network, computer-aided diagnosis, glioblastoma, magnetic resonance imaging
Procedia PDF Downloads 1493612 A Carrier Phase High Precision Ranging Theory Based on Frequency Hopping
Authors: Jie Xu, Zengshan Tian, Ze Li
Abstract:
Previous indoor ranging or localization systems achieving high accuracy time of flight (ToF) estimation relied on two key points. One is to do strict time and frequency synchronization between the transmitter and receiver to eliminate equipment asynchronous errors such as carrier frequency offset (CFO), but this is difficult to achieve in a practical communication system. The other one is to extend the total bandwidth of the communication because the accuracy of ToF estimation is proportional to the bandwidth, and the larger the total bandwidth, the higher the accuracy of ToF estimation obtained. For example, ultra-wideband (UWB) technology is implemented based on this theory, but high precision ToF estimation is difficult to achieve in common WiFi or Bluetooth systems with lower bandwidth compared to UWB. Therefore, it is meaningful to study how to achieve high-precision ranging with lower bandwidth when the transmitter and receiver are asynchronous. To tackle the above problems, we propose a two-way channel error elimination theory and a frequency hopping-based carrier phase ranging algorithm to achieve high accuracy ranging under asynchronous conditions. The two-way channel error elimination theory uses the symmetry property of the two-way channel to solve the asynchronous phase error caused by the asynchronous transmitter and receiver, and we also study the effect of the two-way channel generation time difference on the phase according to the characteristics of different hardware devices. The frequency hopping-based carrier phase ranging algorithm uses frequency hopping to extend the equivalent bandwidth and incorporates a carrier phase ranging algorithm with multipath resolution to achieve a ranging accuracy comparable to that of UWB at 400 MHz bandwidth in the typical 80 MHz bandwidth of commercial WiFi. Finally, to verify the validity of the algorithm, we implement this theory using a software radio platform, and the actual experimental results show that the method proposed in this paper has a median ranging error of 5.4 cm in the 5 m range, 7 cm in the 10 m range, and 10.8 cm in the 20 m range for a total bandwidth of 80 MHz.Keywords: frequency hopping, phase error elimination, carrier phase, ranging
Procedia PDF Downloads 1263611 Fluorometric Aptasensor: Evaluation of Stability and Comparison to Standard Enzyme-Linked Immunosorbent Assay
Authors: J. Carlos Kuri, Varun Vij, Raymond J. Turner, Orly Yadid-Pecht
Abstract:
Celiac disease (CD) is an immune system disorder that is triggered by ingesting gluten. As a gluten-free (GF) diet has become a concern of many people for health reasons, a gold standard had to be nominated. Enzyme-linked immunosorbent assay (ELISA) has taken the seat of this role. However, multiple limitations were discovered, and with that, the desire for an alternative method now exists. Nucleic acid-based aptamers have become of great interest due to their selectivity, specificity, simplicity, and rapid-testing advantages. However, fluorescence-based aptasensors have been tagged as unstable, but lifespan details are rarely stated. In this work, the lifespan stability of a fluorescence-based aptasensor is shown over an 8-week-long study displaying the accuracy of the sensor and false negatives. This study follows 22 different samples, including GF and gluten-rich (GR) and soy sauce products, off-the-shelf products, and reference material from laboratories, giving a total of 836 tests. The analysis shows an accuracy of correctly classifying GF and GR products of 96.30% and 100%, respectively when the protocol is augmented with molecular sieves. The overall accuracy remains around 94% within the first four weeks and then decays to 63%.Keywords: aptasensor, PEG, rGO, FAM, RM, ELISA
Procedia PDF Downloads 1273610 An Enhanced Support Vector Machine Based Approach for Sentiment Classification of Arabic Tweets of Different Dialects
Authors: Gehad S. Kaseb, Mona F. Ahmed
Abstract:
Arabic Sentiment Analysis (SA) is one of the most common research fields with many open areas. Few studies apply SA to Arabic dialects. This paper proposes different pre-processing steps and a modified methodology to improve the accuracy using normal Support Vector Machine (SVM) classification. The paper works on two datasets, Arabic Sentiment Tweets Dataset (ASTD) and Extended Arabic Tweets Sentiment Dataset (Extended-AATSD), which are publicly available for academic use. The results show that the classification accuracy approaches 86%.Keywords: Arabic, classification, sentiment analysis, tweets
Procedia PDF Downloads 1513609 Analysis of the Accuracy of Earth Movement with Drone Surveys
Authors: Raúl Pereda García, Julio Manuel de Luis Ruiz, Elena Castillo López, Rubén Pérez Álvarez, Felipe Piña García
Abstract:
New technologies for the capture of point clouds have experienced a great advance in recent years. In this way, its use has been extended in geomatics, providing measurement solutions that have been popularized without there being, many times, a detailed study of its accuracy. This research focuses on the study of the viability of topographic works with drones incorporating different sensors sensitive to the visible spectrum. The fundamentals have been applied to a road, located in Cantabria (Spain), where a platform extension and the reform of a riprap were being constructed. A total of six flights were made during two months, all of them with GPS as part of the photogrammetric process, and the results were contrasted with those measured with total station. The obtained results show that the choice of the camera and the planning of the flight have an important impact on the accuracy. In fact, the representations with a level of detail corresponding to 1/1000 scale are admissible, depending on the existing vegetation, and obtaining better results in the area of the riprap. This set of techniques is, therefore, suitable for the control of earthworks in road works but with certain limitations which are exposed in this paper.Keywords: drone, earth movement control, global position system, surveying technology.
Procedia PDF Downloads 1873608 Multi-Class Text Classification Using Ensembles of Classifiers
Authors: Syed Basit Ali Shah Bukhari, Yan Qiang, Saad Abdul Rauf, Syed Saqlaina Bukhari
Abstract:
Text Classification is the methodology to classify any given text into the respective category from a given set of categories. It is highly important and vital to use proper set of pre-processing , feature selection and classification techniques to achieve this purpose. In this paper we have used different ensemble techniques along with variance in feature selection parameters to see the change in overall accuracy of the result and also on some other individual class based features which include precision value of each individual category of the text. After subjecting our data through pre-processing and feature selection techniques , different individual classifiers were tested first and after that classifiers were combined to form ensembles to increase their accuracy. Later we also studied the impact of decreasing the classification categories on over all accuracy of data. Text classification is highly used in sentiment analysis on social media sites such as twitter for realizing people’s opinions about any cause or it is also used to analyze customer’s reviews about certain products or services. Opinion mining is a vital task in data mining and text categorization is a back-bone to opinion mining.Keywords: Natural Language Processing, Ensemble Classifier, Bagging Classifier, AdaBoost
Procedia PDF Downloads 2373607 Selecting the Best RBF Neural Network Using PSO Algorithm for ECG Signal Prediction
Authors: Najmeh Mohsenifar, Narjes Mohsenifar, Abbas Kargar
Abstract:
In this paper, has been presented a stable method for predicting the ECG signals through the RBF neural networks, by the PSO algorithm. In spite of quasi-periodic ECG signal from a healthy person, there are distortions in electro cardiographic data for a patient. Therefore, there is no precise mathematical model for prediction. Here, we have exploited neural networks that are capable of complicated nonlinear mapping. Although the architecture and spread of RBF networks are usually selected through trial and error, the PSO algorithm has been used for choosing the best neural network. In this way, 2 second of a recorded ECG signal is employed to predict duration of 20 second in advance. Our simulations show that PSO algorithm can find the RBF neural network with minimum MSE and the accuracy of the predicted ECG signal is 97 %.Keywords: electrocardiogram, RBF artificial neural network, PSO algorithm, predict, accuracy
Procedia PDF Downloads 6293606 An Optimal and Efficient Family of Fourth-Order Methods for Nonlinear Equations
Authors: Parshanth Maroju, Ramandeep Behl, Sandile S. Motsa
Abstract:
In this study, we proposed a simple and interesting family of fourth-order multi-point methods without memory for obtaining simple roots. This family requires only three functional evaluations (viz. two of functions f(xn), f(yn) and third one of its first-order derivative f'(xn)) per iteration. Moreover, the accuracy and validity of new schemes is tested by a number of numerical examples are also proposed to illustrate their accuracy by comparing them with the new existing optimal fourth-order methods available in the literature. It is found that they are very useful in high precision computations. Further, the dynamic study of these methods also supports the theoretical aspect.Keywords: basins of attraction, nonlinear equations, simple roots, Newton's method
Procedia PDF Downloads 3143605 Quantifying Uncertainties in an Archetype-Based Building Stock Energy Model by Use of Individual Building Models
Authors: Morten Brøgger, Kim Wittchen
Abstract:
Focus on reducing energy consumption in existing buildings at large scale, e.g. in cities or countries, has been increasing in recent years. In order to reduce energy consumption in existing buildings, political incentive schemes are put in place and large scale investments are made by utility companies. Prioritising these investments requires a comprehensive overview of the energy consumption in the existing building stock, as well as potential energy-savings. However, a building stock comprises thousands of buildings with different characteristics making it difficult to model energy consumption accurately. Moreover, the complexity of the building stock makes it difficult to convey model results to policymakers and other stakeholders. In order to manage the complexity of the building stock, building archetypes are often employed in building stock energy models (BSEMs). Building archetypes are formed by segmenting the building stock according to specific characteristics. Segmenting the building stock according to building type and building age is common, among other things because this information is often easily available. This segmentation makes it easy to convey results to non-experts. However, using a single archetypical building to represent all buildings in a segment of the building stock is associated with loss of detail. Thermal characteristics are aggregated while other characteristics, which could affect the energy efficiency of a building, are disregarded. Thus, using a simplified representation of the building stock could come at the expense of the accuracy of the model. The present study evaluates the accuracy of a conventional archetype-based BSEM that segments the building stock according to building type- and age. The accuracy is evaluated in terms of the archetypes’ ability to accurately emulate the average energy demands of the corresponding buildings they were meant to represent. This is done for the buildings’ energy demands as a whole as well as for relevant sub-demands. Both are evaluated in relation to the type- and the age of the building. This should provide researchers, who use archetypes in BSEMs, with an indication of the expected accuracy of the conventional archetype model, as well as the accuracy lost in specific parts of the calculation, due to use of the archetype method.Keywords: building stock energy modelling, energy-savings, archetype
Procedia PDF Downloads 1573604 Data Quality on Regular Childhood Immunization Programme at Degehabur District: Somali Region, Ethiopia
Authors: Eyob Seife
Abstract:
Immunization is a life-saving intervention which prevents needless suffering through sickness, disability, and death. Emphasis on data quality and use will become even stronger with the development of the immunization agenda 2030 (IA2030). Quality of data is a key factor in generating reliable health information that enables monitoring progress, financial planning, vaccine forecasting capacities, and making decisions for continuous improvement of the national immunization program. However, ensuring data of sufficient quality and promoting an information-use culture at the point of the collection remains critical and challenging, especially in hard-to-reach and pastoralist areas where Degehabur district is selected based on a hypothesis of ‘there is no difference in reported and recounted immunization data consistency. Data quality is dependent on different factors where organizational, behavioral, technical, and contextual factors are the mentioned ones. A cross-sectional quantitative study was conducted on September 2022 in the Degehabur district. The study used the world health organization (WHO) recommended data quality self-assessment (DQS) tools. Immunization tally sheets, registers, and reporting documents were reviewed at 5 health facilities (2 health centers and 3 health posts) of primary health care units for one fiscal year (12 months) to determine the accuracy ratio. The data was collected by trained DQS assessors to explore the quality of monitoring systems at health posts, health centers, and the district health office. A quality index (QI) was assessed, and the accuracy ratio formulated were: the first and third doses of pentavalent vaccines, fully immunized (FI), and the first dose of measles-containing vaccines (MCV). In this study, facility-level results showed both over-reporting and under-reporting were observed at health posts when computing the accuracy ratio of the tally sheet to health post reports found at health centers for almost all antigens verified where pentavalent 1 was 88.3%, 60.4%, and 125.6% for Health posts A, B, and C respectively. For first-dose measles-containing vaccines (MCV), similarly, the accuracy ratio was found to be 126.6%, 42.6%, and 140.9% for Health posts A, B, and C, respectively. The accuracy ratio for fully immunized children also showed 0% for health posts A and B and 100% for health post-C. A relatively better accuracy ratio was seen at health centers where the first pentavalent dose was 97.4% and 103.3% for health centers A and B, while a first dose of measles-containing vaccines (MCV) was 89.2% and 100.9% for health centers A and B, respectively. A quality index (QI) of all facilities also showed results between the maximum of 33.33% and a minimum of 0%. Most of the verified immunization data accuracy ratios were found to be relatively better at the health center level. However, the quality of the monitoring system is poor at all levels, besides poor data accuracy at all health posts. So attention should be given to improving the capacity of staff and quality of monitoring system components, namely recording, reporting, archiving, data analysis, and using information for decision at all levels, especially in pastoralist areas where such kinds of study findings need to be improved beside to improving the data quality at root and health posts level.Keywords: accuracy ratio, Degehabur District, regular childhood immunization program, quality of monitoring system, Somali Region-Ethiopia
Procedia PDF Downloads 1103603 Integrating Optuna and Synthetic Data Generation for Optimized Medical Transcript Classification Using BioBERT
Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma4
Abstract:
The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves a performance that is equally good as AdamW's. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets.Keywords: BioBERT, clinical data, healthcare AI, transformer models
Procedia PDF Downloads 83602 Optimizing Machine Vision System Setup Accuracy by Six-Sigma DMAIC Approach
Authors: Joseph C. Chen
Abstract:
Machine vision system provides automatic inspection to reduce manufacturing costs considerably. However, only a few principles have been found to optimize machine vision system and help it function more accurately in industrial practice. Mostly, there were complicated and impractical design techniques to improve the accuracy of machine vision system. This paper discusses implementing the Six Sigma Define, Measure, Analyze, Improve, and Control (DMAIC) approach to optimize the setup parameters of machine vision system when it is used as a direct measurement technique. This research follows a case study showing how Six Sigma DMAIC methodology has been put into use.Keywords: DMAIC, machine vision system, process capability, Taguchi Parameter Design
Procedia PDF Downloads 4413601 A Calibration Method of Portable Coordinate Measuring Arm Using Bar Gauge with Cone Holes
Authors: Rim Chang Hyon, Song Hak Jin, Song Kwang Hyok, Jong Ki Hun
Abstract:
The calibration of the articulated arm coordinate measuring machine (AACMM) is key to improving calibration accuracy and saving calibration time. To reduce the time consumed for calibration, we should choose the proper calibration gauges and develop a reasonable calibration method. In addition, we should get the exact optimal solution by accurately removing the rough errors within the experimental data. In this paper, we present a calibration method of the portable coordinate measuring arm (PCMA) using the 1.2m long bar guage with cone-holes. First, we determine the locations of the bar gauge and establish an optimal objective function for identifying the structural parameter errors. Next, we make a mathematical model of the calibration algorithm and present a new mathematical method to remove the rough errors within calibration data. Finally, we find the optimal solution to identify the kinematic parameter errors by using Levenberg-Marquardt algorithm. The experimental results show that our calibration method is very effective in saving the calibration time and improving the calibration accuracy.Keywords: AACMM, kinematic model, parameter identify, measurement accuracy, calibration
Procedia PDF Downloads 853600 A Survey of Skin Cancer Detection and Classification from Skin Lesion Images Using Deep Learning
Authors: Joseph George, Anne Kotteswara Roa
Abstract:
Skin disease is one of the most common and popular kinds of health issues faced by people nowadays. Skin cancer (SC) is one among them, and its detection relies on the skin biopsy outputs and the expertise of the doctors, but it consumes more time and some inaccurate results. At the early stage, skin cancer detection is a challenging task, and it easily spreads to the whole body and leads to an increase in the mortality rate. Skin cancer is curable when it is detected at an early stage. In order to classify correct and accurate skin cancer, the critical task is skin cancer identification and classification, and it is more based on the cancer disease features such as shape, size, color, symmetry and etc. More similar characteristics are present in many skin diseases; hence it makes it a challenging issue to select important features from a skin cancer dataset images. Hence, the skin cancer diagnostic accuracy is improved by requiring an automated skin cancer detection and classification framework; thereby, the human expert’s scarcity is handled. Recently, the deep learning techniques like Convolutional neural network (CNN), Deep belief neural network (DBN), Artificial neural network (ANN), Recurrent neural network (RNN), and Long and short term memory (LSTM) have been widely used for the identification and classification of skin cancers. This survey reviews different DL techniques for skin cancer identification and classification. The performance metrics such as precision, recall, accuracy, sensitivity, specificity, and F-measures are used to evaluate the effectiveness of SC identification using DL techniques. By using these DL techniques, the classification accuracy increases along with the mitigation of computational complexities and time consumption.Keywords: skin cancer, deep learning, performance measures, accuracy, datasets
Procedia PDF Downloads 1343599 Performance Enrichment of Deep Feed Forward Neural Network and Deep Belief Neural Networks for Fault Detection of Automobile Gearbox Using Vibration Signal
Authors: T. Praveenkumar, Kulpreet Singh, Divy Bhanpuriya, M. Saimurugan
Abstract:
This study analysed the classification accuracy for gearbox faults using Machine Learning Techniques. Gearboxes are widely used for mechanical power transmission in rotating machines. Its rotating components such as bearings, gears, and shafts tend to wear due to prolonged usage, causing fluctuating vibrations. Increasing the dependability of mechanical components like a gearbox is hampered by their sealed design, which makes visual inspection difficult. One way of detecting impending failure is to detect a change in the vibration signature. The current study proposes various machine learning algorithms, with aid of these vibration signals for obtaining the fault classification accuracy of an automotive 4-Speed synchromesh gearbox. Experimental data in the form of vibration signals were acquired from a 4-Speed synchromesh gearbox using Data Acquisition System (DAQs). Statistical features were extracted from the acquired vibration signal under various operating conditions. Then the extracted features were given as input to the algorithms for fault classification. Supervised Machine Learning algorithms such as Support Vector Machines (SVM) and unsupervised algorithms such as Deep Feed Forward Neural Network (DFFNN), Deep Belief Networks (DBN) algorithms are used for fault classification. The fusion of DBN & DFFNN classifiers were architected to further enhance the classification accuracy and to reduce the computational complexity. The fault classification accuracy for each algorithm was thoroughly studied, tabulated, and graphically analysed for fused and individual algorithms. In conclusion, the fusion of DBN and DFFNN algorithm yielded the better classification accuracy and was selected for fault detection due to its faster computational processing and greater efficiency.Keywords: deep belief networks, DBN, deep feed forward neural network, DFFNN, fault diagnosis, fusion of algorithm, vibration signal
Procedia PDF Downloads 1203598 Explainable Graph Attention Networks
Authors: David Pham, Yongfeng Zhang
Abstract:
Graphs are an important structure for data storage and computation. Recent years have seen the success of deep learning on graphs such as Graph Neural Networks (GNN) on various data mining and machine learning tasks. However, most of the deep learning models on graphs cannot easily explain their predictions and are thus often labelled as “black boxes.” For example, Graph Attention Network (GAT) is a frequently used GNN architecture, which adopts an attention mechanism to carefully select the neighborhood nodes for message passing and aggregation. However, it is difficult to explain why certain neighbors are selected while others are not and how the selected neighbors contribute to the final classification result. In this paper, we present a graph learning model called Explainable Graph Attention Network (XGAT), which integrates graph attention modeling and explainability. We use a single model to target both the accuracy and explainability of problem spaces and show that in the context of graph attention modeling, we can design a unified neighborhood selection strategy that selects appropriate neighbor nodes for both better accuracy and enhanced explainability. To justify this, we conduct extensive experiments to better understand the behavior of our model under different conditions and show an increase in both accuracy and explainability.Keywords: explainable AI, graph attention network, graph neural network, node classification
Procedia PDF Downloads 2053597 Makhraj Recognition Using Convolutional Neural Network
Authors: Zan Azma Nasruddin, Irwan Mazlin, Nor Aziah Daud, Fauziah Redzuan, Fariza Hanis Abdul Razak
Abstract:
This paper focuses on a machine learning that learn the correct pronunciation of Makhraj Huroofs. Usually, people need to find an expert to pronounce the Huroof accurately. In this study, the researchers have developed a system that is able to learn the selected Huroofs which are ha, tsa, zho, and dza using the Convolutional Neural Network. The researchers present the chosen type of the CNN architecture to make the system that is able to learn the data (Huroofs) as quick as possible and produces high accuracy during the prediction. The researchers have experimented the system to measure the accuracy and the cross entropy in the training process.Keywords: convolutional neural network, Makhraj recognition, speech recognition, signal processing, tensorflow
Procedia PDF Downloads 3383596 The Impact of the Training Program Provided by the Saudi Archery Federation on the Electromyography of the Bow Arm Muscles
Authors: Hana Aljumayi, Mohammed Issa
Abstract:
The aim of this study was to investigate the effect of the training program for professional athletes at the Saudi Archery Federation on the electrical activity of the muscles involved in pulling the bowstring, maximum muscle strength (MVC) and to identify the relationship between the electrical activity of these muscles and accuracy in shooting among female archers. The researcher used a descriptive approach that was suitable for the nature of the study, and a sample of nine female archers was selected using purposive sampling. An EMG device was used to measure signal amplitude, signal frequency, spectral energy signal, and MVC. The results showed statistically significant differences in signal amplitude among muscles, with F(8,1)=5.91 and a significance level of 0.02. There were also statistically significant differences between muscles in terms of signal frequency, with F(8,1)=8.23 and a significance level of 0.02. Bonferroni test results indicated statistically significant differences between measurements at a significance level of 0.05, with anterior measurements showing an average difference of 16.4 compared to other measurements. Furthermore, there was a significant negative correlation between signal amplitude in the calf muscle and accuracy in shooting (r=-0.78) at a significance level of 0.02. There was also a significant positive correlation between signal frequency in the calf muscle and accuracy in shooting (r=0.72) at a significance level of 0.04. In conclusion, it appears that the training program for archery athletes focused more on skill development than physical aspects such as muscle activity and strength development. However, it did have a statistically significant effect on signal amplitude but not on signal frequency or MVC development in muscles involved in pulling the bowstring.Keywords: electrical activity of muscles, archery sport, shooting accuracy, muscles
Procedia PDF Downloads 663595 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption
Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett
Abstract:
Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera
Procedia PDF Downloads 1503594 Accelerating Molecular Dynamics Simulations of Electrolytes with Neural Network: Bridging the Gap between Ab Initio Molecular Dynamics and Classical Molecular Dynamics
Authors: Po-Ting Chen, Santhanamoorthi Nachimuthu, Jyh-Chiang Jiang
Abstract:
Classical molecular dynamics (CMD) simulations are highly efficient for material simulations but have limited accuracy. In contrast, ab initio molecular dynamics (AIMD) provides high precision by solving the Kohn–Sham equations yet requires significant computational resources, restricting the size of systems and time scales that can be simulated. To address these challenges, we employed NequIP, a machine learning model based on an E(3)-equivariant graph neural network, to accelerate molecular dynamics simulations of a 1M LiPF6 in EC/EMC (v/v 3:7) for Li battery applications. AIMD calculations were initially conducted using the Vienna Ab initio Simulation Package (VASP) to generate highly accurate atomic positions, forces, and energies. This data was then used to train the NequIP model, which efficiently learns from the provided data. NequIP achieved AIMD-level accuracy with significantly less training data. After training, NequIP was integrated into the LAMMPS software to enable molecular dynamics simulations of larger systems over longer time scales. This method overcomes the computational limitations of AIMD while improving the accuracy limitations of CMD, providing an efficient and precise computational framework. This study showcases NequIP’s applicability to electrolyte systems, particularly for simulating the dynamics of LiPF6 ionic mixtures. The results demonstrate substantial improvements in both computational efficiency and simulation accuracy, highlighting the potential of machine learning models to enhance molecular dynamics simulations.Keywords: lithium-ion batteries, electrolyte simulation, molecular dynamics, neural network
Procedia PDF Downloads 303593 From Faces to Feelings: Exploring Emotional Contagion and Empathic Accuracy through the Enfacement Illusion
Authors: Ilenia Lanni, Claudia Del Gatto, Allegra Indraccolo, Riccardo Brunetti
Abstract:
Empathy represents a multifaceted construct encompassing affective and cognitive components. Among these, empathic accuracy—defined as the ability to accurately infer another person’s emotions or mental state—plays a pivotal role in fostering empathetic understanding. Emotional contagion, the automatic process through which individuals mimic and synchronize facial expressions, vocalizations, and postures, is considered a foundational mechanism for empathy. This embodied simulation enables shared emotional experiences and facilitates the recognition of others’ emotional states, forming the basis of empathic accuracy. Facial mimicry, an integral part of emotional contagion, creates a physical and emotional resonance with others, underscoring its potential role in enhancing empathic understanding. Building on these findings, the present study explores how manipulating emotional contagion through the enfacement illusion impacts empathic accuracy, particularly in the recognition of complex emotional expressions. The enfacement illusion was implemented as a visuo-tactile multisensory manipulation, during which participants experienced synchronous and spatially congruent tactile stimulation on their own face while observing the same stimulation being applied to another person’s face. This manipulation enhances facial mimicry, which is hypothesized to play a key role in improving empathic accuracy. Following the enfacement illusion, participants completed a modified version of the Diagnostic Analysis of Nonverbal Accuracy–Form 2 (DANVA2-AF). The task included 48 images of adult faces expressing happiness, sadness, or morphed emotions blending neutral with happiness or sadness to increase recognition difficulty. These images featured both familiar and unfamiliar faces, with familiar faces belonging to the actors involved in the prior visuo-tactile stimulation. Participants were required to identify the target’s emotional state as either "happy" or "sad," with response accuracy and reaction times recorded. Results from this study indicate that emotional contagion, as manipulated through the enfacement illusion, significantly enhances empathic accuracy, particularly for the recognition of happiness. Participants demonstrated greater accuracy and faster response times in identifying happiness when viewing familiar faces compared to unfamiliar ones. These findings suggest that the enfacement illusion strengthens emotional resonance and facilitates the processing of positive emotions, which are inherently more likely to be shared and mimicked. Conversely, for the recognition of sadness, an opposite but non-significant trend was observed. Specifically, participants were slightly faster at recognizing sadness in unfamiliar faces compared to familiar ones. This pattern suggests potential differences in how positive and negative emotions are processed within the context of facial mimicry and emotional contagion, warranting further investigation. These results provide insights into the role of facial mimicry in emotional contagion and its selective impact on empathic accuracy. This study highlights how the enfacement illusion can precisely modulate the recognition of specific emotions, offering a deeper understanding of the mechanisms underlying empathy.Keywords: empathy, emotional contagion, enfacement illusion, emotion recognition
Procedia PDF Downloads 163592 A Simple Adaptive Atomic Decomposition Voice Activity Detector Implemented by Matching Pursuit
Authors: Thomas Bryan, Veton Kepuska, Ivica Kostanic
Abstract:
A simple adaptive voice activity detector (VAD) is implemented using Gabor and gammatone atomic decomposition of speech for high Gaussian noise environments. Matching pursuit is used for atomic decomposition, and is shown to achieve optimal speech detection capability at high data compression rates for low signal to noise ratios. The most active dictionary elements found by matching pursuit are used for the signal reconstruction so that the algorithm adapts to the individual speakers dominant time-frequency characteristics. Speech has a high peak to average ratio enabling matching pursuit greedy heuristic of highest inner products to isolate high energy speech components in high noise environments. Gabor and gammatone atoms are both investigated with identical logarithmically spaced center frequencies, and similar bandwidths. The algorithm performs equally well for both Gabor and gammatone atoms with no significant statistical differences. The algorithm achieves 70% accuracy at a 0 dB SNR, 90% accuracy at a 5 dB SNR and 98% accuracy at a 20dB SNR using 30dB SNR as a reference for voice activity.Keywords: atomic decomposition, gabor, gammatone, matching pursuit, voice activity detection
Procedia PDF Downloads 2963591 A Model for Diagnosis and Prediction of Coronavirus Using Neural Network
Authors: Sajjad Baghernezhad
Abstract:
Meta-heuristic and hybrid algorithms have high adeer in modeling medical problems. In this study, a neural network was used to predict covid-19 among high-risk and low-risk patients. This study was conducted to collect the applied method and its target population consisting of 550 high-risk and low-risk patients from the Kerman University of medical sciences medical center to predict the coronavirus. In this study, the memetic algorithm, which is a combination of a genetic algorithm and a local search algorithm, has been used to update the weights of the neural network and develop the accuracy of the neural network. The initial study showed that the accuracy of the neural network was 88%. After updating the weights, the memetic algorithm increased by 93%. For the proposed model, sensitivity, specificity, positive predictivity value, value/accuracy to 97.4, 92.3, 95.8, 96.2, and 0.918, respectively; for the genetic algorithm model, 87.05, 9.20 7, 89.45, 97.30 and 0.967 and for logistic regression model were 87.40, 95.20, 93.79, 0.87 and 0.916. Based on the findings of this study, neural network models have a lower error rate in the diagnosis of patients based on individual variables and vital signs compared to the regression model. The findings of this study can help planners and health care providers in signing programs and early diagnosis of COVID-19 or Corona.Keywords: COVID-19, decision support technique, neural network, genetic algorithm, memetic algorithm
Procedia PDF Downloads 703590 System Response of a Variable-Rate Aerial Application System
Authors: Daniel E. Martin, Chenghai Yang
Abstract:
Variable-rate aerial application systems are becoming more readily available; however, aerial applicators typically only use the systems for constant-rate application of materials, allowing the systems to compensate for upwind and downwind ground speed variations. Much of the resistance to variable-rate aerial application system adoption in the U.S. pertains to applicator’s trust in the systems to turn on and off automatically as desired. The objectives of this study were to evaluate a commercially available variable-rate aerial application system under field conditions to demonstrate both the response and accuracy of the system to desired application rate inputs. This study involved planting oats in a 35-acre fallow field during the winter months to establish a uniform green backdrop in early spring. A binary (on/off) prescription application map was generated and a variable-rate aerial application of glyphosate was made to the field. Airborne multispectral imagery taken before and two weeks after the application documented actual field deposition and efficacy of the glyphosate. When compared to the prescription application map, these data provided application system response and accuracy information. The results of this study will be useful for quantifying and documenting the response and accuracy of a commercially available variable-rate aerial application system so that aerial applicators can be more confident in their capabilities and the use of these systems can increase, taking advantage of all that aerial variable-rate technologies have to offer.Keywords: variable-rate, aerial application, remote sensing, precision application
Procedia PDF Downloads 4763589 Violence Detection and Tracking on Moving Surveillance Video Using Machine Learning Approach
Authors: Abe Degale D., Cheng Jian
Abstract:
When creating automated video surveillance systems, violent action recognition is crucial. In recent years, hand-crafted feature detectors have been the primary method for achieving violence detection, such as the recognition of fighting activity. Researchers have also looked into learning-based representational models. On benchmark datasets created especially for the detection of violent sequences in sports and movies, these methods produced good accuracy results. The Hockey dataset's videos with surveillance camera motion present challenges for these algorithms for learning discriminating features. Image recognition and human activity detection challenges have shown success with deep representation-based methods. For the purpose of detecting violent images and identifying aggressive human behaviours, this research suggested a deep representation-based model using the transfer learning idea. The results show that the suggested approach outperforms state-of-the-art accuracy levels by learning the most discriminating features, attaining 99.34% and 99.98% accuracy levels on the Hockey and Movies datasets, respectively.Keywords: violence detection, faster RCNN, transfer learning and, surveillance video
Procedia PDF Downloads 1113588 Some Accuracy Related Aspects in Two-Fluid Hydrodynamic Sub-Grid Modeling of Gas-Solid Riser Flows
Authors: Joseph Mouallem, Seyed Reza Amini Niaki, Norman Chavez-Cussy, Christian Costa Milioli, Fernando Eduardo Milioli
Abstract:
Sub-grid closures for filtered two-fluid models (fTFM) useful in large scale simulations (LSS) of riser flows can be derived from highly resolved simulations (HRS) with microscopic two-fluid modeling (mTFM). Accurate sub-grid closures require accurate mTFM formulations as well as accurate correlation of relevant filtered parameters to suitable independent variables. This article deals with both of those issues. The accuracy of mTFM is touched by assessing the impact of gas sub-grid turbulence over HRS filtered predictions. A gas turbulence alike effect is artificially inserted by means of a stochastic forcing procedure implemented in the physical space over the momentum conservation equation of the gas phase. The correlation issue is touched by introducing a three-filtered variable correlation analysis (three-marker analysis) performed under a variety of different macro-scale conditions typical or risers. While the more elaborated correlation procedure clearly improved accuracy, accounting for gas sub-grid turbulence had no significant impact over predictions.Keywords: fluidization, gas-particle flow, two-fluid model, sub-grid models, filtered closures
Procedia PDF Downloads 1283587 Remote Sensing through Deep Neural Networks for Satellite Image Classification
Authors: Teja Sai Puligadda
Abstract:
Satellite images in detail can serve an important role in the geographic study. Quantitative and qualitative information provided by the satellite and remote sensing images minimizes the complexity of work and time. Data/images are captured at regular intervals by satellite remote sensing systems, and the amount of data collected is often enormous, and it expands rapidly as technology develops. Interpreting remote sensing images, geographic data mining, and researching distinct vegetation types such as agricultural and forests are all part of satellite image categorization. One of the biggest challenge data scientists faces while classifying satellite images is finding the best suitable classification algorithms based on the available that could able to classify images with utmost accuracy. In order to categorize satellite images, which is difficult due to the sheer volume of data, many academics are turning to deep learning machine algorithms. As, the CNN algorithm gives high accuracy in image recognition problems and automatically detects the important features without any human supervision and the ANN algorithm stores information on the entire network (Abhishek Gupta., 2020), these two deep learning algorithms have been used for satellite image classification. This project focuses on remote sensing through Deep Neural Networks i.e., ANN and CNN with Deep Sat (SAT-4) Airborne dataset for classifying images. Thus, in this project of classifying satellite images, the algorithms ANN and CNN are implemented, evaluated & compared and the performance is analyzed through evaluation metrics such as Accuracy and Loss. Additionally, the Neural Network algorithm which gives the lowest bias and lowest variance in solving multi-class satellite image classification is analyzed.Keywords: artificial neural network, convolutional neural network, remote sensing, accuracy, loss
Procedia PDF Downloads 1623586 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve
Procedia PDF Downloads 4443585 The Synergistic Effects of Blockchain and AI on Enhancing Data Integrity and Decision-Making Accuracy in Smart Contracts
Authors: Sayor Ajfar Aaron, Sajjat Hossain Abir, Ashif Newaz, Mushfiqur Rahman
Abstract:
Investigating the convergence of blockchain technology and artificial intelligence, this paper examines their synergistic effects on data integrity and decision-making within smart contracts. By implementing AI-driven analytics on blockchain-based platforms, the research identifies improvements in automated contract enforcement and decision accuracy. The paper presents a framework that leverages AI to enhance transparency and trust while blockchain ensures immutable record-keeping, culminating in significantly optimized operational efficiencies in various industries.Keywords: artificial intelligence, blockchain, data integrity, smart contracts
Procedia PDF Downloads 633584 Sea-Land Segmentation Method Based on the Transformer with Enhanced Edge Supervision
Authors: Lianzhong Zhang, Chao Huang
Abstract:
Sea-land segmentation is a basic step in many tasks such as sea surface monitoring and ship detection. The existing sea-land segmentation algorithms have poor segmentation accuracy, and the parameter adjustments are cumbersome and difficult to meet actual needs. Also, the current sea-land segmentation adopts traditional deep learning models that use Convolutional Neural Networks (CNN). At present, the transformer architecture has achieved great success in the field of natural images, but its application in the field of radar images is less studied. Therefore, this paper proposes a sea-land segmentation method based on the transformer architecture to strengthen edge supervision. It uses a self-attention mechanism with a gating strategy to better learn relative position bias. Meanwhile, an additional edge supervision branch is introduced. The decoder stage allows the feature information of the two branches to interact, thereby improving the edge precision of the sea-land segmentation. Based on the Gaofen-3 satellite image dataset, the experimental results show that the method proposed in this paper can effectively improve the accuracy of sea-land segmentation, especially the accuracy of sea-land edges. The mean IoU (Intersection over Union), edge precision, overall precision, and F1 scores respectively reach 96.36%, 84.54%, 99.74%, and 98.05%, which are superior to those of the mainstream segmentation models and have high practical application values.Keywords: SAR, sea-land segmentation, deep learning, transformer
Procedia PDF Downloads 186