Search results for: semantic data
25284 Method of Cluster Based Cross-Domain Knowledge Acquisition for Biologically Inspired Design
Authors: Shen Jian, Hu Jie, Ma Jin, Peng Ying Hong, Fang Yi, Liu Wen Hai
Abstract:
Biologically inspired design inspires inventions and new technologies in the field of engineering by mimicking functions, principles, and structures in the biological domain. To deal with the obstacles of cross-domain knowledge acquisition in the existing biologically inspired design process, functional semantic clustering based on functional feature semantic correlation and environmental constraint clustering composition based on environmental characteristic constraining adaptability are proposed. A knowledge cell clustering algorithm and the corresponding prototype system is developed. Finally, the effectiveness of the method is verified by the visual prosthetic device design.Keywords: knowledge clustering, knowledge acquisition, knowledge based engineering, knowledge cell, biologically inspired design
Procedia PDF Downloads 42625283 A Study of Mandarin Ba Constructions from the Perspective of Event Structure
Authors: Changyin Zhou
Abstract:
Ba constructions are a special type of constructions in Chinese. Their syntactic behaviors are closely related to their event structural properties. The existing study which treats the semantic function of Ba as causative meets difficulty in treating the discrepancy between Ba constructions and their corresponding constructions without Ba in expressing causativity. This paper holds that Ba in Ba constructions is a functional category expressing affectedness. The affectedness expressed by Ba can be positive or negative. The functional category Ba expressing negative affectedness has the semantic property of being 'expected'. The precondition of Ba construction is the boundedness of the event concerned. This paper, holding the parallelism between motion events and change-of-state events, proposes a syntactic model based on the notions of boundedness and affectedness, discusses the transformations between Ba constructions and the related resultative constructions, and derivates the various Ba constructions concerned.Keywords: affectedness, Ba constructions, boundedness, event structure, resultative constructions
Procedia PDF Downloads 42125282 Intensifier as Changed from the Impolite Word in Thai
Authors: Methawee Yuttapongtada
Abstract:
Intensifier is the linguistic term and device that is generally found in different languages in order to enhance and give additional quantity, quality or emotion to the words of each language. In fact, each language in the world has both of the similar and dissimilar intensifying device. More specially, the wide variety of intensifying device is used for Thai language and one of those is usage of the impolite word or the word that used to mean something negative as intensifier. The data collection in this study was done throughout the spoken language style by collecting from intensifiers regarded as impolite words because these words as employed in the other contexts will be held as the rude, swear words or the words with negative meaning. Then, backward study to the past was done in order to consider the historical change. Explanation of the original meaning and the contexts of words use from the past till the present time were done by use of both textual documents and dictionaries available in different periods. It was found that regarding the semantics and pragmatic aspects, subjectification also is the significant motivation that changed the impolite words to intensifiers. At last, it can explain pathway of the semantic change of these very words undoubtedly. Moreover, it is found that use tendency in the impolite word or the word that used to mean something negative will more be increased and this phenomenon is commonly found in many languages in the world and results of this research may support to the belief that human language in the world is universal and the same still reflected that human has the fundamental thought as the same to each other basically.Keywords: impolite word, intensifier, Thai, semantic change
Procedia PDF Downloads 18125281 Feature Engineering Based Detection of Buffer Overflow Vulnerability in Source Code Using Deep Neural Networks
Authors: Mst Shapna Akter, Hossain Shahriar
Abstract:
One of the most important challenges in the field of software code audit is the presence of vulnerabilities in software source code. Every year, more and more software flaws are found, either internally in proprietary code or revealed publicly. These flaws are highly likely exploited and lead to system compromise, data leakage, or denial of service. C and C++ open-source code are now available in order to create a largescale, machine-learning system for function-level vulnerability identification. We assembled a sizable dataset of millions of opensource functions that point to potential exploits. We developed an efficient and scalable vulnerability detection method based on deep neural network models that learn features extracted from the source codes. The source code is first converted into a minimal intermediate representation to remove the pointless components and shorten the dependency. Moreover, we keep the semantic and syntactic information using state-of-the-art word embedding algorithms such as glove and fastText. The embedded vectors are subsequently fed into deep learning networks such as LSTM, BilSTM, LSTM-Autoencoder, word2vec, BERT, and GPT-2 to classify the possible vulnerabilities. Furthermore, we proposed a neural network model which can overcome issues associated with traditional neural networks. Evaluation metrics such as f1 score, precision, recall, accuracy, and total execution time have been used to measure the performance. We made a comparative analysis between results derived from features containing a minimal text representation and semantic and syntactic information. We found that all of the deep learning models provide comparatively higher accuracy when we use semantic and syntactic information as the features but require higher execution time as the word embedding the algorithm puts on a bit of complexity to the overall system.Keywords: cyber security, vulnerability detection, neural networks, feature extraction
Procedia PDF Downloads 8925280 Semantic Network Analysis of the Saudi Women Driving Decree
Authors: Dania Aljouhi
Abstract:
September 26th, 2017, is a historic date for all women in Saudi Arabia. On that day, Saudi Arabia announced the decree on allowing Saudi women to drive. With the advent of vision 2030 and its goal to empower women and increase their participation in Saudi society, we see how Saudis’ Twitter users deliberate the 2017 decree from different social, cultural, religious, economic and political factors. This topic bridges social media 'Twitter,' gender and social-cultural studies to offer insights into how Saudis’ tweets reflect a broader discourse on Saudi women in the age of social media. The present study aims to explore the meanings and themes that emerge by Saudis’ Twitter users in response to the 2017 royal decree on women driving. The sample used in the current study involves (n= 1000) tweets that were collected from Sep 2017 to March 2019 to account for the Saudis’ tweets before and after implementing the decree. The paper uses semantic and thematic network analysis methods to examine the Saudis’ Twitter discourse on the women driving issue. The paper argues that Twitter as a platform has mediated the discourse of women driving among the Saudi community and facilitated social changes. Finally, framing theory (Goffman, 1974) and Networked framing (Meraz & Papacharissi 2013) are both used to explain the tweets on the decree of allowing Saudi women to drive based on # Saudi women-driving-cars.Keywords: Saudi Arabia, women, Twitter, semantic network analysis, framing
Procedia PDF Downloads 15525279 Static vs. Stream Mining Trajectories Similarity Measures
Authors: Musaab Riyadh, Norwati Mustapha, Dina Riyadh
Abstract:
Trajectory similarity can be defined as the cost of transforming one trajectory into another based on certain similarity method. It is the core of numerous mining tasks such as clustering, classification, and indexing. Various approaches have been suggested to measure similarity based on the geometric and dynamic properties of trajectory, the overlapping between trajectory segments, and the confined area between entire trajectories. In this article, an evaluation of these approaches has been done based on computational cost, usage memory, accuracy, and the amount of data which is needed in advance to determine its suitability to stream mining applications. The evaluation results show that the stream mining applications support similarity methods which have low computational cost and memory, single scan on data, and free of mathematical complexity due to the high-speed generation of data.Keywords: global distance measure, local distance measure, semantic trajectory, spatial dimension, stream data mining
Procedia PDF Downloads 39625278 Leveraging Large Language Models to Build a Cutting-Edge French Word Sense Disambiguation Corpus
Authors: Mouheb Mehdoui, Amel Fraisse, Mounir Zrigui
Abstract:
With the increasing amount of data circulating over the Web, there is a growing need to develop and deploy tools aimed at unraveling semantic nuances within text or sentences. The challenges in extracting precise meanings arise from the complexity of natural language, while words usually have multiple interpretations depending on the context. The challenge of precisely interpreting words within a given context is what the task of Word Sense Disambiguation meets. It is a very old domain within the area of Natural Language Processing aimed at determining a word’s meaning that it is going to carry in a particular context, hence increasing the correctness of applications processing the language. Numerous linguistic resources are accessible online, including WordNet, thesauri, and dictionaries, enabling exploration of diverse contextual meanings. However, several limitations persist. These include the scarcity of resources for certain languages, a limited number of examples within corpora, and the challenge of accurately detecting the topic or context covered by text, which significantly impacts word sense disambiguation. This paper will discuss the different approaches to WSD and review corpora available for this task. We will contrast these approaches, highlighting the limitations, which will allow us to build a corpus in French, targeted for WSD.Keywords: semantic enrichment, disambiguation, context fusion, natural language processing, multilingual applications
Procedia PDF Downloads 725277 Analysis of the Learning Effectiveness of the Steam-6e Course: A Case Study on the Development of Virtual Idol Product Design as an Example
Authors: Mei-Chun. Chang
Abstract:
STEAM (Science, Technology, Engineering, Art, and Mathematics) represents a cross-disciplinary and learner-centered teaching model that cultivates students to link theory with the presentation of real situations, thereby improving their various abilities. This study explores students' learning performance after using the 6E model in STEAM teaching for a professional course in the digital media design department of technical colleges, as well as the difficulties and countermeasures faced by STEAM curriculum design and its implementation. In this study, through industry experts’ work experience, activity exchanges, course teaching, and experience, learners can think about the design and development value of virtual idol products that meet the needs of users and to employ AR/VR technology to innovate their product applications. Applying action research, the investigation has 35 junior students from the department of digital media design of the school where the researcher teaches as the research subjects. The teaching research was conducted over two stages spanning ten weeks and 30 sessions. This research collected the data and conducted quantitative and qualitative data sorting analyses through ‘design draft sheet’, ‘student interview record’, ‘STEAM Product Semantic Scale’, and ‘Creative Product Semantic Scale (CPSS)’. Research conclusions are presented, and relevant suggestions are proposed as a reference for teachers or follow-up researchers. The contribution of this study is to teach college students to develop original virtual idols and product designs, improve learning effectiveness through STEAM teaching activities, and effectively cultivate innovative and practical cross-disciplinary design talents.Keywords: STEAM, 6E model, virtual idol, learning effectiveness, practical courses
Procedia PDF Downloads 12625276 N400 Investigation of Semantic Priming Effect to Symbolic Pictures in Text
Authors: Thomas Ousterhout
Abstract:
The purpose of this study was to investigate if incorporating meaningful pictures of gestures and facial expressions in short sentences of text could supplement the text with enough semantic information to produce and N400 effect when probe words incongruent to the picture were subsequently presented. Event-related potentials (ERPs) were recorded from a 14-channel commercial grade EEG headset while subjects performed congruent/incongruent reaction time discrimination tasks. Since pictures of meaningful gestures have been shown to be semantically processed in the brain in a similar manner as words are, it is believed that pictures will add supplementary information to text just as the inclusion of their equivalent synonymous word would. The hypothesis is that when subjects read the text/picture mixed sentences, they will process the images and words just like in face-to-face communication and therefore probe words incongruent to the image will produce an N400.Keywords: EEG, ERP, N400, semantics, congruency, facilitation, Emotiv
Procedia PDF Downloads 25825275 Modeling Pronunciations of Arab Broca’s Aphasics Using Mosstalk Words Technique
Authors: Sadeq Al Yaari, Fayza Alhammadi, Ayman Al Yaari, Montaha Al Yaari, Aayah Al Yaari, Adham Al Yaari, Sajedah Al Yaari, Saleh Al Yami
Abstract:
Background: There has been a debate in the literature over the years as to whether or not MossTalk Words program fits Arab Broca’s aphasics (BAs) due to that language differences and also the fact that the technique has not yet been used for aphasics with semantic dementia (SD aphasics). Aims: To oversimplify the above mentioned debate slightly for purposes of exposition, the purpose of the present study is to investigate the “usability” of this program as well as pictures and community as therapeutic techniques for both Arab BAs and SD aphasics. Method: The subjects of this study are two Saudi aphasics (53 and 57 years old, respectively). The former suffers from Broca’s aphasia due to a stroke, while the latter suffers from semantic dementia. Both aphasics can speak English and have used the Moss Talk Words program in addition to intensive picture-naming therapeutic sessions for two years. They were tested by one of the researchers four times (a time per six months). The families of the two subjects, in addition to their relatives and friends, played a major part in all therapeutic sessions. Conclusion: Results show that in averages across the entire therapeutic sessions, MossTalk Words program was clearly found more effective in modeling BAs’ pronunciation than that of SD aphasic. Furthermore, picture-naming intensive exercises in addition to the positive role of the community members played a major role in the progress of the two subjects’ performance.Keywords: moss talk words, program, technique, Broca’s aphasia, semantic dementia, subjects, picture, community
Procedia PDF Downloads 4425274 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 20525273 Ontology-Based Systemizing of the Science Information Devoted to Waste Utilizing by Methanogenesis
Authors: Ye. Shapovalov, V. Shapovalov, O. Stryzhak, A. Salyuk
Abstract:
Over the past decades, amount of scientific information has been growing exponentially. It became more complicated to process and systemize this amount of data. The approach to systematization of scientific information on the production of biogas based on the ontological IT platform “T.O.D.O.S.” has been developed. It has been proposed to select semantic characteristics of each work for their further introduction into the IT platform “T.O.D.O.S.”. An ontological graph with a ranking function for previous scientific research and for a system of selection of microorganisms has been worked out. These systems provide high performance of information management of scientific information.Keywords: ontology-based analysis, analysis of scientific data, methanogenesis, microorganism hierarchy, 'T.O.D.O.S.'
Procedia PDF Downloads 16425272 Building and Tree Detection Using Multiscale Matched Filtering
Authors: Abdullah H. Özcan, Dilara Hisar, Yetkin Sayar, Cem Ünsalan
Abstract:
In this study, an automated building and tree detection method is proposed using DSM data and true orthophoto image. A multiscale matched filtering is used on DSM data. Therefore, first watershed transform is applied. Then, Otsu’s thresholding method is used as an adaptive threshold to segment each watershed region. Detected objects are masked with NDVI to separate buildings and trees. The proposed method is able to detect buildings and trees without entering any elevation threshold. We tested our method on ISPRS semantic labeling dataset and obtained promising results.Keywords: building detection, local maximum filtering, matched filtering, multiscale
Procedia PDF Downloads 32025271 Geographic Information System for District Level Energy Performance Simulations
Authors: Avichal Malhotra, Jerome Frisch, Christoph van Treeck
Abstract:
The utilization of semantic, cadastral and topological data from geographic information systems (GIS) has exponentially increased for building and urban-scale energy performance simulations. Urban planners, simulation scientists, and researchers use virtual 3D city models for energy analysis, algorithms and simulation tools. For dynamic energy simulations at city and district level, this paper provides an overview of the available GIS data models and their levels of detail. Adhering to different norms and standards, these models also intend to describe building and construction industry data. For further investigations, CityGML data models are considered for simulations. Though geographical information modelling has considerably many different implementations, extensions of virtual city data can also be made for domain specific applications. Highlighting the use of the extended CityGML models for energy researches, a brief introduction to the Energy Application Domain Extension (ADE) along with its significance is made. Consequently, addressing specific input simulation data, a workflow using Modelica underlining the usage of GIS information and the quantification of its significance over annual heating energy demand is presented in this paper.Keywords: CityGML, EnergyADE, energy performance simulation, GIS
Procedia PDF Downloads 16825270 3D-Vehicle Associated Research Fields for Smart City via Semantic Search Approach
Authors: Haluk Eren, Mucahit Karaduman
Abstract:
This paper presents 15-year trends for scientific studies in a scientific database considering 3D and vehicle words. Two words are selected to find their associated publications in IEEE scholar database. Both of keywords are entered individually for the years 2002, 2012, and 2016 on the database to identify the preferred subjects of researchers in same years. We have classified closer research fields after searching and listing. Three years (2002, 2012, and 2016) have been investigated to figure out progress in specified time intervals. The first one is assumed as the initial progress in between 2002-2012, and the second one is in 2012-2016 that is fast development duration. We have found very interesting and beneficial results to understand the scholars’ research field preferences for a decade. This information will be highly desirable in smart city-based research purposes consisting of 3D and vehicle-related issues.Keywords: Vehicle, three-dimensional, smart city, scholarly search, semantic
Procedia PDF Downloads 32825269 Real-Time Episodic Memory Construction for Optimal Action Selection in Cognitive Robotics
Authors: Deon de Jager, Yahya Zweiri, Dimitrios Makris
Abstract:
The three most important components in the cognitive architecture for cognitive robotics is memory representation, memory recall, and action-selection performed by the executive. In this paper, action selection, performed by the executive, is defined as a memory quantification and optimization process. The methodology describes the real-time construction of episodic memory through semantic memory optimization. The optimization is performed by set-based particle swarm optimization, using an adaptive entropy memory quantification approach for fitness evaluation. The performance of the approach is experimentally evaluated by simulation, where a UAV is tasked with the collection and delivery of a medical package. The experiments show that the UAV dynamically uses the episodic memory to autonomously control its velocity, while successfully completing its mission.Keywords: cognitive robotics, semantic memory, episodic memory, maximum entropy principle, particle swarm optimization
Procedia PDF Downloads 15625268 Code Embedding for Software Vulnerability Discovery Based on Semantic Information
Authors: Joseph Gear, Yue Xu, Ernest Foo, Praveen Gauravaran, Zahra Jadidi, Leonie Simpson
Abstract:
Deep learning methods have been seeing an increasing application to the long-standing security research goal of automatic vulnerability detection for source code. Attention, however, must still be paid to the task of producing vector representations for source code (code embeddings) as input for these deep learning models. Graphical representations of code, most predominantly Abstract Syntax Trees and Code Property Graphs, have received some use in this task of late; however, for very large graphs representing very large code snip- pets, learning becomes prohibitively computationally expensive. This expense may be reduced by intelligently pruning this input to only vulnerability-relevant information; however, little research in this area has been performed. Additionally, most existing work comprehends code based solely on the structure of the graph at the expense of the information contained by the node in the graph. This paper proposes Semantic-enhanced Code Embedding for Vulnerability Discovery (SCEVD), a deep learning model which uses semantic-based feature selection for its vulnerability classification model. It uses information from the nodes as well as the structure of the code graph in order to select features which are most indicative of the presence or absence of vulnerabilities. This model is implemented and experimentally tested using the SARD Juliet vulnerability test suite to determine its efficacy. It is able to improve on existing code graph feature selection methods, as demonstrated by its improved ability to discover vulnerabilities.Keywords: code representation, deep learning, source code semantics, vulnerability discovery
Procedia PDF Downloads 15825267 Embedded Visual Perception for Autonomous Agricultural Machines Using Lightweight Convolutional Neural Networks
Authors: René A. Sørensen, Søren Skovsen, Peter Christiansen, Henrik Karstoft
Abstract:
Autonomous agricultural machines act in stochastic surroundings and therefore, must be able to perceive the surroundings in real time. This perception can be achieved using image sensors combined with advanced machine learning, in particular Deep Learning. Deep convolutional neural networks excel in labeling and perceiving color images and since the cost of high-quality RGB-cameras is low, the hardware cost of good perception depends heavily on memory and computation power. This paper investigates the possibility of designing lightweight convolutional neural networks for semantic segmentation (pixel wise classification) with reduced hardware requirements, to allow for embedded usage in autonomous agricultural machines. Using compression techniques, a lightweight convolutional neural network is designed to perform real-time semantic segmentation on an embedded platform. The network is trained on two large datasets, ImageNet and Pascal Context, to recognize up to 400 individual classes. The 400 classes are remapped into agricultural superclasses (e.g. human, animal, sky, road, field, shelterbelt and obstacle) and the ability to provide accurate real-time perception of agricultural surroundings is studied. The network is applied to the case of autonomous grass mowing using the NVIDIA Tegra X1 embedded platform. Feeding case-specific images to the network results in a fully segmented map of the superclasses in the image. As the network is still being designed and optimized, only a qualitative analysis of the method is complete at the abstract submission deadline. Proceeding this deadline, the finalized design is quantitatively evaluated on 20 annotated grass mowing images. Lightweight convolutional neural networks for semantic segmentation can be implemented on an embedded platform and show competitive performance with regards to accuracy and speed. It is feasible to provide cost-efficient perceptive capabilities related to semantic segmentation for autonomous agricultural machines.Keywords: autonomous agricultural machines, deep learning, safety, visual perception
Procedia PDF Downloads 39625266 A Corpus Study of English Verbs in Chinese EFL Learners’ Academic Writing Abstracts
Authors: Shuaili Ji
Abstract:
The correct use of verbs is an important element of high-quality research articles, and thus for Chinese EFL learners, it is significant to master characteristics of verbs and to precisely use verbs. However, some researches have shown that there are differences in using verbs between learners and native speakers and learners have difficulty in using English verbs. This corpus-based quantitative research can enhance learners’ knowledge of English verbs and promote the quality of research article abstracts even of the whole academic writing. The aim of this study is to find the differences between learners’ and native speakers’ use of verbs and to study the factors that contribute to those differences. To this end, the research question is as follows: What are the differences between most frequently used verbs by learners and those by native speakers? The research question is answered through a study that uses corpus-based data-driven approach to analyze the verbs used by learners in their abstract writings in terms of collocation, colligation and semantic prosody. The results show that: (1) EFL learners obviously overused ‘be, can, find, make’ and underused ‘investigate, examine, may’. As to modal verbs, learners obviously overused ‘can’ while underused ‘may’. (2) Learners obviously overused ‘we find + object clauses’ while underused ‘nouns (results, findings, data) + suggest/indicate/reveal + object clauses’ when expressing research results. (3) Learners tended to transfer the collocation, colligation and semantic prosody of shǐ and zuò to make. (4) Learners obviously overused ‘BE+V-ed’ and used BE as the main verb. They also obviously overused the basic forms of BE such as be, is, are, while obviously underused its inflections (was, were). These results manifested learners’ lack of accuracy and idiomatic property in verb usage. Due to the influence of the concept transfer of Chinese, the verbs in learners’ abstracts showed obvious transfer of mother language. In addition, learners have not fully mastered the use of verbs, avoiding using complex colligations to prevent errors. Based on these findings, the present study has implications for English teaching, seeking to have implications for English academic abstract writing in China. Further research could be undertaken to study the use of verbs in the whole dissertation to find out whether the characteristic of the verbs in abstracts can apply in the whole dissertation or not.Keywords: academic writing abstracts, Chinese EFL learners, corpus-based, data-driven, verbs
Procedia PDF Downloads 33525265 Investigating Naming and Connected Speech Impairments in Moroccan AD Patients
Authors: Mounia El Jaouhari, Mira Goral, Samir Diouny
Abstract:
Introduction: Previous research has indicated that language impairments are recognized as a feature of many neurodegenerative disorders, including non-language-led dementia subtypes such as Alzheimer´s disease (AD). In this preliminary study, the focal aim is to quantify the semantic content of naming and connected speech samples of Moroccan patients diagnosed with AD using two tasks taken from the culturally adapted and validated Moroccan version of the Boston Diagnostic Aphasia Examination. Methods: Five individuals with AD and five neurologically healthy individuals matched for age, gender, and education will participate in the study. Participants with AD will be diagnosed on the basis of the Moroccan version of the Diagnostic and Statistial Manual of Mental Disorders (DSM-4) screening test, the Moroccan version of the Mini Mental State Examination (MMSE) test scores, and neuroimaging analyses. The participants will engage in two tasks taken from the MDAE-SF: 1) Picture description and 2) Naming. Expected findings: Consistent with previous studies conducted on English speaking AD patients, we expect to find significant word production and retrieval impairments in AD patients in all measures. Moreover, we expect to find category fluency impairments that further endorse semantic breakdown accounts. In sum, not only will the findings of the current study shed more light on the locus of word retrieval impairments noted in AD, but also reflect the nature of Arabic morphology. In addition, the error patterns are expected to be similar to those found in previous AD studies in other languages.Keywords: alzheimer's disease, anomia, connected speech, semantic impairments, moroccan arabic
Procedia PDF Downloads 14225264 Semantic Platform for Adaptive and Collaborative e-Learning
Authors: Massra M. Sabeima, Myriam lamolle, Mohamedade Farouk Nanne
Abstract:
Adapting the learning resources of an e-learning system to the characteristics of the learners is an important aspect to consider when designing an adaptive e-learning system. However, this adaptation is not a simple process; it requires the extraction, analysis, and modeling of user information. This implies a good representation of the user's profile, which is the backbone of the adaptation process. Moreover, during the e-learning process, collaboration with similar users (same geographic province or knowledge context) is important. Productive collaboration motivates users to continue or not abandon the course and increases the assimilation of learning objects. The contribution of this work is the following: we propose an adaptive e-learning semantic platform to recommend learning resources to learners, using ontology to model the user profile and the course content, furthermore an implementation of a multi-agent system able to progressively generate the learning graph (taking into account the user's progress, and the changes that occur) for each user during the learning process, and to synchronize the users who collaborate on a learning object.Keywords: adaptative learning, collaboration, multi-agent, ontology
Procedia PDF Downloads 17525263 Vector-Based Analysis in Cognitive Linguistics
Authors: Chuluundorj Begz
Abstract:
This paper presents the dynamic, psycho-cognitive approach to study of human verbal thinking on the basis of typologically different languages /as a Mongolian, English and Russian/. Topological equivalence in verbal communication serves as a basis of Universality of mental structures and therefore deep structures. Mechanism of verbal thinking consisted at the deep level of basic concepts, rules for integration and classification, neural networks of vocabulary. In neuro cognitive study of language, neural architecture and neuro psychological mechanism of verbal cognition are basis of a vector-based modeling. Verbal perception and interpretation of the infinite set of meanings and propositions in mental continuum can be modeled by applying tensor methods. Euclidean and non-Euclidean spaces are applied for a description of human semantic vocabulary and high order structures.Keywords: Euclidean spaces, isomorphism and homomorphism, mental lexicon, mental mapping, semantic memory, verbal cognition, vector space
Procedia PDF Downloads 51925262 The Value of Computerized Corpora in EFL Textbook Design: The Case of Modal Verbs
Authors: Lexi Li
Abstract:
This study aims to contribute to the field of how computer technology can be exploited to enhance EFL textbook design. Specifically, the study demonstrates how computerized native and learner corpora can be used to enhance modal verb treatment in EFL textbooks. The linguistic focus is will, would, can, could, may, might, shall, should, must. The native corpus is the spoken component of BNC2014 (hereafter BNCS2014). The spoken part is chosen because the pedagogical purpose of the textbooks is communication-oriented. Using the standard query option of CQPweb, 5% of each of the nine modals was sampled from BNCS2014. The learner corpus is the POS-tagged Ten-thousand English Compositions of Chinese Learners (TECCL). All the essays under the “secondary school” section were selected. A series of five secondary coursebooks comprise the textbook corpus. All the data in both the learner and the textbook corpora are retrieved through the concordance functions of WordSmith Tools (version, 5.0). Data analysis was divided into two parts. The first part compared the patterns of modal verbs in the textbook corpus and BNC2014 with respect to distributional features, semantic functions, and co-occurring constructions to examine whether the textbooks reflect the authentic use of English. Secondly, the learner corpus was compared with the textbook corpus in terms of the use (distributional features, semantic functions, and co-occurring constructions) in order to examine the degree of influence of the textbook on learners’ use of modal verbs. Moreover, the learner corpus was analyzed for the misuse (syntactic errors, e.g., she can sings*.) of the nine modal verbs to uncover potential difficulties that confront learners. The results indicate discrepancies between the textbook presentation of modal verbs and authentic modal use in natural discourse in terms of distributions of frequencies, semantic functions, and co-occurring structures. Furthermore, there are consistent patterns of use between the learner corpus and the textbook corpus with respect to the three above-mentioned aspects, except could, will and must, partially confirming the correlation between the frequency effects and L2 grammar acquisition. Further analysis reveals that the exceptions are caused by both positive and negative L1 transfer, indicating that the frequency effects can be intercepted by L1 interference. Besides, error analysis revealed that could, would, should and must are the most difficult for Chinese learners due to both inter-linguistic and intra-linguistic interference. The discrepancies between the textbook corpus and the native corpus point to a need to adjust the presentation of modal verbs in the textbooks in terms of frequencies, different meanings, and verb-phrase structures. Along with the adjustment of modal verb treatment based on authentic use, it is important for textbook writers to take into consideration the L1 interference as well as learners’ difficulties in their use of modal verbs. The present study is a methodological showcase of the combination both native and learner corpora in the enhancement of EFL textbook language authenticity and appropriateness for learners.Keywords: EFL textbooks, learner corpus, modal verbs, native corpus
Procedia PDF Downloads 12425261 A Comparative Semantic Network Study between Chinese and Western Festivals
Authors: Jianwei Qian, Rob Law
Abstract:
With the expansion of globalization and the increment of market competition, the festival, especially the traditional one, has demonstrated its vitality under the new context. As a new tourist attraction, festivals play a critically important role in promoting the tourism economy, because the organization of a festival can engage more tourists, generate more revenues and win a wider media concern. However, in the current stage of China, traditional festivals as a way to disseminate national culture are undergoing the challenge of foreign festivals and the related culture. Different from those special events created solely for developing economy, traditional festivals have their own culture and connotation. Therefore, it is necessary to conduct a study on not only protecting the tradition, but promoting its development as well. This study conducts a comparative study of the development of China’s Valentine’s Day and Western Valentine’s Day under the Chinese context and centers on newspaper reports in China from 2000 to 2016. Based on the literature, two main research focuses can be established: one is concerned about the festival’s impact and the other is about tourists’ motivation to engage in a festival. Newspaper reports serve as the research discourse and can help cover the two focal points. With the assistance of content mining techniques, semantic networks for both Days are constructed separately to help depict the status quo of these two festivals in China. Based on the networks, two models are established to show the key component system of traditional festivals in the hope of perfecting the positive role festival tourism plays in the promotion of economy and culture. According to the semantic networks, newspaper reports on both festivals have similarities and differences. The difference is mainly reflected in its cultural connotation, because westerners and Chinese may show their love in different ways. Nevertheless, they share more common points in terms of economy, tourism, and society. They also have a similar living environment and stakeholders. Thus, they can be promoted together to revitalize some traditions in China. Three strategies are proposed to realize the aforementioned aim. Firstly, localize international festivals to suit the Chinese context to make it function better. Secondly, facilitate the internationalization process of traditional Chinese festivals to receive more recognition worldwide. Finally, allow traditional festivals to compete with foreign ones to help them learn from each other and elucidate the development of other festivals. It is believed that if all these can be realized, not only the traditional Chinese festivals can obtain a more promising future, but foreign ones are the same as well. Accordingly, the paper can contribute to the theoretical construction of festival images by the presentation of the semantic network. Meanwhile, the identified features and issues of festivals from two different cultures can enlighten the organization and marketing of festivals as a vital tourism activity. In the long run, the study can enhance the festival as a key attraction to keep the sustainable development of both the economy and the society.Keywords: Chinese context, comparative study, festival tourism, semantic network analysis, valentine’s day
Procedia PDF Downloads 23225260 Authorship Attribution Using Sociolinguistic Profiling When Considering Civil and Criminal Cases
Authors: Diana A. Sokolova
Abstract:
This article is devoted to one of the possibilities for identifying the author of an oral or written text - sociolinguistic profiling. Sociolinguistic profiling is utilized as a forensic linguistics technique to identify individuals through language patterns, particularly in criminal cases. It examines how social factors influence language use. This study aims to showcase the significance of linguistic profiling for attributing authorship in texts and emphasizes the necessity for its continuous enhancement while considering its strengths and weaknesses. The study employs semantic-syntactic, lexical-semantic, linguopragmatic, logical, presupposition, authorization, and content analysis methods to investigate linguistic profiling. The research highlights the relevance of sociolinguistic profiling in authorship attribution and underscores the importance of ongoing refinement of the technique, considering its limitations. This study emphasizes the practical application of linguistic profiling in legal settings and underscores the impact of social factors on language use, contributing to the field of forensic linguistics. Data collection involves collecting oral and written texts from criminal and civil court cases to analyze language patterns for authorship attribution. The collected data is analyzed using various linguistic analysis methods to identify individual characteristics and patterns that can aid in authorship attribution. The study addresses the effectiveness of sociolinguistic profiling in identifying authors of texts and explores the impact of social factors on language use in legal contexts. In spite of advantages challenges in linguistics profiling have spurred debates and controversies in academic circles, legal environments, and the public sphere. So, this research highlights the significance of sociolinguistic profiling in authorship attribution and emphasizes the need for further development of this method, considering its strengths and weaknesses.Keywords: authorship attribution, detection of identifying, dialect, features, forensic linguistics, social influence, sociolinguistics, unique speech characteristics
Procedia PDF Downloads 3625259 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 2325258 A Proposed Framework for Software Redocumentation Using Distributed Data Processing Techniques and Ontology
Authors: Laila Khaled Almawaldi, Hiew Khai Hang, Sugumaran A. l. Nallusamy
Abstract:
Legacy systems are crucial for organizations, but their intricacy and lack of documentation pose challenges for maintenance and enhancement. Redocumentation of legacy systems is vital for automatically or semi-automatically creating documentation for software lacking sufficient records. It aims to enhance system understandability, maintainability, and knowledge transfer. However, existing redocumentation methods need improvement in data processing performance and document generation efficiency. This stems from the necessity to efficiently handle the extensive and complex code of legacy systems. This paper proposes a method for semi-automatic legacy system re-documentation using semantic parallel processing and ontology. Leveraging parallel processing and ontology addresses current challenges by distributing the workload and creating documentation with logically interconnected data. The paper outlines challenges in legacy system redocumentation and suggests a method of redocumentation using parallel processing and ontology for improved efficiency and effectiveness.Keywords: legacy systems, redocumentation, big data analysis, parallel processing
Procedia PDF Downloads 4625257 Prompt Design for Code Generation in Data Analysis Using Large Language Models
Authors: Lu Song Ma Li Zhi
Abstract:
With the rapid advancement of artificial intelligence technology, large language models (LLMs) have become a milestone in the field of natural language processing, demonstrating remarkable capabilities in semantic understanding, intelligent question answering, and text generation. These models are gradually penetrating various industries, particularly showcasing significant application potential in the data analysis domain. However, retraining or fine-tuning these models requires substantial computational resources and ample downstream task datasets, which poses a significant challenge for many enterprises and research institutions. Without modifying the internal parameters of the large models, prompt engineering techniques can rapidly adapt these models to new domains. This paper proposes a prompt design strategy aimed at leveraging the capabilities of large language models to automate the generation of data analysis code. By carefully designing prompts, data analysis requirements can be described in natural language, which the large language model can then understand and convert into executable data analysis code, thereby greatly enhancing the efficiency and convenience of data analysis. This strategy not only lowers the threshold for using large models but also significantly improves the accuracy and efficiency of data analysis. Our approach includes requirements for the precision of natural language descriptions, coverage of diverse data analysis needs, and mechanisms for immediate feedback and adjustment. Experimental results show that with this prompt design strategy, large language models perform exceptionally well in multiple data analysis tasks, generating high-quality code and significantly shortening the data analysis cycle. This method provides an efficient and convenient tool for the data analysis field and demonstrates the enormous potential of large language models in practical applications.Keywords: large language models, prompt design, data analysis, code generation
Procedia PDF Downloads 3925256 Multimodal Discourse, Logic of the Analysis of Transmedia Strategies
Authors: Bianca Suárez Puerta
Abstract:
Multimodal discourse refers to a method of study the media continuum between reality, screens as a device, audience, author, and media as a production from the audience. For this study we used semantic differential, a method proposed in the sixties by Osgood, Suci and Tannenbaum, starts from the assumption that under each particular way of perceiving the world, in each singular idea, there is a common cultural meaning that organizes experiences. In relation to these shared symbolic dimension, this method has had significant results, as it focuses on breaking down the meaning of certain significant acts into series of statements that place the subjects in front of some concepts. In Colombia, in 2016, a tool was designed to measure the meaning of a multimodal production, specially the acts of sense of transmedia productions that managed to receive funds from the Ministry of ICT of Colombia, and also, to analyze predictable patterns that can be found in calls and funds aimed at the production of culture in Colombia, in the context of the peace agreement, as a request for expressions from a hegemonic place, seeking to impose a worldview.Keywords: semantic differential, semiotics, transmedia, critical analysis of discourse
Procedia PDF Downloads 20525255 Adding a Few Language-Level Constructs to Improve OOP Verifiability of Semantic Correctness
Authors: Lian Yang
Abstract:
Object-oriented programming (OOP) is the dominant programming paradigm in today’s software industry and it has literally enabled average software developers to develop millions of commercial strength software applications in the era of INTERNET revolution over the past three decades. On the other hand, the lack of strict mathematical model and domain constraint features at the language level has long perplexed the computer science academia and OOP engineering community. This situation resulted in inconsistent system qualities and hard-to-understand designs in some OOP projects. The difficulties with regards to fix the current situation are also well known. Although the power of OOP lies in its unbridled flexibility and enormously rich data modeling capability, we argue that the ambiguity and the implicit facade surrounding the conceptual model of a class and an object should be eliminated as much as possible. We listed the five major usage of class and propose to separate them by proposing new language constructs. By using well-established theories of set and FSM, we propose to apply certain simple, generic, and yet effective constraints at OOP language level in an attempt to find a possible solution to the above-mentioned issues regarding OOP. The goal is to make OOP more theoretically sound as well as to aid programmers uncover warning signs of irregularities and domain-specific issues in applications early on the development stage and catch semantic mistakes at runtime, improving correctness verifiability of software programs. On the other hand, the aim of this paper is more practical than theoretical.Keywords: new language constructs, set theory, FSM theory, user defined value type, function groups, membership qualification attribute (MQA), check-constraint (CC)
Procedia PDF Downloads 238