Search results for: optimisation algorithms
2062 Efficient Credit Card Fraud Detection Based on Multiple ML Algorithms
Authors: Neha Ahirwar
Abstract:
In the contemporary digital era, the rise of credit card fraud poses a significant threat to both financial institutions and consumers. As fraudulent activities become more sophisticated, there is an escalating demand for robust and effective fraud detection mechanisms. Advanced machine learning algorithms have become crucial tools in addressing this challenge. This paper conducts a thorough examination of the design and evaluation of a credit card fraud detection system, utilizing four prominent machine learning algorithms: random forest, logistic regression, decision tree, and XGBoost. The surge in digital transactions has opened avenues for fraudsters to exploit vulnerabilities within payment systems. Consequently, there is an urgent need for proactive and adaptable fraud detection systems. This study addresses this imperative by exploring the efficacy of machine learning algorithms in identifying fraudulent credit card transactions. The selection of random forest, logistic regression, decision tree, and XGBoost for scrutiny in this study is based on their documented effectiveness in diverse domains, particularly in credit card fraud detection. These algorithms are renowned for their capability to model intricate patterns and provide accurate predictions. Each algorithm is implemented and evaluated for its performance in a controlled environment, utilizing a diverse dataset comprising both genuine and fraudulent credit card transactions.Keywords: efficient credit card fraud detection, random forest, logistic regression, XGBoost, decision tree
Procedia PDF Downloads 672061 Application of Data Mining Techniques for Tourism Knowledge Discovery
Authors: Teklu Urgessa, Wookjae Maeng, Joong Seek Lee
Abstract:
Application of five implementations of three data mining classification techniques was experimented for extracting important insights from tourism data. The aim was to find out the best performing algorithm among the compared ones for tourism knowledge discovery. Knowledge discovery process from data was used as a process model. 10-fold cross validation method is used for testing purpose. Various data preprocessing activities were performed to get the final dataset for model building. Classification models of the selected algorithms were built with different scenarios on the preprocessed dataset. The outperformed algorithm tourism dataset was Random Forest (76%) before applying information gain based attribute selection and J48 (C4.5) (75%) after selection of top relevant attributes to the class (target) attribute. In terms of time for model building, attribute selection improves the efficiency of all algorithms. Artificial Neural Network (multilayer perceptron) showed the highest improvement (90%). The rules extracted from the decision tree model are presented, which showed intricate, non-trivial knowledge/insight that would otherwise not be discovered by simple statistical analysis with mediocre accuracy of the machine using classification algorithms.Keywords: classification algorithms, data mining, knowledge discovery, tourism
Procedia PDF Downloads 2952060 An Experimental Study for Assessing Email Classification Attributes Using Feature Selection Methods
Authors: Issa Qabaja, Fadi Thabtah
Abstract:
Email phishing classification is one of the vital problems in the online security research domain that have attracted several scholars due to its impact on the users payments performed daily online. One aspect to reach a good performance by the detection algorithms in the email phishing problem is to identify the minimal set of features that significantly have an impact on raising the phishing detection rate. This paper investigate three known feature selection methods named Information Gain (IG), Chi-square and Correlation Features Set (CFS) on the email phishing problem to separate high influential features from low influential ones in phishing detection. We measure the degree of influentially by applying four data mining algorithms on a large set of features. We compare the accuracy of these algorithms on the complete features set before feature selection has been applied and after feature selection has been applied. After conducting experiments, the results show 12 common significant features have been chosen among the considered features by the feature selection methods. Further, the average detection accuracy derived by the data mining algorithms on the reduced 12-features set was very slight affected when compared with the one derived from the 47-features set.Keywords: data mining, email classification, phishing, online security
Procedia PDF Downloads 4322059 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security
Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama
Abstract:
This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.Keywords: optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, steganalysis heuristic approach
Procedia PDF Downloads 2922058 Cyber Attacks Management in IoT Networks Using Deep Learning and Edge Computing
Authors: Asmaa El Harat, Toumi Hicham, Youssef Baddi
Abstract:
This survey delves into the complex realm of Internet of Things (IoT) security, highlighting the urgent need for effective cybersecurity measures as IoT devices become increasingly common. It explores a wide array of cyber threats targeting IoT devices and focuses on mitigating these attacks through the combined use of deep learning and machine learning algorithms, as well as edge and cloud computing paradigms. The survey starts with an overview of the IoT landscape and the various types of attacks that IoT devices face. It then reviews key machine learning and deep learning algorithms employed in IoT cybersecurity, providing a detailed comparison to assist in selecting the most suitable algorithms. Finally, the survey provides valuable insights for cybersecurity professionals and researchers aiming to enhance security in the intricate world of IoT.Keywords: internet of things (IoT), cybersecurity, machine learning, deep learning
Procedia PDF Downloads 312057 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 6022056 Neuroevolution Based on Adaptive Ensembles of Biologically Inspired Optimization Algorithms Applied for Modeling a Chemical Engineering Process
Authors: Sabina-Adriana Floria, Marius Gavrilescu, Florin Leon, Silvia Curteanu, Costel Anton
Abstract:
Neuroevolution is a subfield of artificial intelligence used to solve various problems in different application areas. Specifically, neuroevolution is a technique that applies biologically inspired methods to generate neural network architectures and optimize their parameters automatically. In this paper, we use different biologically inspired optimization algorithms in an ensemble strategy with the aim of training multilayer perceptron neural networks, resulting in regression models used to simulate the industrial chemical process of obtaining bricks from silicone-based materials. Installations in the raw ceramics industry, i.e., bricks, are characterized by significant energy consumption and large quantities of emissions. In addition, the initial conditions that were taken into account during the design and commissioning of the installation can change over time, which leads to the need to add new mixes to adjust the operating conditions for the desired purpose, e.g., material properties and energy saving. The present approach follows the study by simulation of a process of obtaining bricks from silicone-based materials, i.e., the modeling and optimization of the process. Optimization aims to determine the working conditions that minimize the emissions represented by nitrogen monoxide. We first use a search procedure to find the best values for the parameters of various biologically inspired optimization algorithms. Then, we propose an adaptive ensemble strategy that uses only a subset of the best algorithms identified in the search stage. The adaptive ensemble strategy combines the results of selected algorithms and automatically assigns more processing capacity to the more efficient algorithms. Their efficiency may also vary at different stages of the optimization process. In a given ensemble iteration, the most efficient algorithms aim to maintain good convergence, while the less efficient algorithms can improve population diversity. The proposed adaptive ensemble strategy outperforms the individual optimizers and the non-adaptive ensemble strategy in convergence speed, and the obtained results provide lower error values.Keywords: optimization, biologically inspired algorithm, neuroevolution, ensembles, bricks, emission minimization
Procedia PDF Downloads 1162055 A General Framework for Knowledge Discovery from Echocardiographic and Natural Images
Authors: S. Nandagopalan, N. Pradeep
Abstract:
The aim of this paper is to propose a general framework for storing, analyzing, and extracting knowledge from two-dimensional echocardiographic images, color Doppler images, non-medical images, and general data sets. A number of high performance data mining algorithms have been used to carry out this task. Our framework encompasses four layers namely physical storage, object identification, knowledge discovery, user level. Techniques such as active contour model to identify the cardiac chambers, pixel classification to segment the color Doppler echo image, universal model for image retrieval, Bayesian method for classification, parallel algorithms for image segmentation, etc., were employed. Using the feature vector database that have been efficiently constructed, one can perform various data mining tasks like clustering, classification, etc. with efficient algorithms along with image mining given a query image. All these facilities are included in the framework that is supported by state-of-the-art user interface (UI). The algorithms were tested with actual patient data and Coral image database and the results show that their performance is better than the results reported already.Keywords: active contour, Bayesian, echocardiographic image, feature vector
Procedia PDF Downloads 4452054 Analysis and Modeling of Photovoltaic System with Different Research Methods of Maximum Power Point Tracking
Authors: Mehdi Ameur, Ahmed Essakdi, Tamou Nasser
Abstract:
The purpose of this paper is the analysis and modeling of the photovoltaic system with MPPT techniques. This system is developed by combining the models of established solar module and DC-DC converter with the algorithms of perturb and observe (P&O), incremental conductance (INC) and fuzzy logic controller(FLC). The system is simulated under different climate conditions and MPPT algorithms to determine the influence of these conditions on characteristic power-voltage of PV system. According to the comparisons of the simulation results, the photovoltaic system can extract the maximum power with precision and rapidity using the MPPT algorithms discussed in this paper.Keywords: photovoltaic array, maximum power point tracking, MPPT, perturb and observe, P&O, incremental conductance, INC, hill climbing, HC, fuzzy logic controller, FLC
Procedia PDF Downloads 4292053 Evaluation of Dual Polarization Rainfall Estimation Algorithm Applicability in Korea: A Case Study on Biseulsan Radar
Authors: Chulsang Yoo, Gildo Kim
Abstract:
Dual polarization radar provides comprehensive information about rainfall by measuring multiple parameters. In Korea, for the rainfall estimation, JPOLE and CSU-HIDRO algorithms are generally used. This study evaluated the local applicability of JPOLE and CSU-HIDRO algorithms in Korea by using the observed rainfall data collected on August, 2014 by the Biseulsan dual polarization radar data and KMA AWS. A total of 11,372 pairs of radar-ground rain rate data were classified according to thresholds of synthetic algorithms into suitable and unsuitable data. Then, evaluation criteria were derived by comparing radar rain rate and ground rain rate, respectively, for entire, suitable, unsuitable data. The results are as follows: (1) The radar rain rate equation including KDP, was found better in the rainfall estimation than the other equations for both JPOLE and CSU-HIDRO algorithms. The thresholds were found to be adequately applied for both algorithms including specific differential phase. (2) The radar rain rate equation including horizontal reflectivity and differential reflectivity were found poor compared to the others. The result was not improved even when only the suitable data were applied. Acknowledgments: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea, funded by the Ministry of Education (NRF-2013R1A1A2011012).Keywords: CSU-HIDRO algorithm, dual polarization radar, JPOLE algorithm, radar rainfall estimation algorithm
Procedia PDF Downloads 2142052 Heterogenous Dimensional Super Resolution of 3D CT Scans Using Transformers
Authors: Helen Zhang
Abstract:
Accurate segmentation of the airways from CT scans is crucial for early diagnosis of lung cancer. However, the existing airway segmentation algorithms often rely on thin-slice CT scans, which can be inconvenient and costly. This paper presents a set of machine learning-based 3D super-resolution algorithms along heterogeneous dimensions to improve the resolution of thicker CT scans to reduce the reliance on thin-slice scans. To evaluate the efficacy of the super-resolution algorithms, quantitative assessments using PSNR (Peak Signal to Noise Ratio) and SSIM (Structural SIMilarity index) were performed. The impact of super-resolution on airway segmentation accuracy is also studied. The proposed approach has the potential to make airway segmentation more accessible and affordable, thereby facilitating early diagnosis and treatment of lung cancer.Keywords: 3D super-resolution, airway segmentation, thin-slice CT scans, machine learning
Procedia PDF Downloads 1172051 Downtime Modelling for the Post-Earthquake Building Assessment Phase
Authors: S. Khakurel, R. P. Dhakal, T. Z. Yeow
Abstract:
Downtime is one of the major sources (alongside damage and injury/death) of financial loss incurred by a structure in an earthquake. The length of downtime associated with a building after an earthquake varies depending on the time taken for the reaction (to the earthquake), decision (on the future course of action) and execution (of the decided course of action) phases. Post-earthquake assessment of buildings is a key step in the decision making process to decide the appropriate safety placarding as well as to decide whether a damaged building is to be repaired or demolished. The aim of the present study is to develop a model to quantify downtime associated with the post-earthquake building-assessment phase in terms of two parameters; i) duration of the different assessment phase; and ii) probability of different colour tagging. Post-earthquake assessment of buildings includes three stages; Level 1 Rapid Assessment including a fast external inspection shortly after the earthquake, Level 2 Rapid Assessment including a visit inside the building and Detailed Engineering Evaluation (if needed). In this study, the durations of all three assessment phases are first estimated from the total number of damaged buildings, total number of available engineers and the average time needed for assessing each building. Then, probability of different tag colours is computed from the 2010-11 Canterbury earthquake Sequence database. Finally, a downtime model for the post-earthquake building inspection phase is proposed based on the estimated phase length and probability of tag colours. This model is expected to be used for rapid estimation of seismic downtime within the Loss Optimisation Seismic Design (LOSD) framework.Keywords: assessment, downtime, LOSD, Loss Optimisation Seismic Design, phase length, tag color
Procedia PDF Downloads 1852050 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: simulation, visual navigation, mobile robot, data visualization
Procedia PDF Downloads 2552049 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target
Procedia PDF Downloads 1402048 Design and Performance Analysis of Resource Management Algorithms in Response to Emergency and Disaster Situations
Authors: Volkan Uygun, H. Birkan Yilmaz, Tuna Tugcu
Abstract:
This study focuses on the development and use of algorithms that address the issue of resource management in response to emergency and disaster situations. The presented system, named Disaster Management Platform (DMP), takes the data from the data sources of service providers and distributes the incoming requests accordingly both to manage load balancing and minimize service time, which results in improved user satisfaction. Three different resource management algorithms, which give different levels of importance to load balancing and service time, are proposed for the study. The first one is the Minimum Distance algorithm, which assigns the request to the closest resource. The second one is the Minimum Load algorithm, which assigns the request to the resource with the minimum load. Finally, the last one is the Hybrid algorithm, which combines the previous two approaches. The performance of the proposed algorithms is evaluated with respect to waiting time, success ratio, and maximum load ratio. The metrics are monitored from simulations, to find the optimal scheme for different loads. Two different simulations are performed in the study, one is time-based and the other is lambda-based. The results indicate that, the Minimum Load algorithm is generally the best in all metrics whereas the Minimum Distance algorithm is the worst in all cases and in all metrics. The leading position in performance is switched between the Minimum Distance and the Hybrid algorithms, as lambda values change.Keywords: emergency and disaster response, resource management algorithm, disaster situations, disaster management platform
Procedia PDF Downloads 3382047 Effect of Personality Traits on Classification of Political Orientation
Authors: Vesile Evrim, Aliyu Awwal
Abstract:
Today as in the other domains, there are an enormous number of political transcripts available in the Web which is waiting to be mined and used for various purposes such as statistics and recommendations. Therefore, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do the automatic classification are based on different features such as Linguistic. Considering the ideology differences between Liberals and Conservatives, in this paper, the effect of Personality Traits on political orientation classification is studied. This is done by considering the correlation between LIWC features and the BIG Five Personality Traits. Several experiments are conducted on Convote U.S. Congressional-Speech dataset with seven benchmark classification algorithms. The different methodologies are applied on selecting different feature sets that constituted by 8 to 64 varying number of features. While Neuroticism is obtained to be the most differentiating personality trait on classification of political polarity, when its top 10 representative features are combined with several classification algorithms, it outperformed the results presented in previous research.Keywords: politics, personality traits, LIWC, machine learning
Procedia PDF Downloads 4952046 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 2352045 Patient-Specific Modeling Algorithm for Medical Data Based on AUC
Authors: Guilherme Ribeiro, Alexandre Oliveira, Antonio Ferreira, Shyam Visweswaran, Gregory Cooper
Abstract:
Patient-specific models are instance-based learning algorithms that take advantage of the particular features of the patient case at hand to predict an outcome. We introduce two patient-specific algorithms based on decision tree paradigm that use AUC as a metric to select an attribute. We apply the patient specific algorithms to predict outcomes in several datasets, including medical datasets. Compared to the patient-specific decision path (PSDP) entropy-based and CART methods, the AUC-based patient-specific decision path models performed equivalently on area under the ROC curve (AUC). Our results provide support for patient-specific methods being a promising approach for making clinical predictions.Keywords: approach instance-based, area under the ROC curve, patient-specific decision path, clinical predictions
Procedia PDF Downloads 4792044 An Investigation Enhancing E-Voting Application Performance
Authors: Aditya Verma
Abstract:
E-voting using blockchain provides us with a distributed system where data is present on each node present in the network and is reliable and secure too due to its immutability property. This work compares various blockchain consensus algorithms used for e-voting applications in the past, based on performance and node scalability, and chooses the optimal one and improves on one such previous implementation by proposing solutions for the loopholes of the optimally working blockchain consensus algorithm, in our chosen application, e-voting.Keywords: blockchain, parallel bft, consensus algorithms, performance
Procedia PDF Downloads 1672043 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller
Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan
Abstract:
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller
Procedia PDF Downloads 4842042 An Assessment of Different Blade Tip Timing (BTT) Algorithms Using an Experimentally Validated Finite Element Model Simulator
Authors: Mohamed Mohamed, Philip Bonello, Peter Russhard
Abstract:
Blade Tip Timing (BTT) is a technology concerned with the estimation of both frequency and amplitude of rotating blades. A BTT system comprises two main parts: (a) the arrival time measurement system, and (b) the analysis algorithms. Simulators play an important role in the development of the analysis algorithms since they generate blade tip displacement data from the simulated blade vibration under controlled conditions. This enables an assessment of the performance of the different algorithms with respect to their ability to accurately reproduce the original simulated vibration. Such an assessment is usually not possible with real engine data since there is no practical alternative to BTT for blade vibration measurement. Most simulators used in the literature are based on a simple spring-mass-damper model to determine the vibration. In this work, a more realistic experimentally validated simulator based on the Finite Element (FE) model of a bladed disc (blisk) is first presented. It is then used to generate the necessary data for the assessment of different BTT algorithms. The FE modelling is validated using both a hammer test and two firewire cameras for the mode shapes. A number of autoregressive methods, fitting methods and state-of-the-art inverse methods (i.e. Russhard) are compared. All methods are compared with respect to both synchronous and asynchronous excitations with both single and simultaneous frequencies. The study assesses the applicability of each method for different conditions of vibration, amount of sampling data, and testing facilities, according to its performance and efficiency under these conditions.Keywords: blade tip timing, blisk, finite element, vibration measurement
Procedia PDF Downloads 3112041 Investigation of Different Machine Learning Algorithms in Large-Scale Land Cover Mapping within the Google Earth Engine
Authors: Amin Naboureh, Ainong Li, Jinhu Bian, Guangbin Lei, Hamid Ebrahimy
Abstract:
Large-scale land cover mapping has become a new challenge in land change and remote sensing field because of involving a big volume of data. Moreover, selecting the right classification method, especially when there are different types of landscapes in the study area is quite difficult. This paper is an attempt to compare the performance of different machine learning (ML) algorithms for generating a land cover map of the China-Central Asia–West Asia Corridor that is considered as one of the main parts of the Belt and Road Initiative project (BRI). The cloud-based Google Earth Engine (GEE) platform was used for generating a land cover map for the study area from Landsat-8 images (2017) by applying three frequently used ML algorithms including random forest (RF), support vector machine (SVM), and artificial neural network (ANN). The selected ML algorithms (RF, SVM, and ANN) were trained and tested using reference data obtained from MODIS yearly land cover product and very high-resolution satellite images. The finding of the study illustrated that among three frequently used ML algorithms, RF with 91% overall accuracy had the best result in producing a land cover map for the China-Central Asia–West Asia Corridor whereas ANN showed the worst result with 85% overall accuracy. The great performance of the GEE in applying different ML algorithms and handling huge volume of remotely sensed data in the present study showed that it could also help the researchers to generate reliable long-term land cover change maps. The finding of this research has great importance for decision-makers and BRI’s authorities in strategic land use planning.Keywords: land cover, google earth engine, machine learning, remote sensing
Procedia PDF Downloads 1132040 Automatic Queuing Model Applications
Authors: Fahad Suleiman
Abstract:
Queuing, in medical system is the process of moving patients in a specific sequence to a specific service according to the patients’ nature of illness. The term scheduling stands for the process of computing a schedule. This may be done by a queuing based scheduler. This paper focuses on the medical consultancy system, the different queuing algorithms that are used in healthcare system to serve the patients, and the average waiting time. The aim of this paper is to build automatic queuing system for organizing the medical queuing system that can analyses the queue status and take decision which patient to serve. The new queuing architecture model can switch between different scheduling algorithms according to the testing results and the factor of the average waiting time. The main innovation of this work concerns the modeling of the average waiting time is taken into processing, in addition with the process of switching to the scheduling algorithm that gives the best average waiting time.Keywords: queuing systems, queuing system models, scheduling algorithms, patients
Procedia PDF Downloads 3542039 Improved Multi–Objective Firefly Algorithms to Find Optimal Golomb Ruler Sequences for Optimal Golomb Ruler Channel Allocation
Authors: Shonak Bansal, Prince Jain, Arun Kumar Singh, Neena Gupta
Abstract:
Recently nature–inspired algorithms have widespread use throughout the tough and time consuming multi–objective scientific and engineering design optimization problems. In this paper, we present extended forms of firefly algorithm to find optimal Golomb ruler (OGR) sequences. The OGRs have their one of the major application as unequally spaced channel–allocation algorithm in optical wavelength division multiplexing (WDM) systems in order to minimize the adverse four–wave mixing (FWM) crosstalk effect. The simulation results conclude that the proposed optimization algorithm has superior performance compared to the existing conventional computing and nature–inspired optimization algorithms to find OGRs in terms of ruler length, total optical channel bandwidth and computation time.Keywords: channel allocation, conventional computing, four–wave mixing, nature–inspired algorithm, optimal Golomb ruler, lévy flight distribution, optimization, improved multi–objective firefly algorithms, Pareto optimal
Procedia PDF Downloads 3222038 A Metaheuristic Approach for Optimizing Perishable Goods Distribution
Authors: Bahare Askarian, Suchithra Rajendran
Abstract:
Maintaining the freshness and quality of perishable goods during distribution is a critical challenge for logistics companies. This study presents a comprehensive framework aimed at optimizing the distribution of perishable goods through a mathematical model of the Transportation Inventory Location Routing Problem (TILRP). The model incorporates the impact of product age on customer demand, addressing the complexities associated with inventory management and routing. To tackle this problem, we develop both simple and hybrid metaheuristic algorithms designed for small- and medium-scale scenarios. The hybrid algorithm combines Biogeographical Based Optimization (BBO) algorithms with local search techniques to enhance performance in small- and medium-scale scenarios, extending our approach to larger-scale challenges. Through extensive numerical simulations and sensitivity analyses across various scenarios, the performance of the proposed algorithms is evaluated, assessing their effectiveness in achieving optimal solutions. The results demonstrate that our algorithms significantly enhance distribution efficiency, offering valuable insights for logistics companies striving to improve their perishable goods supply chains.Keywords: perishable goods, meta-heuristic algorithm, vehicle problem, inventory models
Procedia PDF Downloads 202037 Analytical Comparison of Conventional Algorithms with Vedic Algorithm for Digital Multiplier
Authors: Akhilesh G. Naik, Dipankar Pal
Abstract:
In today’s scenario, the complexity of digital signal processing (DSP) applications and various microcontroller architectures have been increasing to such an extent that the traditional approaches to multiplier design in most processors are becoming outdated for being comparatively slow. Modern processing applications require suitable pipelined approaches, and therefore, algorithms that are friendlier with pipelined architectures. Traditional algorithms like Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda architectures have been proven to be comparatively slow for pipelined architectures. These architectures, therefore, need to be optimized or combined with other architectures amongst them to enhance its performances and to be made suitable for pipelined hardware/architectures. Recently, Vedic algorithm mathematically has proven to be efficient by appearing to be less complex and with fewer steps for its output establishment and have assumed renewed importance. This paper describes and shows how the Vedic algorithm can be better suited for pipelined architectures and also can be combined with traditional architectures and algorithms for enhancing its ability even further. In this paper, we also established that for complex applications on DSP and other microcontroller architectures, using Vedic approach for multiplication proves to be the best available and efficient option.Keywords: Wallace Tree, Radix-4 Booth, Radix-8 Booth, Dadda, Vedic, Single-Stage Karatsuba (SSK), Looped Karatsuba (LK)
Procedia PDF Downloads 1692036 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem
Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee
Abstract:
Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research
Procedia PDF Downloads 3362035 Image Segmentation Techniques: Review
Authors: Lindani Mbatha, Suvendi Rimer, Mpho Gololo
Abstract:
Image segmentation is the process of dividing an image into several sections, such as the object's background and the foreground. It is a critical technique in both image-processing tasks and computer vision. Most of the image segmentation algorithms have been developed for gray-scale images and little research and algorithms have been developed for the color images. Most image segmentation algorithms or techniques vary based on the input data and the application. Nearly all of the techniques are not suitable for noisy environments. Most of the work that has been done uses the Markov Random Field (MRF), which involves the computations and is said to be robust to noise. In the past recent years' image segmentation has been brought to tackle problems such as easy processing of an image, interpretation of the contents of an image, and easy analysing of an image. This article reviews and summarizes some of the image segmentation techniques and algorithms that have been developed in the past years. The techniques include neural networks (CNN), edge-based techniques, region growing, clustering, and thresholding techniques and so on. The advantages and disadvantages of medical ultrasound image segmentation techniques are also discussed. The article also addresses the applications and potential future developments that can be done around image segmentation. This review article concludes with the fact that no technique is perfectly suitable for the segmentation of all different types of images, but the use of hybrid techniques yields more accurate and efficient results.Keywords: clustering-based, convolution-network, edge-based, region-growing
Procedia PDF Downloads 972034 THz Phase Extraction Algorithms for a THz Modulating Interferometric Doppler Radar
Authors: Shaolin Allen Liao, Hual-Te Chien
Abstract:
Various THz phase extraction algorithms have been developed for a novel THz Modulating Interferometric Doppler Radar (THz-MIDR) developed recently by the author. The THz-MIDR differs from the well-known FTIR technique in that it introduces a continuously modulating reference branch, compared to the time-consuming discrete FTIR stepping reference branch. Such change allows real-time tracking of a moving object and capturing of its Doppler signature. The working principle of the THz-MIDR is similar to the FTIR technique: the incoming THz emission from the scene is split by a beam splitter/combiner; one of the beams is continuously modulated by a vibrating mirror or phase modulator and the other split beam is reflected by a reflection mirror; finally both the modulated reference beam and reflected beam are combined by the same beam splitter/combiner and detected by a THz intensity detector (for example, a pyroelectric detector). In order to extract THz phase from the single intensity measurement signal, we have derived rigorous mathematical formulas for 3 Frequency Banded (FB) signals: 1) DC Low-Frequency Banded (LFB) signal; 2) Fundamental Frequency Banded (FFB) signal; and 3) Harmonic Frequency Banded (HFB) signal. The THz phase extraction algorithms are then developed based combinations of 2 or all of these 3 FB signals with efficient algorithms such as Levenberg-Marquardt nonlinear fitting algorithm. Numerical simulation has also been performed in Matlab with simulated THz-MIDR interferometric signal of various Signal to Noise Ratio (SNR) to verify the algorithms.Keywords: algorithm, modulation, THz phase, THz interferometry doppler radar
Procedia PDF Downloads 3452033 Adaptive Swarm Balancing Algorithms for Rare-Event Prediction in Imbalanced Healthcare Data
Authors: Jinyan Li, Simon Fong, Raymond Wong, Mohammed Sabah, Fiaidhi Jinan
Abstract:
Clinical data analysis and forecasting have make great contributions to disease control, prevention and detection. However, such data usually suffer from highly unbalanced samples in class distributions. In this paper, we target at the binary imbalanced dataset, where the positive samples take up only the minority. We investigate two different meta-heuristic algorithms, particle swarm optimization and bat-inspired algorithm, and combine both of them with the synthetic minority over-sampling technique (SMOTE) for processing the datasets. One approach is to process the full dataset as a whole. The other is to split up the dataset and adaptively process it one segment at a time. The experimental results reveal that while the performance improvements obtained by the former methods are not scalable to larger data scales, the later one, which we call Adaptive Swarm Balancing Algorithms, leads to significant efficiency and effectiveness improvements on large datasets. We also find it more consistent with the practice of the typical large imbalanced medical datasets. We further use the meta-heuristic algorithms to optimize two key parameters of SMOTE. Leading to more credible performances of the classifier, and shortening the running time compared with the brute-force method.Keywords: Imbalanced dataset, meta-heuristic algorithm, SMOTE, big data
Procedia PDF Downloads 441