Search results for: fuzzy search
2426 Evaluation of Aggregate Risks in Sustainable Manufacturing Using Fuzzy Multiple Attribute Decision Making
Authors: Gopinath Rathod, Vinod Puranik
Abstract:
Sustainability is regarded as a key concept for survival in the competitive scenario. Industrial risk and diversification of risk type’s increases with industrial developments. In the context of sustainable manufacturing, the evaluation of risk is difficult because of the incomplete information and multiple indicators. Fuzzy Multiple Attribute Decision Method (FMADM) has been used with a three level hierarchical decision making model to evaluate aggregate risk for sustainable manufacturing projects. A case study has been presented to reflect the risk characteristics in sustainable manufacturing projects.Keywords: sustainable manufacturing, decision making, aggregate risk, fuzzy logic, fuzzy multiple attribute decision method
Procedia PDF Downloads 5192425 An Integreated Intuitionistic Fuzzy ELECTRE Model for Multi-Criteria Decision-Making
Authors: Babek Erdebilli
Abstract:
The aim of this study is to develop and describe a new methodology for the Multi-Criteria Decision-Making (MCDM) problem using IFE (Elimination Et Choix Traduisant La Realite (ELECTRE) model. The proposed models enable Decision-Makers (DMs) on the assessment and use Intuitionistic Fuzzy Numbers (IFN). A numerical example is provided to demonstrate and clarify the proposed analysis procedure. Also, an empirical experiment is conducted to validation the effectiveness.Keywords: multi-criteria decision-making, IFE, DM’s, fuzzy electre model
Procedia PDF Downloads 6512424 Control of Single Axis Magnetic Levitation System Using Fuzzy Logic Control
Authors: A. M. Benomair, M. O. Tokhi
Abstract:
This paper presents the investigation on a system model for the stabilization of a Magnetic Levitation System (Maglev’s). The magnetic levitation system is a challenging nonlinear mechatronic system in which an electromagnetic force is required to suspend an object (metal sphere) in air space. The electromagnetic force is very sensitive to the noise which can create acceleration forces on the metal sphere, causing the sphere to move into the unbalanced region. Maglev’s give the contribution in industry and this system has reduce the power consumption, has increase the power efficiency and reduce the cost maintenance. The common applications for Maglev’s Power Generation (e.g. wind turbine), Maglev’s trains and Medical Device (e.g. Magnetically suspended Artificial Heart Pump). This paper presents the comparison between dynamic response and robust characteristic for both conventional PD and Fuzzy PD controller. The main contribution of this paper is the proof of fuzzy PD type stabilization and robustness. By use of a method to tune the scaling factors of the linear PD type fuzzy controller from an equivalent tuned conventional PD.Keywords: magnetic levitation system, PD controller, Fuzzy Logic Control, Fuzzy PD
Procedia PDF Downloads 2732423 Mechanical Tension Control of Winding Systems for Paper Webs
Authors: Glaoui Hachemi
Abstract:
In this paper, a scheme based on multi-input multi output Fuzzy Sliding Mode control (MIMO-FSMC) for linear speed regulation of winding system is proposed. Once the uncoupled model of the winding system was obtained, a smooth control function with a threshold was selected to indicate how far away the case was from the sliding surface. nevertheless, this control function depends closely on the higher bound of the uncertainties, which generates overlap. So, this size has to be chosen with broad care to obtain high performances. Usually, the upper bound of uncertainties is difficult to know before motor operation, so, a Fuzzy Sliding Mode controller is investigated to resolve this problem, a simple Fuzzy inference mechanism is used to decrease the chattering phenomenon by simple adjustments. A simulation study is achieved and that the indicate fuzzy sliding mode controllers have great potential for use as an alternative to the conventional sliding mode control.Keywords: Winding system, induction machine, Mechanical tension, Proportional-integral (PI), sliding mode control, Fuzzy logic
Procedia PDF Downloads 962422 Formulating a Flexible-Spread Fuzzy Regression Model Based on Dissemblance Index
Authors: Shih-Pin Chen, Shih-Syuan You
Abstract:
This study proposes a regression model with flexible spreads for fuzzy input-output data to cope with the situation that the existing measures cannot reflect the actual estimation error. The main idea is that a dissemblance index (DI) is carefully identified and defined for precisely measuring the actual estimation error. Moreover, the graded mean integration (GMI) representation is adopted for determining more representative numeric regression coefficients. Notably, to comprehensively compare the performance of the proposed model with other ones, three different criteria are adopted. The results from commonly used test numerical examples and an application to Taiwan's business monitoring indicator illustrate that the proposed dissemblance index method not only produces valid fuzzy regression models for fuzzy input-output data, but also has satisfactory and stable performance in terms of the total estimation error based on these three criteria.Keywords: dissemblance index, forecasting, fuzzy sets, linear regression
Procedia PDF Downloads 3602421 Application of Fuzzy Logic to Design and Coordinate Parallel Behaviors for a Humanoid Mobile Robot
Authors: Nguyen Chan Hung, Mai Ngoc Anh, Nguyen Xuan Ha, Tran Xuan Duc, Dang Bao Lam, Nguyen Hoang Viet
Abstract:
This paper presents a design and implementation of a navigation controller for a humanoid mobile robot platform to operate in indoor office environments. In order to fulfil the requirement of recognizing and approaching human to provide service while avoiding random obstacles, a behavior-based fuzzy logic controller was designed to simultaneously coordinate multiple behaviors. Experiments in real office environment showed that the fuzzy controller deals well with complex scenarios without colliding with random objects and human.Keywords: behavior control, fuzzy logic, humanoid robot, mobile robot
Procedia PDF Downloads 4202420 Comparison of Different Methods to Produce Fuzzy Tolerance Relations for Rainfall Data Classification in the Region of Central Greece
Authors: N. Samarinas, C. Evangelides, C. Vrekos
Abstract:
The aim of this paper is the comparison of three different methods, in order to produce fuzzy tolerance relations for rainfall data classification. More specifically, the three methods are correlation coefficient, cosine amplitude and max-min method. The data were obtained from seven rainfall stations in the region of central Greece and refers to 20-year time series of monthly rainfall height average. Three methods were used to express these data as a fuzzy relation. This specific fuzzy tolerance relation is reformed into an equivalence relation with max-min composition for all three methods. From the equivalence relation, the rainfall stations were categorized and classified according to the degree of confidence. The classification shows the similarities among the rainfall stations. Stations with high similarity can be utilized in water resource management scenarios interchangeably or to augment data from one to another. Due to the complexity of calculations, it is important to find out which of the methods is computationally simpler and needs fewer compositions in order to give reliable results.Keywords: classification, fuzzy logic, tolerance relations, rainfall data
Procedia PDF Downloads 3142419 Intelligent Control Design of Car Following Behavior Using Fuzzy Logic
Authors: Abdelkader Merah, Kada Hartani
Abstract:
A reference model based control approach for improving behavior following car is proposed in this paper. The reference model is nonlinear and provides dynamic solutions consistent with safety constraints and comfort specifications. a robust fuzzy logic based control strategy is further proposed in this paper. A set of simulation results showing the suitability of the proposed technique for various demanding cenarios is also included in this paper.Keywords: reference model, longitudinal control, fuzzy logic, design of car
Procedia PDF Downloads 4302418 Prediction Compressive Strength of Self-Compacting Concrete Containing Fly Ash Using Fuzzy Logic Inference System
Authors: Belalia Douma Omar, Bakhta Boukhatem, Mohamed Ghrici
Abstract:
Self-compacting concrete (SCC) developed in Japan in the late 80s has enabled the construction industry to reduce demand on the resources, improve the work condition and also reduce the impact of environment by elimination of the need for compaction. Fuzzy logic (FL) approaches has recently been used to model some of the human activities in many areas of civil engineering applications. Especially from these systems in the model experimental studies, very good results have been obtained. In the present study, a model for predicting compressive strength of SCC containing various proportions of fly ash, as partial replacement of cement has been developed by using Adaptive Neuro-Fuzzy Inference System (ANFIS). For the purpose of building this model, a database of experimental data were gathered from the literature and used for training and testing the model. The used data as the inputs of fuzzy logic models are arranged in a format of five parameters that cover the total binder content, fly ash replacement percentage, water content, super plasticizer and age of specimens. The training and testing results in the fuzzy logic model have shown a strong potential for predicting the compressive strength of SCC containing fly ash in the considered range.Keywords: self-compacting concrete, fly ash, strength prediction, fuzzy logic
Procedia PDF Downloads 3352417 Research on Fuzzy Test Framework Based on Concolic Execution
Authors: Xiong Xie, Yuhang Chen
Abstract:
Vulnerability discovery technology is a significant field of the current. In this paper, a fuzzy framework based on concolic execution has been proposed. Fuzzy test and symbolic execution are widely used in the field of vulnerability discovery technology. But each of them has its own advantages and disadvantages. During the path generation stage, path traversal algorithm based on generation is used to get more accurate path. During the constraint solving stage, dynamic concolic execution is used to avoid the path explosion. If there is external call, the concolic based on function summary is used. Experiments show that the framework can effectively improve the ability of triggering vulnerabilities and code coverage.Keywords: concolic execution, constraint solving, fuzzy test, vulnerability discovery
Procedia PDF Downloads 2282416 Fuzzy Time Series Forecasting Based on Fuzzy Logical Relationships, PSO Technique, and Automatic Clustering Algorithm
Authors: A. K. M. Kamrul Islam, Abdelhamid Bouchachia, Suang Cang, Hongnian Yu
Abstract:
Forecasting model has a great impact in terms of prediction and continues to do so into the future. Although many forecasting models have been studied in recent years, most researchers focus on different forecasting methods based on fuzzy time series to solve forecasting problems. The forecasted models accuracy fully depends on the two terms that are the length of the interval in the universe of discourse and the content of the forecast rules. Moreover, a hybrid forecasting method can be an effective and efficient way to improve forecasts rather than an individual forecasting model. There are different hybrids forecasting models which combined fuzzy time series with evolutionary algorithms, but the performances are not quite satisfactory. In this paper, we proposed a hybrid forecasting model which deals with the first order as well as high order fuzzy time series and particle swarm optimization to improve the forecasted accuracy. The proposed method used the historical enrollments of the University of Alabama as dataset in the forecasting process. Firstly, we considered an automatic clustering algorithm to calculate the appropriate interval for the historical enrollments. Then particle swarm optimization and fuzzy time series are combined that shows better forecasting accuracy than other existing forecasting models.Keywords: fuzzy time series (fts), particle swarm optimization, clustering algorithm, hybrid forecasting model
Procedia PDF Downloads 2502415 Implementation of a Paraconsistent-Fuzzy Digital PID Controller in a Level Control Process
Authors: H. M. Côrtes, J. I. Da Silva Filho, M. F. Blos, B. S. Zanon
Abstract:
In a modern society the factor corresponding to the increase in the level of quality in industrial production demand new techniques of control and machinery automation. In this context, this work presents the implementation of a Paraconsistent-Fuzzy Digital PID controller. The controller is based on the treatment of inconsistencies both in the Paraconsistent Logic and in the Fuzzy Logic. Paraconsistent analysis is performed on the signals applied to the system inputs using concepts from the Paraconsistent Annotated Logic with annotation of two values (PAL2v). The signals resulting from the paraconsistent analysis are two values defined as Dc - Degree of Certainty and Dct - Degree of Contradiction, which receive a treatment according to the Fuzzy Logic theory, and the resulting output of the logic actions is a single value called the crisp value, which is used to control dynamic system. Through an example, it was demonstrated the application of the proposed model. Initially, the Paraconsistent-Fuzzy Digital PID controller was built and tested in an isolated MATLAB environment and then compared to the equivalent Digital PID function of this software for standard step excitation. After this step, a level control plant was modeled to execute the controller function on a physical model, making the tests closer to the actual. For this, the control parameters (proportional, integral and derivative) were determined for the configuration of the conventional Digital PID controller and of the Paraconsistent-Fuzzy Digital PID, and the control meshes in MATLAB were assembled with the respective transfer function of the plant. Finally, the results of the comparison of the level control process between the Paraconsistent-Fuzzy Digital PID controller and the conventional Digital PID controller were presented.Keywords: fuzzy logic, paraconsistent annotated logic, level control, digital PID
Procedia PDF Downloads 2842414 Emotional Analysis for Text Search Queries on Internet
Authors: Gemma García López
Abstract:
The goal of this study is to analyze if search queries carried out in search engines such as Google, can offer emotional information about the user that performs them. Knowing the emotional state in which the Internet user is located can be a key to achieve the maximum personalization of content and the detection of worrying behaviors. For this, two studies were carried out using tools with advanced natural language processing techniques. The first study determines if a query can be classified as positive, negative or neutral, while the second study extracts emotional content from words and applies the categorical and dimensional models for the representation of emotions. In addition, we use search queries in Spanish and English to establish similarities and differences between two languages. The results revealed that text search queries performed by users on the Internet can be classified emotionally. This allows us to better understand the emotional state of the user at the time of the search, which could involve adapting the technology and personalizing the responses to different emotional states.Keywords: emotion classification, text search queries, emotional analysis, sentiment analysis in text, natural language processing
Procedia PDF Downloads 1412413 Forecasting Free Cash Flow of an Industrial Enterprise Using Fuzzy Set Tools
Authors: Elena Tkachenko, Elena Rogova, Daria Koval
Abstract:
The paper examines the ways of cash flows forecasting in the dynamic external environment. The so-called new reality in economy lowers the predictability of the companies’ performance indicators due to the lack of long-term steady trends in external conditions of development and fast changes in the markets. The traditional methods based on the trend analysis lead to a very high error of approximation. The macroeconomic situation for the last 10 years is defined by continuous consequences of financial crisis and arising of another one. In these conditions, the instruments of forecasting on the basis of fuzzy sets show good results. The fuzzy sets based models turn out to lower the error of approximation to acceptable level and to provide the companies with reliable cash flows estimation that helps to reach the financial stability. In the paper, the applicability of the model of cash flows forecasting based on fuzzy logic was analyzed.Keywords: cash flow, industrial enterprise, forecasting, fuzzy sets
Procedia PDF Downloads 2082412 Design of Fuzzy Logic Based Global Power System Stabilizer for Dynamic Stability Enhancement in Multi-Machine Power System
Authors: N. P. Patidar, J. Earnest, Laxmikant Nagar, Akshay Sharma
Abstract:
This paper describes the diligence of a new input signal based fuzzy power system stabilizer in multi-machine power system. Instead of conventional input pairs like speed deviation (∆ω) and derivative of speed deviation i.e. acceleration (∆ω ̇) or speed deviation and accelerating power deviation of each machine, in this paper, deviation of active power through the tie line colligating two areas is used as one of the inputs to the fuzzy logic controller in concurrence with the speed deviation. Fuzzy Logic has the features of simple concept, easy effectuation, and computationally efficient. The advantage of this input is that, the same signal can be fed to each of the fuzzy logic controller connected with each machine. The simulated system comprises of two fully symmetrical areas coupled together by two 230 kV lines. Each area is equipped with two superposable generators rated 20 kV/900MVA and area-1 is exporting 413 MW to area-2. The effectiveness of the proposed control scheme has been assessed by performing small signal stability assessment and transient stability assessment. The proposed control scheme has been compared with a conventional PSS. Digital simulation is used to demonstrate the performance of fuzzy logic controller.Keywords: Power System Stabilizer (PSS), small signal stability, inter-area oscillation, fuzzy logic controller, membership function, rule base
Procedia PDF Downloads 5312411 Assessment of Mortgage Applications Using Fuzzy Logic
Authors: Swathi Sampath, V. Kalaichelvi
Abstract:
The assessment of the risk posed by a borrower to a lender is one of the common problems that financial institutions have to deal with. Consumers vying for a mortgage are generally compared to each other by the use of a number called the Credit Score, which is generated by applying a mathematical algorithm to information in the applicant’s credit report. The higher the credit score, the lower the risk posed by the candidate, and the better he is to be taken on by the lender. The objective of the present work is to use fuzzy logic and linguistic rules to create a model that generates Credit Scores.Keywords: credit scoring, fuzzy logic, mortgage, risk assessment
Procedia PDF Downloads 4052410 Development of Risk Assessment and Occupational Safety Management Model for Building Construction Projects
Authors: Preeda Sansakorn, Min An
Abstract:
In order to be capable of dealing with uncertainties, subjectivities, including vagueness arising in building construction projects, the application of fuzzy reasoning technique based on fuzzy set theory is proposed. This study contributes significantly to the development of a fuzzy reasoning safety risk assessment model for building construction projects that could be employed to assess the risk magnitude of each hazardous event identified during construction, and a third parameter of probability of consequence is incorporated in the model. By using the proposed safety risk analysis methodology, more reliable and less ambiguities, which provide the safety risk management project team for decision-making purposes.Keywords: safety risk assessment, building construction safety, fuzzy reasoning, construction risk assessment model, building construction projects
Procedia PDF Downloads 4912409 Human Gait Recognition Using Moment with Fuzzy
Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain
Abstract:
A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments
Procedia PDF Downloads 7582408 A Novel Fuzzy Second-Order Sliding Mode Control of a Doubly Fed Induction Generator for Wind Energy Conversion
Authors: Elhadj Bounadja, Mohand Oulhadj Mahmoudi, Abdelkader Djahbar, Zinelaabidine Boudjema
Abstract:
In this paper we present a novel fuzzy second-order sliding mode control (FSOSMC) for wind energy conversion system based on a doubly-fed induction generator (DFIG). The proposed control strategy combines a fuzzy logic and a second-order sliding mode for the DFIG control. This strategy presents attractive features such as chattering-free, compared to the conventional first and second order sliding mode techniques. The use of this method provides very satisfactory performance for the DFIG control. The overall strategy has been validated on a 1.5-MW wind turbine driven a DFIG using the Matlab/Simulink.Keywords: doubly fed induction generator, fuzzy second-order sliding mode controller, wind energy
Procedia PDF Downloads 5492407 Extended Intuitionistic Fuzzy VIKOR Method in Group Decision Making: The Case of Vendor Selection Decision
Authors: Nastaran Hajiheydari, Mohammad Soltani Delgosha
Abstract:
Vendor (supplier) selection is a group decision-making (GDM) process, in which, based on some predetermined criteria, the experts’ preferences are provided in order to rank and choose the most desirable suppliers. In the real business environment, our attitudes or our choices would be made in an uncertain and indecisive situation could not be expressed in a crisp framework. Intuitionistic fuzzy sets (IFSs) could handle such situations in the best way. VIKOR method was developed to solve multi-criteria decision-making (MCDM) problems. This method, which is used to determine the compromised feasible solution with respect to the conflicting criteria, introduces a multi-criteria ranking index based on the particular measure of 'closeness' to the 'ideal solution'. Until now, there has been a little investigation of VIKOR with IFS, therefore we extended the intuitionistic fuzzy (IF) VIKOR to solve vendor selection problem under IF GDM environment. The present study intends to develop an IF VIKOR method in a GDM situation. Therefore, a model is presented to calculate the criterion weights based on entropy measure. Then, the interval-valued intuitionistic fuzzy weighted geometric (IFWG) operator utilized to obtain the total decision matrix. In the next stage, an approach based on the positive idle intuitionistic fuzzy number (PIIFN) and negative idle intuitionistic fuzzy number (NIIFN) was developed. Finally, the application of the proposed method to solve a vendor selection problem illustrated.Keywords: group decision making, intuitionistic fuzzy set, intuitionistic fuzzy entropy measure, vendor selection, VIKOR
Procedia PDF Downloads 1562406 Selecting a Foreign Country to Build a Naval Base Using a Fuzzy Hybrid Decision Support System
Authors: Latif Yanar, Muammer Kaçan
Abstract:
Decision support systems are getting more important in many fields of science and technology and used effectively especially when the problems to be solved are complicated with many criteria. In this kind of problems one of the main challenges for the decision makers are that sometimes they cannot produce a countable data for evaluating the criteria but the knowledge and sense of experts. In recent years, fuzzy set theory and fuzzy logic based decision models gaining more place in literature. In this study, a decision support model to determine a country to build naval base is proposed and the application of the model is performed, considering Turkish Navy by the evaluations of Turkish Navy officers and academicians of international relations departments of various Universities located in Istanbul. The results achieved from the evaluations made by the experts in our model are calculated by a decision support tool named DESTEC 1.0, which is developed by the authors using C Sharp programming language. The tool gives advices to the decision maker using Analytic Hierarchy Process, Analytic Network Process, Fuzzy Analytic Hierarchy Process and Fuzzy Analytic Network Process all at once. The calculated results for five foreign countries are shown in the conclusion.Keywords: decision support system, analytic hierarchy process, fuzzy analytic hierarchy process, analytic network process, fuzzy analytic network process, naval base, country selection, international relations
Procedia PDF Downloads 5922405 Decision-Making using Fuzzy Linguistic Hypersoft Set Topology
Authors: Muhammad Saqlain, Poom Kumam
Abstract:
Language being an abstract system and creative act, is quite complicated as its meaning varies depending on the context. The context is determined by the empirical knowledge of a person, which is derived from observation and experience. About further subdivided attributes, the decision-making challenges may entail quantitative and qualitative factors. However, because there is no norm for putting a numerical value on language, existing approaches cannot carry out the operations of linguistic knowledge. The assigning of mathematical values (fuzzy, intuitionistic, and neutrosophic) to any decision-making problem; without considering any rule of linguistic knowledge is ambiguous and inaccurate. Thus, this paper aims to provide a generic model for these issues. This paper provides the linguistic set structure of the fuzzy hypersoft set (FLHSS) to solve decision-making issues. We have proposed the definition some basic operations like AND, NOT, OR, AND, compliment, negation, etc., along with Topology and examples, and properties. Secondly, the operational laws for the fuzzy linguistic hypersoft set have been proposed to deal with the decision-making issues. Implementing proposed aggregate operators and operational laws can be used to convert linguistic quantifiers into numerical values. This will increase the accuracy and precision of the fuzzy hypersoft set structure to deal with decision-making issues.Keywords: linguistic quantifiers, aggregate operators, multi-criteria decision making (mcdm)., fuzzy topology
Procedia PDF Downloads 972404 Solution of Hybrid Fuzzy Differential Equations
Authors: Mahmood Otadi, Maryam Mosleh
Abstract:
The hybrid differential equations have a wide range of applications in science and engineering. In this paper, the homotopy analysis method (HAM) is applied to obtain the series solution of the hybrid differential equations. Using the homotopy analysis method, it is possible to find the exact solution or an approximate solution of the problem. Comparisons are made between improved predictor-corrector method, homotopy analysis method and the exact solution. Finally, we illustrate our approach by some numerical example.Keywords: fuzzy number, fuzzy ODE, HAM, approximate method
Procedia PDF Downloads 5112403 A Conjugate Gradient Method for Large Scale Unconstrained Optimization
Authors: Mohammed Belloufi, Rachid Benzine, Badreddine Sellami
Abstract:
Conjugate gradient methods is useful for solving large scale optimization problems in scientific and engineering computation, characterized by the simplicity of their iteration and their low memory requirements. It is well known that the search direction plays a main role in the line search method. In this paper, we propose a search direction with the Wolfe line search technique for solving unconstrained optimization problems. Under the above line searches and some assumptions, the global convergence properties of the given methods are discussed. Numerical results and comparisons with other CG methods are given.Keywords: unconstrained optimization, conjugate gradient method, strong Wolfe line search, global convergence
Procedia PDF Downloads 4222402 Automatic Classification Using Dynamic Fuzzy C Means Algorithm and Mathematical Morphology: Application in 3D MRI Image
Authors: Abdelkhalek Bakkari
Abstract:
Image segmentation is a critical step in image processing and pattern recognition. In this paper, we proposed a new robust automatic image classification based on a dynamic fuzzy c-means algorithm and mathematical morphology. The proposed segmentation algorithm (DFCM_MM) has been applied to MR perfusion images. The obtained results show the validity and robustness of the proposed approach.Keywords: segmentation, classification, dynamic, fuzzy c-means, MR image
Procedia PDF Downloads 4792401 A Research and Application of Feature Selection Based on IWO and Tabu Search
Authors: Laicheng Cao, Xiangqian Su, Youxiao Wu
Abstract:
Feature selection is one of the important problems in network security, pattern recognition, data mining and other fields. In order to remove redundant features, effectively improve the detection speed of intrusion detection system, proposes a new feature selection method, which is based on the invasive weed optimization (IWO) algorithm and tabu search algorithm(TS). Use IWO as a global search, tabu search algorithm for local search, to improve the results of IWO algorithm. The experimental results show that the feature selection method can effectively remove the redundant features of network data information in feature selection, reduction time, and to guarantee accurate detection rate, effectively improve the speed of detection system.Keywords: intrusion detection, feature selection, iwo, tabu search
Procedia PDF Downloads 5302400 Quick Sequential Search Algorithm Used to Decode High-Frequency Matrices
Authors: Mohammed M. Siddeq, Mohammed H. Rasheed, Omar M. Salih, Marcos A. Rodrigues
Abstract:
This research proposes a data encoding and decoding method based on the Matrix Minimization algorithm. This algorithm is applied to high-frequency coefficients for compression/encoding. The algorithm starts by converting every three coefficients to a single value; this is accomplished based on three different keys. The decoding/decompression uses a search method called QSS (Quick Sequential Search) Decoding Algorithm presented in this research based on the sequential search to recover the exact coefficients. In the next step, the decoded data are saved in an auxiliary array. The basic idea behind the auxiliary array is to save all possible decoded coefficients; this is because another algorithm, such as conventional sequential search, could retrieve encoded/compressed data independently from the proposed algorithm. The experimental results showed that our proposed decoding algorithm retrieves original data faster than conventional sequential search algorithms.Keywords: matrix minimization algorithm, decoding sequential search algorithm, image compression, DCT, DWT
Procedia PDF Downloads 1502399 Solutions of Fuzzy Transportation Problem Using Best Candidates Method and Different Ranking Techniques
Authors: M. S. Annie Christi
Abstract:
Transportation Problem (TP) is based on supply and demand of commodities transported from one source to the different destinations. Usual methods for finding solution of TPs are North-West Corner Rule, Least Cost Method Vogel’s Approximation Method etc. The transportation costs tend to vary at each time. We can use fuzzy numbers which would give solution according to this situation. In this study the Best Candidate Method (BCM) is applied. For ranking Centroid Ranking Technique (CRT) and Robust Ranking Technique have been adopted to transform the fuzzy TP and the above methods are applied to EDWARDS Vacuum Company, Crawley, in West Sussex in the United Kingdom. A Comparative study is also given. We see that the transportation cost can be minimized by the application of CRT under BCM.Keywords: best candidate method, centroid ranking technique, fuzzy transportation problem, robust ranking technique, transportation problem
Procedia PDF Downloads 2942398 Fuzzy Logic Based Ventilation for Controlling Harmful Gases in Livestock Houses
Authors: Nuri Caglayan, H. Kursat Celik
Abstract:
There are many factors that influence the health and productivity of the animals in livestock production fields, including temperature, humidity, carbon dioxide (CO2), ammonia (NH3), hydrogen sulfide (H2S), physical activity and particulate matter. High NH3 concentrations reduce feed consumption and cause daily weight gain. At high concentrations, H2S causes respiratory problems and CO2 displace oxygen, which can cause suffocation or asphyxiation. Good air quality in livestock facilities can have an impact on the health and well-being of animals and humans. Air quality assessment basically depends on strictly given limits without taking into account specific local conditions between harmful gases and other meteorological factors. The stated limitations may be eliminated. using controlling systems based on neural networks and fuzzy logic. This paper describes a fuzzy logic based ventilation algorithm, which can calculate different fan speeds under pre-defined boundary conditions, for removing harmful gases from the production environment. In the paper, a fuzzy logic model has been developed based on a Mamedani’s fuzzy method. The model has been built on MATLAB software. As the result, optimum fan speeds under pre-defined boundary conditions have been presented.Keywords: air quality, fuzzy logic model, livestock housing, fan speed
Procedia PDF Downloads 3722397 Fuzzy Total Factor Productivity by Credibility Theory
Authors: Shivi Agarwal, Trilok Mathur
Abstract:
This paper proposes the method to measure the total factor productivity (TFP) change by credibility theory for fuzzy input and output variables. Total factor productivity change has been widely studied with crisp input and output variables, however, in some cases, input and output data of decision-making units (DMUs) can be measured with uncertainty. These data can be represented as linguistic variable characterized by fuzzy numbers. Malmquist productivity index (MPI) is widely used to estimate the TFP change by calculating the total factor productivity of a DMU for different time periods using data envelopment analysis (DEA). The fuzzy DEA (FDEA) model is solved using the credibility theory. The results of FDEA is used to measure the TFP change for fuzzy input and output variables. Finally, numerical examples are presented to illustrate the proposed method to measure the TFP change input and output variables. The suggested methodology can be utilized for performance evaluation of DMUs and help to assess the level of integration. The methodology can also apply to rank the DMUs and can find out the DMUs that are lagging behind and make recommendations as to how they can improve their performance to bring them at par with other DMUs.Keywords: chance-constrained programming, credibility theory, data envelopment analysis, fuzzy data, Malmquist productivity index
Procedia PDF Downloads 365