Search results for: double-curved rail
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 233

Search results for: double-curved rail

83 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project

Authors: Debasis Sarkar

Abstract:

Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.

Keywords: building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail

Procedia PDF Downloads 309
82 Highlighting of the Factors and Policies affecting CO2 Emissions level in Malaysian Transportation Sector

Authors: Siti Indati Mustapa, Hussain Ali Bekhet

Abstract:

Global CO2 emission and increasing fuel consumption to meet energy demand requirement has become a threat in recent decades. Effort to reduce the CO2 emission is now a matter of priority in most countries of the world including Malaysia. Transportation has been identified as the most intensive sector of carbon-based fuels and achievement of the voluntary target to meet 40% carbon intensity reduction set at the 15th Conference of the Parties (COP15) means that the emission from the transport sector must be reduced accordingly. This posed a great challenge to Malaysia and effort has to be made to embrace suitable and appropriate energy policy for sustainable energy and emission reduction of this sector. The focus of this paper is to analyse the trends of Malaysia’s energy consumption and emission of four different transport sub-sectors (road, rail, aviation and maritime). Underlying factors influencing the growth of energy consumption and emission trends are discussed. Besides, technology status towards energy efficiency in transportation sub-sectors is presented. By reviewing the existing policies and trends of energy used, the paper highlights prospective policy options towards achieving emission reduction in the transportation sector.

Keywords: CO2 emissions, transportation sector, fuel consumption, energy policy, Malaysia

Procedia PDF Downloads 465
81 Experimental and Numerical Investigations of Impact Response on High-Speed Train Windshield

Authors: Wen Ma, Yong Peng, Zhixiang Li

Abstract:

Security journey is a vital focus on the field of Rail Transportation. Accidents caused by the damage of the high-speed train windshield have occurred many times and have given rise to terrible consequences. Train windshield consists of tempered glass and polyvinyl butyral (PVB) film. In this work, the quasi-static tests and the split Hopkinson pressure bar (SHPB) tests were carried out first to obtain the mechanical properties and constitutive model for the tempered glass and PVB film. These tests results revealed that stress and Young’s modulus of tempered glass were wake-sensitive to strain rate, but stress and Young’s modulus of PVB film were strong-sensitive to strain rate. Then impact experiment of the windshield was carried out to investigate dynamic response and failure characteristics of train windshield. In addition, a finite element model based on the combined finite element method was proposed to investigate fracture and fragmentation responses of train windshield under different-velocity impact. The results can be used for further design and optimization of the windshield for high-speed train application.

Keywords: constitutive model, impact response, mechanism properties, PVB film, tempered glass

Procedia PDF Downloads 146
80 Feasibility Studies through Quantitative Methods: The Revamping of a Tourist Railway Line in Italy

Authors: Armando Cartenì, Ilaria Henke

Abstract:

Recently, the Italian government has approved a new law for public contracts and has been laying the groundwork for restarting a planning phase. The government has adopted the indications given by the European Commission regarding the estimation of the external costs within the Cost-Benefit Analysis, and has been approved the ‘Guidelines for assessment of Investment Projects’. In compliance with the new Italian law, the aim of this research was to perform a feasibility study applying quantitative methods regarding the revamping of an Italian tourist railway line. A Cost-Benefit Analysis was performed starting from the quantification of the passengers’ demand potentially interested in using the revamped rail services. The benefits due to the external costs reduction were also estimated (quantified) in terms of variations (with respect to the not project scenario): climate change, air pollution, noises, congestion, and accidents. Estimations results have been proposed in terms of the Measure of Effectiveness underlying a positive Net Present Value equal to about 27 million of Euros, an Internal Rate of Return much greater the discount rate, a benefit/cost ratio equal to 2 and a PayBack Period of 15 years.

Keywords: cost-benefit analysis, evaluation analysis, demand management, external cost, transport planning, quality

Procedia PDF Downloads 218
79 A Novel Multi-Objective Park and Ride Control Scheme Using Renewable Energy Sources: Cairo Case Study

Authors: Mohammed Elsayed Lotfy Elsayed Abouzeid, Tomonobu Senjyu

Abstract:

A novel multi-objective park and ride control approach is presented in this research. Park and ride will encourage the owners of the vehicles to leave their cars in the nearest points (on the edges of the crowded cities) and use public transportation facilities (train, bus, metro, or mon-rail) to reach their work inside the crowded city. The proposed control scheme is used to design electric vehicle charging stations (EVCS) to charge 1000 electric vehicles (EV) during their owners' work time. Cairo, Egypt is used as a case study. Photovoltaic (PV) and battery energy storage system (BESS) are used to meet the EVCS demand. Two multi-objective optimization techniques (MOGA and epsilon-MOGA) are utilized to get the optimal sizes of PV and BESS so as to meet the load demand and minimize the total life cycle cost. Detailed analysis and comparison are held to investigate the performance of the proposed control scheme using MATLAB.

Keywords: Battery Energy Storage System, Electric Vehicle, Park and Ride, Photovoltaic, Multi-objective

Procedia PDF Downloads 141
78 Analysis of Structure-Flow Interaction for Water Brake Mechanism

Authors: Murat Avci, Fatih Kosar, Ismail Yilmaz

Abstract:

In this study, structure-flow interaction for water brake mechanism is studied with Abaqus CEL approach. The water brake mechanism is used for dynamic systems such as sled system on rail. For the achievement of these system tests, structure-flow interaction should be investigated in detail. This study is about a sled test of an aircraft subsystem which rises to supersonic speeds thanks to rocket engines. To decrease or to stop the thrusting rocket sleds, water brake mechanisms are used. Water brake mechanism provides the deceleration of the structures that have supersonic speeds. Therefore, structure-flow interaction may cause damage to the water brake mechanism. To verify all design revisions with system tests are so costly so that some decisions are taken in accordance with numerical methods. In this study, structure-flow interaction that belongs to water brake mechanism is solved with Abaqus CEL approach. Fluid and deformation on the structure behaviors are modeled at the same time thanks to CEL approach. Provided analysis results are corrected with the dynamic tests. Deformation zones seen in numerical analysis are also observed in dynamic tests. Finally, Johnson-Cook material model parameters used for this analysis are proven, and it is understood that these parameters can be used for dynamic analysis like water brake mechanism.

Keywords: aircraft, rocket, structure-flow, supersonic

Procedia PDF Downloads 156
77 Mode Choice for School Trip of Children’s Independence Mobility: A Case Study of School Proximity to Mass Transit Stations in Bangkok, Thailand

Authors: Phannarithisen Ong

Abstract:

Children's independent mobility for school trips promotes physical and mental well-being, reduces parental chauffeuring and traffic congestion, and boosts children's public confidence. However, in Thailand, despite a decade of rail mass transit development in Bangkok City, cars still queue to drop students at schools near transit stations. This worsens congestion, urging better independent mobility among children in mass transit regions. The high reliance on the private vehicle will influence the private mode in the children's adulthood. This research emphasizes mass transit use among high school students near transit systems. Through a questionnaire survey, quantitative and qualitative methods reveal key factors impacting school trip mode choice. Preliminary findings highlight children's independence as crucial. The socioeconomic, demographic, trip, and transportation traits explain private car use, even schools near mass transit stations. The outcomes of this study will shed light on urban strategic policies for improvement, advocacy, and encouragement of students using mass transit for school trips, which will help normalize the use of mass transit for such trips.

Keywords: children's independence mobility, mode choice, school trips, TOD, extraneous variable, children's independency

Procedia PDF Downloads 140
76 Geo Spatial Database for Railway Assets Management

Authors: Muhammad Umar

Abstract:

Safety and Assets management is considering a backbone of every department. GIS in the Railway become very important to Manage Assets and Security through Digital Maps and Web based GIS Maps. It provides a complete frame of work to the organization for the management of assets. Pakistan Railway is the most common and safest mode of traveling in Pakistan. Due to ever-increasing demand of transporting huge amount of information generated from various sources and this information must be accurate. This creates problems for Passengers and Administration that causes finical and time loss. GIS Solve this problem by Digital Maps & Database. It provides you a real time Spatial and Statistical analysis that helps you to communicate and exchange the information in a sophisticated way to the users. GIS Based Web system provides a facility to different end user to make query at a time as per requirements. This GIS System provides an advancement in an organization for a complete Monitoring, Safety and Decision System for tracks, Stations and Junctions that further use for the Analysis of different areas i.e. analysis of tracks, junctions and Stations in case of reconstruction, Rescue for rail accidents and Natural disasters .This Research work helps to reduce the financial loss and reduce human mistakes helps you provide a complete security and Management system of assets.

Keywords: Geographical Information System (GIS) for assets management, geo spatial database, railway assets management, Pakistan

Procedia PDF Downloads 489
75 A Risk-Based Comprehensive Framework for the Assessment of the Security of Multi-Modal Transport Systems

Authors: Mireille Elhajj, Washington Ochieng, Deeph Chana

Abstract:

The challenges of the rapid growth in the demand for transport has traditionally been seen within the context of the problems of congestion, air quality, climate change, safety, and affordability. However, there are increasing threats including those related to crime such as cyber-attacks that threaten the security of the transport of people and goods. To the best of the authors’ knowledge, this paper presents for the first time, a comprehensive framework for the assessment of the current and future security issues of multi-modal transport systems. The approach or method proposed is based on a structured framework starting with a detailed specification of the transport asset map (transport system architecture), followed by the identification of vulnerabilities. The asset map and vulnerabilities are used to identify the various approaches for exploitation of the vulnerabilities, leading to the creation of a set of threat scenarios. The threat scenarios are then transformed into risks and their categories, and include insights for their mitigation. The consideration of the mitigation space is holistic and includes the formulation of appropriate policies and tactics and/or technical interventions. The quality of the framework is ensured through a structured and logical process that identifies the stakeholders, reviews the relevant documents including policies and identifies gaps, incorporates targeted surveys to augment the reviews, and uses subject matter experts for validation. The approach to categorising security risks is an extension of the current methods that are typically employed. Specifically, the partitioning of risks into either physical or cyber categories is too limited for developing mitigation policies and tactics/interventions for transport systems where an interplay between physical and cyber processes is very often the norm. This interplay is rapidly taking on increasing significance for security as the emergence of cyber-physical technologies, are shaping the future of all transport modes. Examples include: Connected Autonomous Vehicles (CAVs) in road transport; the European Rail Traffic Management System (ERTMS) in rail transport; Automatic Identification System (AIS) in maritime transport; advanced Communications, Navigation and Surveillance (CNS) technologies in air transport; and the Internet of Things (IoT). The framework adopts a risk categorisation scheme that considers risks as falling within the following threat→impact relationships: Physical→Physical, Cyber→Cyber, Cyber→Physical, and Physical→Cyber). Thus the framework enables a more complete risk picture to be developed for today’s transport systems and, more importantly, is readily extendable to account for emerging trends in the sector that will define future transport systems. The framework facilitates the audit and retro-fitting of mitigations in current transport operations and the analysis of security management options for the next generation of Transport enabling strategic aspirations such as systems with security-by-design and co-design of safety and security to be achieved. An initial application of the framework to transport systems has shown that intra-modal consideration of security measures is sub-optimal and that a holistic and multi-modal approach that also addresses the intersections/transition points of such networks is required as their vulnerability is high. This is in-line with traveler-centric transport service provision, widely accepted as the future of mobility services. In summary, a risk-based framework is proposed for use by the stakeholders to comprehensively and holistically assess the security of transport systems. It requires a detailed understanding of the transport architecture to enable a detailed vulnerabilities analysis to be undertaken, creates threat scenarios and transforms them into risks which form the basis for the formulation of interventions.

Keywords: mitigations, risk, transport, security, vulnerabilities

Procedia PDF Downloads 165
74 Travel Behavior Simulation of Bike-Sharing System Users in Kaoshiung City

Authors: Hong-Yi Lin, Feng-Tyan Lin

Abstract:

In a Bike-sharing system (BSS), users can easily rent bikes from any station in the city for mid-range or short-range trips. BSS can also be integrated with other types of transport system, especially Green Transportation system, such as rail transport, bus etc. Since BSS records time and place of each pickup and return, the operational data can reflect more authentic and dynamic state of user behaviors. Furthermore, land uses around docking stations are highly associated with origins and destinations for the BSS users. As urban researchers, what concerns us more is to take BSS into consideration during the urban planning process and enhance the quality of urban life. This research focuses on the simulation of travel behavior of BSS users in Kaohsiung. First, rules of users’ behavior were derived by analyzing operational data and land use patterns nearby docking stations. Then, integrating with Monte Carlo method, these rules were embedded into a travel behavior simulation model, which was implemented by NetLogo, an agent-based modeling tool. The simulation model allows us to foresee the rent-return behaviour of BSS in order to choose potential locations of the docking stations. Also, it can provide insights and recommendations about planning and policies for the future BSS.

Keywords: agent-based model, bike-sharing system, BSS operational data, simulation

Procedia PDF Downloads 331
73 Approach for Demonstrating Reliability Targets for Rail Transport during Low Mileage Accumulation in the Field: Methodology and Case Study

Authors: Nipun Manirajan, Heeralal Gargama, Sushil Guhe, Manoj Prabhakaran

Abstract:

In railway industry, train sets are designed based on contractual requirements (mission profile), where reliability targets are measured in terms of mean distance between failures (MDBF). However, during the beginning of revenue services, trains do not achieve the designed mission profile distance (mileage) within the timeframe due to infrastructure constraints, scarcity of commuters or other operational challenges thereby not respecting the original design inputs. Since trains do not run sufficiently and do not achieve the designed mileage within the specified time, car builder has a risk of not achieving the contractual MDBF target. This paper proposes a constant failure rate based model to deal with the situations where mileage accumulation is not a part of the design mission profile. The model provides appropriate MDBF target to be demonstrated based on actual accumulated mileage. A case study of rolling stock running in the field is undertaken to analyze the failure data and MDBF target demonstration during low mileage accumulation. The results of case study prove that with the proposed method, reliability targets are achieved under low mileage accumulation.

Keywords: mean distance between failures, mileage-based reliability, reliability target appropriations, rolling stock reliability

Procedia PDF Downloads 265
72 Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles

Authors: Zhixiang Li, Shuguang Yao, Wen Ma

Abstract:

Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This paper focuses on the energy absorption characteristics of the rubber buffers particularly. Firstly, the quasi-static compression tests were carried out for 1 and 3 pairs of rubber sheets and some energy absorption responses relationship, i.e. Eabn = n×Eab1, Edissn = n×Ediss1, and Ean = Ea1, were obtained. Next, a series of quasi-static tests were performed for 1 pair of rubber sheet to investigate the energy absorption performance with different compression ratio of the rubber buffers. Then the impact tests with five impact velocities were conducted and the coupler knuckle was destroyed when the impact velocity was 10.807 km/h. The impact tests results showed that with the increase of impact velocity, the Eab, Ediss and Ea of rear buffer increased a lot, but the three responses of front buffer had not much increase. Finally, the results of impact tests and quasi-static tests were contrastively analysed and the results showed that with the increase of the stroke, the values of Eab, Ediss, and Ea were all increase. However, the increasing rates of impact tests were all larger than that of quasi-static tests. The maximum value of Ea was 68.76% in impact tests, it was a relatively high value for vehicle coupler buffer. The energy capacity of the rear buffer was determined for dynamic loading, it was 22.98 kJ.

Keywords: rubber buffer, coupler, energy absorption, impact tests

Procedia PDF Downloads 192
71 Increasing the Forecasting Fidelity of Current Collection System Operating Capability by Means of Contact Pressure Simulation Modelling

Authors: Anton Golubkov, Gleb Ermachkov, Aleksandr Smerdin, Oleg Sidorov, Victor Philippov

Abstract:

Current collection quality is one of the limiting factors when increasing trains movement speed in the rail sector. With the movement speed growth, the impact forces on the current collector from the rolling stock and the aerodynamic influence increase, which leads to the spread in the contact pressure values, separation of the current collector head from the contact wire, contact arcing and excessive wear of the contact elements. The upcoming trend in resolving this issue is the use of the automatic control systems providing stabilization of the contact pressure value. The present paper considers the features of the contemporary automatic control systems of the current collector’s pressure; their major disadvantages have been stated. A scheme of current collector pressure automatic control has been proposed, distinguished by a proactive influence on undesirable effects. A mathematical model of contact strips wearing has been presented, obtained in accordance with the provisions of the central composition rotatable design program. The analysis of the obtained dependencies has been carried out. The procedures for determining the optimal current collector pressure on the contact wire and the pressure control principle in the pneumatic drive have been described.

Keywords: contact strip, current collector, high-speed running, program control, wear

Procedia PDF Downloads 143
70 Behaviour of Model Square Footing Resting on Three Dimensional Geogrid Reinforced Sand Bed

Authors: Femy M. Makkar, S. Chandrakaran, N. Sankar

Abstract:

The concept of reinforced earth has been used in the field of geotechnical engineering since 1960s, for many applications such as, construction of road and rail embankments, pavements, retaining walls, shallow foundations, soft ground improvement and so on. Conventionally, planar geosynthetic materials such as geotextiles and geogrids were used as the reinforcing elements. Recently, the use of three dimensional reinforcements becomes one of the emerging trends in this field. So, in the present investigation, three dimensional geogrid is proposed as a reinforcing material. Laboratory scaled plate load tests are conducted on a model square footing resting on 3D geogrid reinforced sand bed. The performance of 3D geogrids in triangular and square pattern was compared with conventional geogrids and the improvement in bearing capacity and reduction in settlement and heave are evaluated. When single layer of reinforcement was placed at an optimum depth of 0.25B from the bottom of the footing, the bearing capacity of conventional geogrid reinforced soil improved by 1.85 times compared to unreinforced soil, where as 3D geogrid reinforced soil with triangular pattern and square pattern shows 2.69 and 3.05 times improvement respectively compared to unreinforced soil. Also, 3D geogrids performs better than conventional geogrids in reducing the settlement and heave of sand bed around the model footing.

Keywords: 3D reinforcing elements, bearing capacity, heavy, settlement

Procedia PDF Downloads 300
69 Vertical Vibration Mitigation along Railway Lines

Authors: Jürgen Keil, Frank Walther

Abstract:

This article presents two innovative solutions for vertical vibration mitigation barriers including experimental and numerical investigations on the completed barriers. There is a continuing growth of exposure to noise and vibration in people´s daily lives due to the quest for more mobility and flexibility. In previous times neglected, immissions caused by vibrations can lead, for example, to secondary noise or damage in the adjacent buildings. Also people can feel very affected by vibrations. But unlike in new construction, in existing infrastructure and buildings action can be taken almost only on the transmission path of those vibrations. In the following two solutions were shown how vibrations on the transmission path can be mitigated. These are the jet grouting method and a new installation method (patent pending) by means of a prefabricated hollow box which is filled with vibration reducing mats and driven down to depth, are presented. The essential results of the numerical and experimental investigations on the completed wave barriers are included as well. This article is based on the results of a field test with the participation of Keller Holding, which was executed in the context of the European research project RIVAS (Railway Induced Vibration Abatement Solutions), and on a thesis done at the Technical University of Dresden with the involvement of BAUGRUND DRESDEN Ingenieurgesellschaft mbH and the Keller Holding GmbH.

Keywords: jet grouting, rail way lines, vertical vibration mitigation, vibration reducing mats

Procedia PDF Downloads 402
68 Improved Image Retrieval for Efficient Localization in Urban Areas Using Location Uncertainty Data

Authors: Mahdi Salarian, Xi Xu, Rashid Ansari

Abstract:

Accurate localization of mobile devices based on camera-acquired visual media information usually requires a search over a very large GPS-referenced image database. This paper proposes an efficient method for limiting the search space for image retrieval engine by extracting and leveraging additional media information about Estimated Positional Error (EP E) to address complexity and accuracy issues in the search, especially to be used for compensating GPS location inaccuracy in dense urban areas. The improved performance is achieved by up to a hundred-fold reduction in the search area used in available reference methods while providing improved accuracy. To test our procedure we created a database by acquiring Google Street View (GSV) images for down town of Chicago. Other available databases are not suitable for our approach due to lack of EP E for the query images. We tested the procedure using more than 200 query images along with EP E acquired mostly in the densest areas of Chicago with different phones and in different conditions such as low illumination and from under rail tracks. The effectiveness of our approach and the effect of size and sector angle of the search area are discussed and experimental results demonstrate how our proposed method can improve performance just by utilizing a data that is available for mobile systems such as smart phones.

Keywords: localization, retrieval, GPS uncertainty, bag of word

Procedia PDF Downloads 282
67 A Framework for Railway Passenger Station Site Selection Using Transit-Oriented Development and Urban Regeneration Approaches

Authors: M. Taghavi Zavareh, H. Saremi

Abstract:

Railway transportation is one of the types of transportation systems which, due to the advantages such as the ability to transport a large number of passengers, environmental protection, low energy consumption, and contribution to tourism, has importance. The existence of suitable and accessible stations is one of the requirements that leads to better performance and plays a significant role in the economic, social, political, and cultural development of urban areas. This paper aims to propose a framework for locating railway passenger stations. This research used descriptive-analytical methods and library tools to answer which definitions and theoretical approaches are suitable for the location of railway passenger stations. The results showed that theoretical approaches such as Transit-Oriented Development and Urban Regeneration are of the utmost importance theoretical bases in the field of research. Moreover, we studied three stations in Iran to find out about real trends and criteria in this research. This study also proposed four major criteria including accessibility, development, rail related and economics, and environmental harmony. Ultimately with an emphasis on the proposed criteria, the study concludes that the combination of Transit-Oriented Development and Urban Regeneration is the most suitable framework to locate railway passenger stations.

Keywords: railway passenger station, railway station, site selection, transit-oriented development, urban regeneration

Procedia PDF Downloads 267
66 Investigation on the Bogie Pseudo-Hunting Motion of a Reduced-Scale Model Railway Vehicle Running on Double-Curved Rails

Authors: Barenten Suciu, Ryoichi Kinoshita

Abstract:

In this paper, an experimental and theoretical study on the bogie pseudo-hunting motion of a reduced-scale model railway vehicle, running on double-curved rails, is presented. Since the actual bogie hunting motion, occurring for real railway vehicles running on straight rails at high travelling speeds, cannot be obtained in laboratory conditions, due to the speed and wavelength limitations, a pseudo- hunting motion was induced by employing double-curved rails. Firstly, the test rig and the experimental procedure are described. Then, a geometrical model of the double-curved rails is presented. Based on such model, the variation of the carriage rotation angle relative to the bogies and the working conditions of the yaw damper are clarified. Vibration spectra recorded during vehicle travelling, on straight and double-curved rails, are presented and interpreted based on a simple vibration model of the railway vehicle. Ride comfort of the vehicle is evaluated according to the ISO 2631 standard, and also by using some particular frequency weightings, which account for the discomfort perceived during the reading and writing activities. Results obtained in this work are useful for the adequate design of the yaw dampers, which are used to attenuate the lateral vibration of the train car bodies.

Keywords: double-curved rail, octave analysis, vibration model, ride comfort, railway vehicle

Procedia PDF Downloads 314
65 Analysing the Permanent Deformation of Cohesive Subsoil Subject to Long Term Cyclic Train Loading

Authors: Natalie M. Wride, Xueyu Geng

Abstract:

Subgrade soils of railway infrastructure are subjected to a significant number of load applications over their design life. The use of slab track on existing and future proposed rail links requires a reduced maintenance and repair regime for the embankment subgrade, due to restricted access to the subgrade soils for remediation caused by cyclic deformation. It is, therefore, important to study the deformation behaviour of soft cohesive subsoils induced as a result of long term cyclic loading. In this study, a series of oedometer tests and cyclic triaxial tests (10,000 cycles) have been undertaken to investigate the undrained deformation behaviour of soft kaolin. X-ray Computer Tomography (CT) scanning of the samples has been performed to determine the change in porosity and soil structure density from the sample microstructure as a result of the laboratory testing regime undertaken. Combined with the examination of excess pore pressures and strains obtained from the cyclic triaxial tests, the results are compared with an existing analytical solution for long term settlement considering repeated low amplitude loading. Modifications to the analytical solution are presented based on the laboratory analysis that shows good agreement with further test data.

Keywords: creep, cyclic loading, deformation, long term settlement, train loading

Procedia PDF Downloads 296
64 Instant Location Detection of Objects Moving at High Speed in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

The practical efficient approach is suggested to estimate the high-speed objects instant bounds in C-OTDR monitoring systems. In case of super-dynamic objects (trains, cars) is difficult to obtain the adequate estimate of the instantaneous object localization because of estimation lag. In other words, reliable estimation coordinates of monitored object requires taking some time for data observation collection by means of C-OTDR system, and only if the required sample volume will be collected the final decision could be issued. But it is contrary to requirements of many real applications. For example, in rail traffic management systems we need to get data off the dynamic objects localization in real time. The way to solve this problem is to use the set of statistical independent parameters of C-OTDR signals for obtaining the most reliable solution in real time. The parameters of this type we can call as 'signaling parameters' (SP). There are several the SP’s which carry information about dynamic objects instant localization for each of C-OTDR channels. The problem is that some of these parameters are very sensitive to dynamics of seismoacoustic emission sources but are non-stable. On the other hand, in case the SP is very stable it becomes insensitive as a rule. This report contains describing the method for SP’s co-processing which is designed to get the most effective dynamic objects localization estimates in the C-OTDR monitoring system framework.

Keywords: C-OTDR-system, co-processing of signaling parameters, high-speed objects localization, multichannel monitoring systems

Procedia PDF Downloads 468
63 Investigating the Shear Behaviour of Fouled Ballast Using Discrete Element Modelling

Authors: Ngoc Trung Ngo, Buddhima Indraratna, Cholachat Rujikiathmakjornr

Abstract:

For several hundred years, the design of railway tracks has practically remained unchanged. Traditionally, rail tracks are placed on a ballast layer due to several reasons, including economy, rapid drainage, and high load bearing capacity. The primary function of ballast is to distributing dynamic track loads to sub-ballast and subgrade layers, while also providing lateral resistance and allowing for rapid drainage. Upon repeated trainloads, the ballast becomes fouled due to ballast degradation and the intrusion of fines which adversely affects the strength and deformation behaviour of ballast. This paper presents the use of three-dimensional discrete element method (DEM) in studying the shear behaviour of the fouled ballast subjected to direct shear loading. Irregularly shaped particles of ballast were modelled by grouping many spherical balls together in appropriate sizes to simulate representative ballast aggregates. Fouled ballast was modelled by injecting a specified number of miniature spherical particles into the void spaces. The DEM simulation highlights that the peak shear stress of the ballast assembly decreases and the dilation of fouled ballast increases with an increase level of fouling. Additionally, the distributions of contact force chain and particle displacement vectors were captured during shearing progress, explaining the formation of shear band and the evolutions of volumetric change of fouled ballast.

Keywords: railway ballast, coal fouling, discrete element modelling, discrete element method

Procedia PDF Downloads 448
62 Analysis of Cascade Control Structure in Train Dynamic Braking System

Authors: B. Moaveni, S. Morovati

Abstract:

In recent years, increasing the usage of railway transportations especially in developing countries caused more attention to control systems railway vehicles. Consequently, designing and implementing the modern control systems to improve the operating performance of trains and locomotives become one of the main concerns of researches. Dynamic braking systems is an important safety system which controls the amount of braking torque generated by traction motors, to keep the adhesion coefficient between the wheel-sets and rail road in optimum bound. Adhesion force has an important role to control the braking distance and prevent the wheels from slipping during the braking process. Cascade control structure is one of the best control methods for the wide range of industrial plants in the presence of disturbances and errors. This paper presents cascade control structure based on two forward simple controllers with two feedback loops to control the slip ratio and braking torque. In this structure, the inner loop controls the angular velocity and the outer loop control the longitudinal velocity of the locomotive that its dynamic is slower than the dynamic of angular velocity. This control structure by controlling the torque of DC traction motors, tries to track the desired velocity profile to access the predefined braking distance and to control the slip ratio. Simulation results are employed to show the effectiveness of the introduced methodology in dynamic braking system.

Keywords: cascade control, dynamic braking system, DC traction motors, slip control

Procedia PDF Downloads 363
61 Carbon Emission Reduction by Compact City Construction in Toyama, Japan

Authors: Benyan Jiang, Dawei Xia, Yong Li

Abstract:

Compact city construction is considered as an effective measure to reduce carbon emission in city lives. Toyama City started its compact city strategy in 2000 and was selected as a Japanese Environmental Model City in 2008 for its achievement. This paper takes Toyama as a study case, aiming to find how city polices affected people’s life styles and reduced carbon emission. The main materials used in this study are first-hand documents, like urban planning materials, government annual report and statistic data from transportation association. It is found that the main measures taken by Toyama City include the construction of light rail transit, increasing the frequency of buses, building park and ride parking lots. In addition to hardware facilities, it also offers flexible policies like passengers' coupons for the senior citizens and free use of parking lots by buying shopping vouchers. Besides, Toyama City encourages citizens to live within 500 meters of public transportation. People who buy an apartment near public transportation will receive 500,000 Japanese Yen. These measures have proven to their effects. Compared with 2005, in 2014, the transportation sector reduced emissions of 2.35 million tons of CO₂, 13.6%. This aspect is related to the increase in the number of cars in public transport and also related to fuel improvement.

Keywords: Toyama, compact city, public transportation, CO₂ reduction

Procedia PDF Downloads 142
60 Advanced Data Visualization Techniques for Effective Decision-making in Oil and Gas Exploration and Production

Authors: Deepak Singh, Rail Kuliev

Abstract:

This research article explores the significance of advanced data visualization techniques in enhancing decision-making processes within the oil and gas exploration and production domain. With the oil and gas industry facing numerous challenges, effective interpretation and analysis of vast and diverse datasets are crucial for optimizing exploration strategies, production operations, and risk assessment. The article highlights the importance of data visualization in managing big data, aiding the decision-making process, and facilitating communication with stakeholders. Various advanced data visualization techniques, including 3D visualization, augmented reality (AR), virtual reality (VR), interactive dashboards, and geospatial visualization, are discussed in detail, showcasing their applications and benefits in the oil and gas sector. The article presents case studies demonstrating the successful use of these techniques in optimizing well placement, real-time operations monitoring, and virtual reality training. Additionally, the article addresses the challenges of data integration and scalability, emphasizing the need for future developments in AI-driven visualization. In conclusion, this research emphasizes the immense potential of advanced data visualization in revolutionizing decision-making processes, fostering data-driven strategies, and promoting sustainable growth and improved operational efficiency within the oil and gas exploration and production industry.

Keywords: augmented reality (AR), virtual reality (VR), interactive dashboards, real-time operations monitoring

Procedia PDF Downloads 84
59 Top-Down Construction Method in Concrete Structures: Advantages and Disadvantages of This Construction Method

Authors: Hadi Rouhi Belvirdi

Abstract:

The construction of underground structures using the traditional method, which begins with excavation and the implementation of the foundation of the underground structure, continues with the construction of the main structure from the ground up, and concludes with the completion of the final ceiling, is known as the Bottom-Up Method. In contrast to this method, there is an advanced technique called the Top-Down Method, which has practically replaced the traditional construction method in large projects in industrialized countries in recent years. Unlike the traditional approach, this method starts with the construction of surrounding walls, columns, and the final ceiling and is completed with the excavation and construction of the foundation of the underground structure. Some of the most significant advantages of this method include the elimination or minimization of formwork surfaces, the removal of temporary bracing during excavation, the creation of some traffic facilities during the construction of the structure, and the possibility of using it in limited and high-traffic urban spaces. Despite these numerous advantages, unfortunately, there is still insufficient awareness of this method in our country, to the extent that it can be confidently stated that most stakeholders in the construction industry are unaware of the existence of such a construction method. However, it can be utilized as a very important execution option alongside other conventional methods in the construction of underground structures. Therefore, due to the extensive practical capabilities of this method, this article aims to present a methodology for constructing underground structures based on the aforementioned advanced method to the scientific community of the country, examine the advantages and limitations of this method and their impacts on time and costs, and discuss its application in urban spaces. Finally, some underground structures executed in the Ahvaz urban rail, which are being implemented using this advanced method to the best of our best knowledge, will be introduced.

Keywords: top-down method, bottom-up method, underground structure, construction method

Procedia PDF Downloads 9
58 The Effects of Logistical Centers Realization on Society and Economy

Authors: Anna Dolinayova, Juraj Camaj, Martin Loch

Abstract:

Presently it is necessary to ensure the sustainable development of passenger and freight transport. Increasing performance of road freight have been a negative impact to environment and society. It is therefore necessary to increase the competitiveness of intermodal transport, which is more environmentally friendly. The study describe the effectiveness of logistical centers realization for companies and society and research how the partial internalization of external costs reflected in the efficient use of these centers and increase the competitiveness of intermodal transport to road freight. In our research, we use the method of comparative analysis and market research to describe the advantages of logistic centers for their users as well as for society as a whole. Method normal costing is used for calculation infrastructure and total costs, method of conversion costing for determine the external costs. We modelling of total society costs for road freight transport and inter modal transport chain (we assumed that most of the traffic is carried by rail) with different loading schemes for condition in the Slovak Republic. Our research has shown that higher utilization of inter modal transport chain do good not only for society, but for companies providing freight services too. Increase in use of inter modal transport chain can bring many benefits to society that do not bring direct immediate financial return. They often bring the multiplier effects, such as greater use of environmentally friendly transport mode and reduce the total society costs.

Keywords: delivery time, economy effectiveness, logistical centers, ecological efficiency, optimization, society

Procedia PDF Downloads 443
57 The Masterplan for the Urban Regeneration of the Heritage District of Msheireb Downtown Doha, State of Qatar

Authors: Raffaello Furlan

Abstract:

In the 21st century, the sustainable urban development of GCC-cities is challenged by inhabitants’ over-dependency on private-use vehicles. In turn, this habit has generated problems of urban inefficiency, contributing to traffic congestion, pollution, urban sprawling, fragmentation of the urban fabric, and various environmental and social challenges. In the context of Doha, the capital city of the State of Qatar, the over-dependency on private-use vehicles is justified by the lack of alternative public modes of transportation that support the need to connect fragmented urban districts and provide an effective solution to urban sprawl. Therefore, the current construction of the Qatar Metro Rail is offering the potential for investigating and defining a strategy for the sustainable urban development and/or urban regeneration of transit villages (TODs) in Qatar. Namely, the aim of this research study is (i) to investigate the development of transit villages (TODs) in the cultural-heritage district of Msheireb, Downtown Doha, (ii) to explore how the introduction of the new public transport system of Doha Metro can be effectively utilized as means of urban regeneration of the cultural core of the city, (iii) to propose a masterplan for TOD suitable for the district, suiting and responding to regional cultural and societal values. The findings reveal that the strategies for the sustainable urban regeneration of Msheireb are based on (i) the integration of land-use and multimodal transportation systems, (ii) the implementation of the public realm, and (iii) conservation of culture and urban identity.

Keywords: sustainable urbanism, smart growth, TODs, cultural district, Msheireb Downtown Doha

Procedia PDF Downloads 243
56 Timetabling for Interconnected LRT Lines: A Package Solution Based on a Real-world Case

Authors: Huazhen Lin, Ruihua Xu, Zhibin Jiang

Abstract:

In this real-world case, timetabling the LRT network as a whole is rather challenging for the operator: they are supposed to create a timetable to avoid various route conflicts manually while satisfying a given interval and the number of rolling stocks, but the outcome is not satisfying. Therefore, the operator adopts a computerised timetabling tool, the Train Plan Maker (TPM), to cope with this problem. However, with various constraints in the dual-line network, it is still difficult to find an adequate pairing of turnback time, interval and rolling stocks’ number, which requires extra manual intervention. Aiming at current problems, a one-off model for timetabling is presented in this paper to simplify the procedure of timetabling. Before the timetabling procedure starts, this paper presents how the dual-line system with a ring and several branches is turned into a simpler structure. Then, a non-linear programming model is presented in two stages. In the first stage, the model sets a series of constraints aiming to calculate a proper timing for coordinating two lines by adjusting the turnback time at termini. Then, based on the result of the first stage, the model introduces a series of inequality constraints to avoid various route conflicts. With this model, an analysis is conducted to reveal the relation between the ratio of trains in different directions and the possible minimum interval, observing that the more imbalance the ratio is, the less possible to provide frequent service under such strict constraints.

Keywords: light rail transit (LRT), non-linear programming, railway timetabling, timetable coordination

Procedia PDF Downloads 85
55 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor

Authors: Barenten Suciu

Abstract:

In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.

Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor

Procedia PDF Downloads 269
54 Elasticity Model for Easing Peak Hour Demand for Metrorail Transport System

Authors: P. K. Sarkar, Amit Kumar Jain

Abstract:

The demand for Urban transportation is characterised by a large scale temporal and spatial variations which causes heavy congestion inside metro trains in peak hours near Centre Business District (CBD) of the city. The conventional approach to address peak hour congestion, metro trains has been to increase the supply by way of introduction of more trains, increasing the length of the trains, optimising the time table to increase the capacity of the system. However, there is a limitation of supply side measures determined by the design capacity of the systems beyond which any addition in the capacity requires huge capital investments. The demand side interventions are essentially required to actually spread the demand across the time and space. In this study, an attempt has been made to identify the potential Transport Demand Management tools applicable to Urban Rail Transportation systems with a special focus on differential pricing. A conceptual price elasticity model has been developed to analyse the effect of various combinations of peak and nonpeak hoursfares on demands. The elasticity values for peak hour, nonpeak hour and cross elasticity have been assumed from the relevant literature available in the field. The conceptual price elasticity model so developed is based on assumptions which need to be validated with actual values of elasticities for different segments of passengers. Once validated, the model can be used to determine the peak and nonpeak hour fares with an objective to increase overall ridership, revenue, demand levelling and optimal utilisation of assets.

Keywords: urban transport, differential fares, congestion, transport demand management, elasticity

Procedia PDF Downloads 307