Search results for: drilling fluid loss
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5611

Search results for: drilling fluid loss

3871 Chemical Fingerprinting of Complex Samples With the Aid of Parallel Outlet Flow Chromatography

Authors: Xavier A. Conlan

Abstract:

Speed of analysis is a significant limitation to current high-performance liquid chromatography/mass spectrometry (HPLC/MS) and ultra-high-pressure liquid chromatography (UHPLC)/MS systems both of which are used in many forensic investigations. The flow rate limitations of MS detection require a compromise in the chromatographic flow rate, which in turn reduces throughput, and when using modern columns, a reduction in separation efficiency. Commonly, this restriction is combated through the post-column splitting of flow prior to entry into the mass spectrometer. However, this results in a loss of sensitivity and a loss in efficiency due to the post-extra column dead volume. A new chromatographic column format known as 'parallel segmented flow' involves the splitting of eluent flow within the column outlet end fitting, and in this study we present its application in order to interrogate the provenience of methamphetamine samples with mass spectrometry detection. Using parallel segmented flow, column flow rates as high as 3 mL/min were employed in the analysis of amino acids without post-column splitting to the mass spectrometer. Furthermore, when parallel segmented flow chromatography columns were employed, the sensitivity was more than twice that of conventional systems with post-column splitting when the same volume of mobile phase was passed through the detector. These finding suggest that this type of column technology will particularly enhance the capabilities of modern LC/MS enabling both high-throughput and sensitive mass spectral detection.

Keywords: chromatography, mass spectrometry methamphetamine, parallel segmented outlet flow column, forensic sciences

Procedia PDF Downloads 472
3870 Numerical and Experimental Investigation of Distance Between Fan and Coil Block in a Fin and Tube Air Cooler Heat Exchanger

Authors: Feyza Şahi̇n, Harun Deni̇zli̇, Mustafa Zabun, Hüseyi̇n OnbaşIoğli

Abstract:

Heat exchangers are devices that are widely used to transfer heat between fluids due to their temperature differences. As a type of heat exchanger, air coolers are heat exchangers that cool the air as it passes through the fins of the heat exchanger by transferring heat to the refrigerant in the coil tubes of the heat exchanger. An assembled fin and tube heat exchanger consists of a coil block and a casing with a fan mounted on it. The term “Fan hood” is used to define the distance between the fan and the coil block. Air coolers play a crucial role in cooling systems, and their heat transfer performance can vary depending on design parameters. These parameters can be related to the air side or the internal fluid side. For airside efficiency, the distance between the fan and the coil block affects the performance by creating dead zones at the corners of the casing and maldistribution of airflow. Therefore, a detailed study of the effect of the fan hood on the evaporator and the optimum fan hood distance is necessary for an efficient air cooler design. This study aims to investigate the value of the fan hood in a fin and tube-type air cooler heat exchanger through computational fluid dynamics (CFD) simulations and experimental investigations. CFD simulations will be used to study the airflow within the fan hood. These simulations will provide valuable insights to optimize the design of the fan hood. In addition, experimental tests will be carried out to validate the CFD results and to measure the performance of the fan hood under real conditions. The results will help us to understand the effect of fan hood design on evaporator efficiency and contribute to the development of more efficient cooling systems. This study will provide essential information for evaporator design and improving the energy efficiency of cooling systems.

Keywords: heat exchanger, fan hood, heat exchanger performance, air flow performance

Procedia PDF Downloads 54
3869 Systematic Literature Review of Therapeutic Use of Autonomous Sensory Meridian Response (ASMR) and Short-Term ASMR Auditory Training Trial

Authors: Christine H. Cubelo

Abstract:

This study consists of 2-parts: a systematic review of current publications on the therapeutic use of autonomous sensory meridian response (ASMR) and a within-subjects auditory training trial using ASMR videos. The main intent is to explore ASMR as potentially therapeutically beneficial for those with atypical sensory processing. Many hearing-related disorders and mood or anxiety symptoms overlap with symptoms of sensory processing issues. For this reason, inclusion and exclusion criteria of the systematic review were generated in an effort to produce optimal search outcomes and avoid overly confined criteria that would limit yielded results. Criteria for inclusion in the review for Part 1 are (1) adult participants diagnosed with hearing loss or atypical sensory processing, (2) inclusion of measures related to ASMR as a treatment method, and (3) published between 2000 and 2022. A total of 1,088 publications were found in the preliminary search, and a total of 13 articles met the inclusion criteria. A total of 14 participants completed the trial and post-trial questionnaire. Of all responses, 64.29% agreed that the duration of auditory training sessions was reasonable. In addition, 71.43% agreed that the training improved their perception of music. Lastly, 64.29% agreed that the training improved their perception of a primary talker when there are other talkers or background noises present.

Keywords: autonomous sensory meridian response, auditory training, atypical sensory processing, hearing loss, hearing aids

Procedia PDF Downloads 46
3868 Vertical Electrical Sounding and Seismic Refraction Techniques in Resolving Groundwater Problems at Kujama Prison Farm, Kaduna, Nigeria

Authors: M. D. Dogara, C. G, Afuwai, O. O. Esther, A. M. Dawai

Abstract:

For two decades, the inhabitants of Kujama Prison Farm faced problems of water for domestic and agricultural purposes, even after the drilling of three deep boreholes. The scarcity of this groundwater resource led to the geophysical investigation of the basement complex of the prison farm. Two geophysical techniques, vertical electrical sounding and seismic refraction methods were deployed to unravel the cause(s) of the non-productivity of the three boreholes. The area of investigation covered was 400,000 m2 of ten profiles with six investigative points. In all, 60 vertical electrical points were sounded, and sixty sets of seismic refraction data were collected using the forward and reverse approach. From the geoelectric sections, it is suggestive that the area is underlain by three to five geoelectric layers of varying thicknesses and resistivities. The result of the interpreted seismic data revealed two geovelocity layers, with velocities ranging between 478m/s to 1666m/s for the first layer and 1166m/s to 7141m/s for the second layer. From the combined results of the two techniques, it was suggestive that all the three unproductive boreholes were drilled at points that were neither weathered nor fractured. It was, therefore, suggested that new boreholes should be drilled at areas identified with depressed bedrock topography having geophysical evidence of intense weathering and fracturing within the fresh basement.

Keywords: groundwater, Kujama prison farm, kaduna, nigeria, seismic refraction, vertical electrical sounding

Procedia PDF Downloads 142
3867 NANCY: Combining Adversarial Networks with Cycle-Consistency for Robust Multi-Modal Image Registration

Authors: Mirjana Ruppel, Rajendra Persad, Amit Bahl, Sanja Dogramadzi, Chris Melhuish, Lyndon Smith

Abstract:

Multimodal image registration is a profoundly complex task which is why deep learning has been used widely to address it in recent years. However, two main challenges remain: Firstly, the lack of ground truth data calls for an unsupervised learning approach, which leads to the second challenge of defining a feasible loss function that can compare two images of different modalities to judge their level of alignment. To avoid this issue altogether we implement a generative adversarial network consisting of two registration networks GAB, GBA and two discrimination networks DA, DB connected by spatial transformation layers. GAB learns to generate a deformation field which registers an image of the modality B to an image of the modality A. To do that, it uses the feedback of the discriminator DB which is learning to judge the quality of alignment of the registered image B. GBA and DA learn a mapping from modality A to modality B. Additionally, a cycle-consistency loss is implemented. For this, both registration networks are employed twice, therefore resulting in images ˆA, ˆB which were registered to ˜B, ˜A which were registered to the initial image pair A, B. Thus the resulting and initial images of the same modality can be easily compared. A dataset of liver CT and MRI was used to evaluate the quality of our approach and to compare it against learning and non-learning based registration algorithms. Our approach leads to dice scores of up to 0.80 ± 0.01 and is therefore comparable to and slightly more successful than algorithms like SimpleElastix and VoxelMorph.

Keywords: cycle consistency, deformable multimodal image registration, deep learning, GAN

Procedia PDF Downloads 111
3866 Evaluation of Raw Diatomaceous Earth and Plant Powders in the Control of Callosobruchus subinnotatus (Pic.) on Stored Bambara Groundnut (Vigna subterranea (L.) (Verdc.) Seeds

Authors: Ibrahim Nasiru Dole, Audu Abdullahi, Dike Michiel Chidozie, Lawal Mansur

Abstract:

Bambara groundnut is an important grain legume and the seeds in storage suffer infestation by Callosobruchus subinnotatus. Laboratory study was conducted to evaluate the efficacy of raw diatomaceous earth (RDE) and plant powders (Jatropha curcas (L.), Eucalyptus camaldulensis (Dehnh.) and Melia azedarach (L.) against C. subinnotatus infesting stored bambara groundnut seeds. Rearing of the insects and the experiments were conducted in Agricultural Biology Laboratory of the Usmanu Danfodiyo University, Sokoto - Nigeria under ambient conditions (29-33oC and a relative humidity of 44-56%). Four treatments at three levels: RDE at 0.5, 1.0 and 1.5 g while plant powders at 0.5, 1.0 and 2.0 g, standard/check (2.0 g of Actellic dust), and a control. These were separately admixed with 100 g of sterilized seeds in glass jars. Each jar was later infested with thirty, 1-2-days old C. subinnotatus of mixed sexes. Adult mortality was assessed 24, 48, 72 and 96 hours, F1 and F2 progenies, seed damage, weight loss and viability were also assessed after 90 days. Eighty-nine (89%) percent adult mortality was recorded in the highest dose of RDE after 96 hours of exposure. These treatments significantly (P < 0.05) suppressed F1 and F2 progenies emergence in relation to the control. The control suffered significantly (P < 0.05) higher seed damage (51.0 %) and weight loss (40.8%) thereby recording lower seed germination. Therefore, RDE and plant powders could be used against C. subinnotatus on stored bambara groundnut seeds.

Keywords: bambara, callosobruchus subinnotatus, plant powders, raw diatomaceous earth,

Procedia PDF Downloads 408
3865 Direct Cost of Anesthesia in Traumatic Patients with Massive Bleeding: A Prospective Micro-Costing Study

Authors: Asamaporn Puetpaiboon, Sunisa Chatmongkolchart, Nalinee Kovitwanawong, Osaree Akaraborworn

Abstract:

Traumatic patients with massive bleeding require intensive resuscitation. The actual cost of anesthesia per case has never been clarified, so our study aimed to quantify the direct cost, and cost-to-charge ratio of anesthetic care in traumatic patients with intraoperative massive bleeding. This study was a prospective, observational, cost analysis study, conducted in Prince of Songkla University hospital, Thailand, with traumatic patients, of any mechanisms being recruited. Massive bleeding was defined as estimated blood loss of at least one blood volume in 24 hours, or a half of blood volume in 3 hours. The cost components were identified by the micro-costing method, and valued by the bottom-up approach. The direct cost was divided into 4 categories: the labor cost, the capital cost, the material cost and the cost of drugs. From September 2017 to August 2018, 10 patients with multiple injuries were included. Seven patients had motorcycle accidents, two patients fell from a height and another one was in a minibus accident. Two patients died on the operating table, and another two died within 48 hours. The median Sequential Organ Failure Assessment (SOFA) score was 8. The median intraoperative blood loss was 3,500 ml. The median direct cost, per case, was 250 United States Dollars (2017 exchange rate), and the cost-to-charge ratio was 0.53. In summary, the direct cost was nearly half of the hospital charge, for these traumatic patients with massive bleeding. However, our study did not analyze the indirect cost.

Keywords: cost, cost-to-charge ratio, micro-costing, trauma

Procedia PDF Downloads 131
3864 High Temperature Oxidation of Additively Manufactured Silicon Carbide/Carbon Fiber Nanocomposites

Authors: Saja M. Nabat Al-Ajrash, Charles Browning, Rose Eckerle, Li Cao, Robyn L. Bradford, Donald Klosterman

Abstract:

An additive manufacturing process and subsequent pyrolysis cycle were used to fabricate SiC matrix/carbon fiber hybrid composites. The matrix was fabricated using a mixture of preceramic polymer and acrylate monomers, while polyacrylonitrile (PAN) precursor was used to fabricate fibers via electrospinning. The precursor matrix and reinforcing fibers at 0, 2, 5, or 10 wt% were printed using digital light processing, and both were simultaneously pyrolyzed to yield the final ceramic matrix composite structure. After pyrolysis, XRD and SEAD analysis proved the existence of SiC nanocrystals and turbostratic carbon structure in the matrix, while the reinforcement phase was shown to have a turbostratic carbon structure similar to commercial carbon fibers. Thermogravimetric analysis (TGA) in the air up to 1400 °C was used to evaluate the oxidation resistance of this material. TGA results showed some weight loss due to oxidation of SiC and/or carbon up to about 900 °C, followed by weight gain to about 1200 °C due to the formation of a protective SiO2 layer. Although increasing carbon fiber content negatively impacted the total mass loss for the first heating cycle, exposure of the composite to second-run air revealed negligible weight chance. This is explained by SiO2 layer formation, which acts as a protective film that prevents oxygen diffusion. Oxidation of SiC and the formation of a glassy layer has been proven to protect the sample from further oxidation, as well as provide healing of surface cracks and defects, as revealed by SEM analysis.

Keywords: silicon carbide, carbon fibers, additive manufacturing, composite

Procedia PDF Downloads 59
3863 Application of Ultrasonic Assisted Machining Technique for Glass-Ceramic Milling

Authors: S. Y. Lin, C. H. Kuan, C. H. She, W. T. Wang

Abstract:

In this study, ultrasonic assisted machining (UAM) technique is applied in side-surface milling experiment for glass-ceramic workpiece material. The tungsten carbide cutting-tool with diamond coating is used in conjunction with two kinds of cooling/lubrication mediums such as water-soluble (WS) cutting fluid and minimum quantity lubricant (MQL). Full factorial process parameter combinations on the milling experiments are planned to investigate the effect of process parameters on cutting performance. From the experimental results, it tries to search for the better process parameter combination which the edge-indentation and the surface roughness are acceptable. In the machining experiments, ultrasonic oscillator was used to excite a cutting-tool along the radial direction producing a very small amplitude of vibration frequency of 20KHz to assist the machining process. After processing, toolmaker microscope was used to detect the side-surface morphology, edge-indentation and cutting tool wear under different combination of cutting parameters, and analysis and discussion were also conducted for experimental results. The results show that the main leading parameters to edge-indentation of glass ceramic are cutting depth and feed rate. In order to reduce edge-indentation, it needs to use lower cutting depth and feed rate. Water-soluble cutting fluid provides a better cooling effect in the primary cutting area; it may effectively reduce the edge-indentation and improve the surface morphology of the glass ceramic. The use of ultrasonic assisted technique can effectively enhance the surface finish cleanness and reduce cutting tool wear and edge-indentation.

Keywords: glass-ceramic, ultrasonic assisted machining, cutting performance, edge-indentation

Procedia PDF Downloads 271
3862 Using Environmental Life Cycle Assessment to Design Sustainable Packaging

Authors: Timothy Francis Grant

Abstract:

There are conflicting purposes at play with the design of sustainable packaging which include material reduction, recycling compatibility, use of secondary content and performance of the package in protecting and delivering the product. Life Cycle Assessment (LCA) is able to evaluate these different strategies against environmental metrics such as climate change, land and water use and marine litter pollution. However, LCA has traditionally been too time consuming and expensive to be used effectively in packaging design process. To make LCA practical for packaging technologist and designers a simplified tool is needed to make LCA possible for non-environmental specialists. The Packaging Quick Evaluation Tool (PIQET) is a web-based solution for undertaking LCA of new and existing packaging designs considering the global supply chain and impacts from cradle to grave. PIQET is based on a pre-calculated LCA database covering the materials and processes involved in the packaging lifecycle from cradle to grave. This includes both virgin materials and recycled content, conversion of materials into packaging, and the transportation of packaging to the product filling. In addition, PIQET assesses the impacts once the package is filled looking at storage, transport and product loss through the supply chain. When applied to consumer packaging light weight packages which are note recyclable have lower impacts than more recyclable packages which have a higher mass. Its also apparent that for many products the impacts of product failure and product loss are more important environmentally compared to packaging material efficiency.

Keywords: Climate change, Life Cycle Assessment, Marine litter, Packaging sustainability

Procedia PDF Downloads 114
3861 A Comparative Analysis of an All-Optical Switch Using Chalcogenide Glass and Gallium Arsenide Based on Nonlinear Photonic Crystal

Authors: Priyanka Kumari Gupta, Punya Prasanna Paltani, Shrivishal Tripathi

Abstract:

This paper proposes a nonlinear photonic crystal ring resonator-based all-optical 2 × 2 switch. The nonlinear Kerr effect is used to evaluate the essential 2 x 2 components of the photonic crystal-based optical switch, including the bar and cross states. The photonic crystal comprises a two-dimensional square lattice of dielectric rods in an air background. In the background air, two different dielectric materials are used for this comparison study separately. Initially with chalcogenide glass rods, then with GaAs rods. For both materials, the operating wavelength, bandgap diagram, operating power intensities, and performance parameters, such as the extinction ratio, insertion loss, and cross-talk of an optical switch, have also been estimated using the plane wave expansion and the finite-difference time-domain method. The chalcogenide glass material (Ag20As32Se48) has a high refractive index of 3.1 which is highly suitable for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 9.1 x 10-17 m2/W. The resonance wavelength is at 1552 nm, with the operating power intensities at the cross-state and bar state around 60 W/μm2 and 690 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are 17.19 dB, 0.051 dB, and -17.14 dB, and the bar state, the values are 11.32 dB, 0.025 dB, and -11.35 dB respectively. The gallium arsenide (GaAs) dielectric material has a high refractive index of 3.4, a direct bandgap semiconductor material highly preferred nowadays for switching operations. This dielectric material is immersed in an air background with a nonlinear Kerr coefficient of 3.1 x 10-16 m2/W. The resonance wavelength is at 1558 nm, with the operating power intensities at the cross-state and bar state around 110 W/μm2 and 200 W/μm2. The extinction ratio, insertion loss, and cross-talk value for the chalcogenide glass at the cross-state are found to be 3.36.19 dB, 2.436 dB, and -5.8 dB, and for the bar state, the values are 15.60 dB, 0.985 dB, and -16.59 dB respectively. This paper proposes an all-optical 2 × 2 switch based on a nonlinear photonic crystal using a ring resonator. The two-dimensional photonic crystal comprises a square lattice of dielectric rods in an air background. The resonance wavelength is in the range of photonic bandgap. Later, another widely used material, GaAs, is also considered, and its performance is compared with the chalcogenide glass. Our presented structure can be potentially applicable in optical integration circuits and information processing.

Keywords: photonic crystal, FDTD, ring resonator, optical switch

Procedia PDF Downloads 65
3860 Effect of Organizational Competitive Climate on Organizational Prosocial Behavior: Workplace Envy as a Mediator

Authors: Armaghan Eslami, Nasrin Arshadi

Abstract:

Scarce resources are the inseparable part of organization life. This fact that only small number of the employees can have these resources such as promotion, raise, and recognition can cause competition among employees, which create competitive climate. As well as any other competition, small number wins the reward, and a great number loses, one of the possible emotional reactions to this loss is negative emotions like malicious envy. In this case, the envious person may try to harm the envied person by reducing the prosocial behavior. Prosocial behavior is a behavior that aimed to benefit others. The main propose of this action is to maintain and increase well-being and well-fare of others. Therefore, one of the easiest ways for harming envied one is to suppress prosocial behavior. Prosocial behavior has positive and important implication for organizational efficiency. Our results supported our model and suggested that competitive climate has a significant effect on increasing workplace envy and on the other hand envy has significant negative impact on prosocial behavior. Our result also indicated that envy is the mediator in the relation between competitive climate and prosocial behavior. Organizational competitive climate can cause employees respond envy with negative emotion and hostile and damaging behavior toward envied person. Competition can lead employees to look out for proof of their self-worthiness; and, furthermore, they measure their self-worth, value and respect by the superiority that they gain in competitions. As a result, loss in competitions can harm employee’s self-definition and they try to protect themselves by devaluating envied other and being ‘less friendly’ to them. Some employees may find it inappropriate to engage in the harming behavior, but they may believe there is nothing against withholding the prosocial behavior.

Keywords: competitive climate, mediator, prosocial behavior, workplace envy

Procedia PDF Downloads 347
3859 Effects of Using Clinical Practice Guidelines for Caring for Patients with Severe Sepsis or Septic Shock on Clinical Outcomes Based on the Sepsis Bundle Protocol at the ICU of Songkhla Hospital Thailand

Authors: Pornthip Seangsanga

Abstract:

Sepsis or septic shock needs urgent care because it is a cause of the high mortality rate if patients do not receive timely treatment. Songkhla Hospital does not have a clear system or clinical practice guidelines for treatment of patients with severe sepsis or septic shock, which contributes to the said problem.To compare clinical outcomes based on the protocol after using the clinical guidelines between the Emergency Room, Intensive Care Unit, and the Ward. This quasi-experimental study was conducted on the population and 50 subjects who were diagnosed with severe sepsis or septic shock from December 2013 to May 2014. The data were collected using a nursing care and referring record form for patients with severe sepsis or septic shock at Songkhla Hospital. The record form had been tested for its validity by three experts, and the IOC was 1.The mortality rate in patients with severe sepsis or septic shock who were moved from the ER to the ICU was significantly lower than that of those patients moved from the Ward to the ICU within 48 hours. This was because patients with severe sepsis or septic shock who were moved from the ER to the ICU received more fluid within the first six hours according to the protocol which helped patients to have adequate tissue perfusion within the first six hours, and that helped improve blood flow to the kidneys, and the patients’ urine was found to be with a higher quantity of 0.5 cc/kg/hr, than those patients who were moved from the Ward to the ICU. This study shows that patients with severe sepsis or septic shock need to be treated immediately. Using the clinical practice guidelines along with timely diagnosis and treatment based on the sepsis bundle in giving sufficient and suitable amount of fluid to help improve blood circulation and blood pressure can clearly prevent or reduce severity of complications.

Keywords: clinical practice guidelines, caring, septic shock, sepsis bundle protocol

Procedia PDF Downloads 285
3858 Optimal Geothermal Borehole Design Guided By Dynamic Modeling

Authors: Hongshan Guo

Abstract:

Ground-source heat pumps provide stable and reliable heating and cooling when designed properly. The confounding effect of the borehole depth for a GSHP system, however, is rarely taken into account for any optimization: the determination of the borehole depth usually comes prior to the selection of corresponding system components and thereafter any optimization of the GSHP system. The depth of the borehole is important to any GSHP system because the shallower the borehole, the larger the fluctuation of temperature of the near-borehole soil temperature. This could lead to fluctuations of the coefficient of performance (COP) for the GSHP system in the long term when the heating/cooling demand is large. Yet the deeper the boreholes are drilled, the more the drilling cost and the operational expenses for the circulation. A controller that reads different building load profiles, optimizing for the smallest costs and temperature fluctuation at the borehole wall, eventually providing borehole depth as the output is developed. Due to the nature of the nonlinear dynamic nature of the GSHP system, it was found that between conventional optimal controller problem and model predictive control problem, the latter was found to be more feasible due to a possible history of both the trajectory during the iteration as well as the final output could be computed and compared against. Aside from a few scenarios of different weighting factors, the resulting system costs were verified with literature and reports and were found to be relatively accurate, while the temperature fluctuation at the borehole wall was also found to be within acceptable range. It was therefore determined that the MPC is adequate to optimize for the investment as well as the system performance for various outputs.

Keywords: geothermal borehole, MPC, dynamic modeling, simulation

Procedia PDF Downloads 276
3857 Impact of Lined/Unlined Canal on Groundwater Recharge in the Lower Bhavani Basin, Tamilnadu, India

Authors: K. Mirudhula, R. Saravanan

Abstract:

Bhavani basin is the fourth largest Sub Basin in the Cauvery basin. The entire command area of all three major canals that takes off from the Bhavani river falls within the Erode District i.e. Lower Bhavani Project (LBP), Kodiveri and Kalingarayan canals. The LBP canal is a major source of irrigation in Erode District. Many of these canals are unlined and leakage takes place from them. Thus the seepage from the canal helps in recharging the wells in the area, enabling to get adequate water supply for the crops when water was not released from Bhavanisagar Dam. In this study, the groundwater recharge is determined by groundwater flow modeling using Visual MODFLOW model. For this purpose, three major natural sources of groundwater recharge are taken into consideration such as rainfall infiltration, canal seepage and return flow of irrigation. The model was run and ZONEBUDGET gives an idea about the amount of recharge from lined/unlined canal to the field. Unlined canal helps to recharge the groundwater about 20% more than the lined canal. The analysis reveals that the annual rainfall also has rapidly changed in this region. In the LBP canal Head reach meets their requirement with available quantity of water from the canal system. Tail end reach does not receive the required quantity of water because of seepage loss and conveyance loss. Hence the lined canal can be provided for full length of the main canal. Branch canals and minor distributaries are suggested to maintain the canals with unlined canal system.

Keywords: lower Bhavani basin, erode, groundwater flow modeling, irrigation practice, lined canal system

Procedia PDF Downloads 283
3856 Female Athlete Triad: How Much Is Known

Authors: Nadine Abuqtaish

Abstract:

Females’ participation in athletic sports events has increased in the last decades, and the discovery of eating disorders and menstrual dysfunction has been evident since the early 1980s. The term “Female athlete triad” was initially defined by the Task Force on Women’s Issues of the American College of Sports Medicine (ACSM) in 1992. Menstrual irregularities have been prevalent in competitive female athletes, especially in their adolescence and early adulthood age. Nutritional restrictions to maintain a certain physique and lean look are sought to be advantageous in female athletes such as gymnastics, cheerleading, or weight-sensitive sports such as endurance sports (cycling and marathoners). This stress places the female at risk of irregularities in their menstrual cycle which can lead them to lose their circadian estrogen levels. Estrogen is an important female reproductive hormone that plays a role in maintaining bone mass. Bone mineral density peaks by the age 25. Inadequate estrogen due to missed menstrual cycle or amenorrhea has been estimated to cause a yearly loss of 2% of bone mass, increasing the risk of osteoporosis in the postmenopausal phase. This paper is intended to have a better depth understanding of whether female athletes are being monitored by their official entities or coaches. A qualitative research method through online search engines and keywords “females, athletes, triad, amenorrhea, anorexia, osteoporosis” were used to collect the available primary sources from official public library databases. The latest consensus was published in 2014 by the Female Athlete Triad Coalition and the need for further research and emphasis on this issue is still lacking.

Keywords: female, athlete, triad, amenorrhea, anorexia, bone loss

Procedia PDF Downloads 47
3855 Study of the Effect of Seismic Behavior of Twin Tunnels Position on Each Other

Authors: M. Azadi, M. Kalhor

Abstract:

Excavation of shallow tunnels such as subways in urban areas plays a significant role as a life line and investigation of the soil behavior against tunnel construction is one of the vital subjects studied in the geotechnical scope. Nowadays, urban tunnels are mostly drilled by T.B.Ms and changing the applied forces to tunnel lining is one of the most risky matters while drilling tunnels by these machines. Variation of soil cementation can change the behavior of these forces in the tunnel lining. Therefore, this article is designed to assess the impact of tunnel excavation in different soils and several amounts of cementation on applied loads to tunnel lining under static and dynamic loads. According to the obtained results, changing the cementation of soil will affect the applied loadings to the tunnel envelope significantly. It can be determined that axial force in tunnel lining decreases considerably when soil cementation increases. Also, bending moment and shear force in tunnel lining decreases as the soil cementation increases and causes bending and shear behavior of the segments to improve. Based on the dynamic analyses, as cohesion factor in soil increases, bending moment, axial and shear forces of segments decrease but lining behavior of the tunnel is the same as static state. The results show that decreasing the overburden applied to lining caused by cementation is different in two static and dynamic states.

Keywords: seismic behavior, twin tunnels, tunnel positions, TBM, optimum distance

Procedia PDF Downloads 275
3854 Numerical Analysis of a Strainer Using Porous Media Technique

Authors: Ji-Hoon Byeon, Kwon-Hee Lee

Abstract:

Strainer filter serves to block the inflow of impurities while mixed fluid is entering or exiting the piping. The filter of the strainer has a perforated structure, so that the pressure drop and the velocity change necessarily occur when the mixed fluid passes through the filter. It is possible to predict the pressure drop and velocity change of the strainer by numerical analysis by implementing all the perforated plates. However, if the size of the perforated plate exceeds a certain size, it is difficult to perform the numerical analysis, and sometimes we cannot guarantee its accuracy. In this study, we tried to predict the pressure drop and velocity change by using the porous media technique to obtain the equivalent resistance without actual implementation of the perforation shape of the strainer. Ansys-CFX, a commercial software, is used to perform the numerical analysis. The analysis procedure is as follows. Firstly, the unit pattern of the perforated plate is modeled, and the pressure drop is analyzed by varying the velocity by symmetry of the wall surface. Secondly, since the equation for obtaining resistance is a quadratic equation of pressure having unknown velocity, the viscous resistance and the inertia resistance of the perforated plate are obtained from the relationship between pressure and speed. Thirdly, by using the calculated resistance values, the values are substituted into the flat plate implemented as a two-dimensional porous media, and the accuracy is verified by comparing the pressure drop and the velocity change. Fourthly, the pressure drop and velocity change in the whole strainer are analyzed by using the resistance values obtained on the perforated plate in the actual whole strainer model. Using the porous media technique, it is found that pressure drop and velocity change can be predicted in relatively short time without modeling the overall shape of the filter. Acknowledgements: This work was supported by the Valve Center from the Regional Innovation Center(RIC) Program of Ministry of Trade, Industry & Energy (MOTIE).

Keywords: strainer, porous media, CFD, numerical analysis

Procedia PDF Downloads 352
3853 Experimental Investigation on Tensile Durability of Glass Fiber Reinforced Polymer (GFRP) Rebar Embedded in High Performance Concrete

Authors: Yuan Yue, Wen-Wei Wang

Abstract:

The objective of this research is to comprehensively evaluate the impact of alkaline environments on the durability of Glass Fiber Reinforced Polymer (GFRP) reinforcements in concrete structures and further explore their potential value within the construction industry. Specifically, we investigate the effects of two widely used high-performance concrete (HPC) materials on the durability of GFRP bars when embedded within them under varying temperature conditions. A total of 279 GFRP bar specimens were manufactured for microcosmic and mechanical performance tests. Among them, 270 specimens were used to test the residual tensile strength after 120 days of immersion, while 9 specimens were utilized for microscopic testing to analyze degradation damage. SEM techniques were employed to examine the microstructure of GFRP and cover concrete. Unidirectional tensile strength experiments were conducted to determine the remaining tensile strength after corrosion. The experimental variables consisted of four types of concrete (engineering cementitious composite (ECC), ultra-high-performance concrete (UHPC), and two types of ordinary concrete with different compressive strengths) as well as three acceleration temperatures (20, 40, and 60℃). The experimental results demonstrate that high-performance concrete (HPC) offers superior protection for GFRP bars compared to ordinary concrete. Two types of HPC enhance durability through different mechanisms: one by reducing the pH of the concrete pore fluid and the other by decreasing permeability. For instance, ECC improves embedded GFRP's durability by lowering the pH of the pore fluid. After 120 days of immersion at 60°C under accelerated conditions, ECC (pH=11.5) retained 68.99% of its strength, while PC1 (pH=13.5) retained 54.88%. On the other hand, UHPC enhances FRP steel's durability by increasing porosity and compactness in its protective layer to reinforce FRP reinforcement's longevity. Due to fillers present in UHPC, it typically exhibits lower porosity, higher densities, and greater resistance to permeation compared to PC2 with similar pore fluid pH levels, resulting in varying degrees of durability for GFRP bars embedded in UHPC and PC2 after 120 days of immersion at a temperature of 60°C - with residual strengths being 66.32% and 60.89%, respectively. Furthermore, SEM analysis revealed no noticeable evidence indicating fiber deterioration in any examined specimens, thus suggesting that uneven stress distribution resulting from interface segregation and matrix damage emerges as a primary causative factor for tensile strength reduction in GFRP rather than fiber corrosion. Moreover, long-term prediction models were utilized to calculate residual strength values over time for reinforcement embedded in HPC under high temperature and high humidity conditions - demonstrating that approximately 75% of its initial strength was retained by reinforcement embedded in HPC after 100 years of service.

Keywords: GFRP bars, HPC, degeneration, durability, residual tensile strength.

Procedia PDF Downloads 40
3852 Preparation of Fluoroalkyl End-Capped Oligomers/Silica Nanocomposites Possessing a Nonflammable Characteristic Even After Calcination at 800 oC

Authors: Hideo Sawada

Abstract:

Fluoroalkyl end-capped oligomers [RF-(M)n-RF; RF = fluoroalkyl groups; M = radical polymerizable monomers] can form nanometre size-controlled self-assembled oligomeric aggregates through the aggregations of end-capped fluoroalkyl groups. Fluoroalkyl end-capped oligomeric aggregates can also interact with guest molecules to afford fluorinated aggregate/guest molecule nanocomposites; although the corresponding non-fluorinated oligomers cannot form such molecular aggregates to interact with guest molecules. For example, silica nanoparticles should act as guest molecules in fluorinated oligomeric aggregate cores to give new fluorinated oligomer-coated silica nanoparticles (fluorinated oligomer/silica nanocomposites). In these fluoroalkyl end-capped oligomers/silica nanocomposites, some fluorinated oligomers/silica nanocomposites were found to exhibit no weight loss behavior corresponding to the contents of oligomers in the silica matrices even after calcination at 800 oC. Fluoroalkyl end-capped vinyltrimethoxysilane oligomer-coated silica nanoparticles can be prepared by the sol-gel reaction of the corresponding fluorinated oligomer under alkaline conditions. The modified glass surface treated with this fluorinated oligomeric nanoparticle exhibited a completely super-hydrophobic characteristic. These fluorinated nanoparticles were also applied to the surface modification possessing a super-oleophobic characteristic. Not only fluoroalkyl end-capped oligomers but also low molecular weight fluorinated surfactants such as perfluoro-1,3-propanedisulfonic acid (PFPS) were applied to the preparation of fluorinated surfactants/silica nanocomposites to give no weight loss in proportion to the content of the surfactants in the nanocomposites even after calcination at 800 oC.

Keywords: fluorinated oligomer, silica nanocomposite, nonflammable characteristic, superamphiphobic chracteristic

Procedia PDF Downloads 460
3851 Drivers of Deforestation in the Colombian Amazon: An Empirical Causal Loop Diagram of Food Security and Land-Use Change

Authors: Jesica López, Deniz Koca, Asaf Tzachor

Abstract:

In 2016 the historic peace accord between the Colombian government and the Revolutionary Armed Forces of Colombia (FARC) had no strong mechanism for managing changes to land use and the environment. Since the end of a 60-year conflict in Colombia, large areas of forest in the Amazon region have been rapidly converted to agricultural uses, most recently by cattle ranching. This suggests that the peace agreement presents a threat to the conservation of the country's rainforest. We analyze the effects of cattle ranching as a driver and accelerator of deforestation from a systemic perspective, focusing on two key leverage points the legal and illegal activities involved in the cattle ranching practices. We map and understand the inherent dynamic complexity of deforestation, including factors such as land policy instruments, national strategy to tackle deforestation, land use nexus with Amazonian food systems, and loss of biodiversity. Our results show that deforestation inside Colombian Protected Areas (PAs) in the Amazon region and the surrounding buffer areas has accelerated with the onset of peace. By using a systems analysis approach, we contextualized the competition of land between cattle ranching and the need to protect tropical forests and their biodiversity loss. We elaborate on future recommendations for land use management decisions making suggest the inclusion of an Amazonian food system, interconnecting and visualizing the synergies between sustainable development goals, climate action (SDG 13) and life on land (SDG 15).

Keywords: tropical rainforest, deforestation, sustainable land use, food security, Colombian Amazon

Procedia PDF Downloads 80
3850 Planning Water Reservoirs as Complementary Habitats for Waterbirds

Authors: Tamar Trop, Ido Izhaki

Abstract:

Small natural freshwater bodies (SNFWBs), which are vital for many waterbird species, are considered endangered habitats due to their progressive loss and extensive degradation. While SNFWBs are becoming extinct, studies have indicated that many waterbird species may greatly benefit from various types of small artificial waterbodies (SAWBs), such as floodwater and treated water reservoirs. If designed and managed with care, SAWBs hold significant potential to serve as alternative or complementary habitats for birds, and thus mitigate the adverse effects of SNFWBs loss. Currently, most reservoirs are built as infrastructural facilities and designed according to engineering best practices and site-specific considerations, which do not include catering for waterbirds' needs. Furthermore, as things stand, there is still a lack of clear and comprehensive knowledge regarding the additional factors that should be considered in tackling the challenge of attracting waterbirds' to reservoirs, without compromising on the reservoirs' original functions. This study attempts to narrow this knowledge gap by performing a systematic review of the various factors (e.g., bird attributes; physical, structural, spatial, climatic, chemical, and biological characteristics of the waterbody; and anthropogenic activities) affecting the occurrence, abundance, richness, and diversity of waterbirds in SNFWBs. The methodical review provides a concise and relatively unbiased synthesis of the knowledge in the field, which can inform decision-making and practice regarding the planning, design, and management of reservoirs with birds in mind. Such knowledge is especially beneficial for arid and semiarid areas, where natural water sources are deteriorating and becoming extinct even faster due to climate change.

Keywords: artificial waterbodies, reservoirs, small waterbodies, waterbirds

Procedia PDF Downloads 54
3849 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor Under Scour, and Anchor Transportation and Installation (T&I)

Authors: Vinay Kumar Vanjakula, Frank Adam

Abstract:

The generation of electricity through wind power is one of the leading renewable energy generation methods. Due to abundant higher wind speeds far away from shore, the construction of offshore wind turbines began in the last decades. However, the installation of offshore foundation-based (monopiles) wind turbines in deep waters are often associated with technical and financial challenges. To overcome such challenges, the concept of floating wind turbines is expanded as the basis of the oil and gas industry. For such a floating system, stabilization in harsh conditions is a challenging task. For that, a robust heavy-weight gravity anchor is needed. Transportation of such anchor requires a heavy vessel that increases the cost. To lower the cost, the gravity anchor is designed with ballast chambers that allow the anchor to float while towing and filled with water when lowering to the planned seabed location. The presence of such a large structure may influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes influence the installation process. Also, after installation and under operating conditions, the flow around the anchor may allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scouring on fixed structures (bridges and monopiles) in rivers and oceans have been carried out, and very limited research work on scouring around a bluff-shaped gravity anchor. The objective of this study involves the application of different numerical models to simulate the anchor towing under waves and calm water conditions. Anchor lowering involves the investigation of anchor movements at certain water depths under wave/current. The motions of anchor drift, heave, and pitch is of special focus. The further study involves anchor scour, where the anchor is installed in the seabed; the flow of underwater current around the anchor induces vortices mainly at the front and corners that develop soil erosion. The study of scouring on a submerged gravity anchor is an interesting research question since the flow not only passes around the anchor but also over the structure that forms different flow vortices. The achieved results and the numerical model will be a basis for the development of other designs and concepts for marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM and other similar software.

Keywords: anchor lowering, anchor towing, gravity anchor, computational fluid dynamics, scour

Procedia PDF Downloads 151
3848 A Geospatial Analysis of Diminishing Himalayan Ice Under Influence of Anthropomorphism: A Case Study of Himalayan Ice From 1990 to 2020 in Pakistan

Authors: Ali Akber Khan

Abstract:

In the 21st century, freshwater resources, especially ice cover, would have grave significance as ice carries most of the total freshwater resources in the world. The Himalayas in Pakistan is one of the biggest sources of fresh water for Pakistan. These regions of the Himalayas and neighboring mountains include Swat, Chitral, Upper Dir, Lower Dir, Mardan, Swabi, Haripur, Abbottabad, Muzaffarabad, Neelum, and Mansehra in Pakistan. The study examines ice resources in the years 1990 to 2020 and shows a decrease in snow-shrouded regions, reducing from 72,187.54 sq. km in 1990 to 66,061.17 sq. km in 2020. This indicates a total ice cover loss of 6,126.37 sq. km area in 40 years due to environmental variabilities and climatic changes. From 2010 to 2020 loss of ice-covered area was 3479.24 sq. km. The mean maximum temperature from 2000 to 2010 in December, January and February is 7.4 °C, 4.2 °Cand 7.8 °C respectively, while from 2011 to 2022 mean maximum temperature registered in December, January and February is 6.9°C, 4.1°C and 6.6 °C respectively. Investigation of anthropogenic elements in the region shows population rise. From investigation, 22 cities and towns of the Himalayas region and neighboring mountains showed the highest rise in population, 329.46%, and a minimum rise of 14.39%, while 12 towns have risen in population by more than 100% from 1990 to 2023. This examination adds to a point-by-point comprehension of the connections among normal variables, population dynamics, snow cover variation, evidence strategies, and multipurpose measures for maintained and strong improvement in the districts.

Keywords: snow, ice, Himalayas, Pakistan, climate change, population

Procedia PDF Downloads 32
3847 University Students' Perspectives on a Mindfulness-Based App for Weight, Weight Related Behaviors, and Stress: A Qualitative Focus Group Study

Authors: Lynnette Lyzwinski, Liam Caffery, Matthew Bambling, Sisira Edirippulige

Abstract:

Introduction: A novel method of delivering mindfulness interventions for populations at risk of weight gain and stress-related eating, in particular, college students, is through mHealth. While there have been qualitative studies on mHealth for weight loss, there has not been a study on mHealth for weight loss using mindfulness that has explored student perspectives on a student centred mindfulness app and mindfulness-based text messages for eating and stress. Student perspective data will provide valuable information for creating a specific purpose weight management app and mindfulness-based text messages (for the Mindfulness App study). Methods: A qualitative focus group study was undertaken at St Lucia campus at the University of Queensland in March 2017. Students over the age of 18 were eligible to participate. Interviews were audiotaped and transcribed. One week following the focus group, students were sent sample mindfulness-based text messages based on their responses. Students provided written feedback via email. Data were analysed using N Vivo software. Results: The key themes in a future mindfulness-based app are a simple design interface, a focus on education/practical tips, and real-life practical exercises. Social media should be avoided. Key themes surrounding barriers include the perceived difficulty of mindfulness and a lack of proper guidance or knowledge. The mindfulness-based text messages were received positively. Key themes were creating messages with practical tips about how to be mindful and how to integrate mindful reflection of both one’s body and environment while on campus. Other themes including creating positive, inspirational messages. There was lack of agreement on the ideal timing for messages. Discussion: This is the first study that explored student perspectives on a mindfulness-app and mindfulness-based text messages for stress and weight management as a pre-trial study for the Mindfulness App trial for stress, lifestyle, and weight in students. It is important to consider maximizing the potential facilitators of use and minimize potential identified barriers when developing and designing a future mHealth mindfulness-based intervention tailored to the student consumer. Conclusion: Future mHealth studies may consider integrating mindfulness-based text messages in their interventions for weight and stress as this is a novel feature that appears to be acceptable for participants. The results of this focus group provide the basis to develop content for a specific purpose student app for weight management.

Keywords: mindfulness, college students, mHealth, weight loss

Procedia PDF Downloads 172
3846 Study of Causes and Effects of Road Projects Abandonment in Nigeria

Authors: Monsuru Oyenola Popoola, Oladapo Samson Abiola, Wusamotu Alao Adeniji

Abstract:

The prevalent and incessant abandonment of road construction projects are alarming that it creates several negative effects to social, economic and environmental values of the project. The purpose of this paper is to investigate and determined the various causes and effects of abandoning road construction projects in Nigeria. Likert Scale questionnaire design was used to administered and analysed the data obtained for the stydy. 135 (Nr) questionnaires were completed and retrieved from the respondents, out of 200 (Nr) questionnaires sent out, representing a response rate of 67.5%. The analysis utilized the Relative Importance Index (R.I.I.) method and the results are presented in tabular form. The findings confirms that at least 20 factors were the causes of road projects abandonment in Nigeria with most including Leadership Instability, Improper Project Planning, Inconsistence in government policies and Design, Contractor Incompetence, Economy Instability and Inflation, Delay in remittance of money, Improper financial analysis, Poor risk management, Climatic Conditions, Improper Project Estimates etc. The findings also show that at least eight (8) effect were identified on the system, and these include; Waste of Financial Resources, Loss of economic value, Environmental degradation, Loss of economic value, Reduction in standard of living, Litigation and Arbitration, etc. The reflection is that allocating reasonable finance, developing appropriate and effective implementation plans and monitoring, evaluation and reporting on development project activities by key actors should enhance in resolving the problem of road projects abandonment.

Keywords: road construction, abandonment of road projects, climatic condition, project planning, contractor

Procedia PDF Downloads 286
3845 The Role of Micro-Ribonucleic Acid-182 and Micro-Ribonucleic Acid-214 in Cisplatin Resistance of Triple-Negative Breast Cancer Cells

Authors: Bahadir Batar, Elif Serdal, Berna Erdal, Hasan Ogul

Abstract:

Micro-ribonucleic acids (miRNAs) are small short non-coding ribonucleic acid molecules about 22 nucleotides long. miRNAs play a key role in response to chemotherapeutic agents. WW domain-containing oxidoreductase (WWOX) gene encodes a tumor suppressor protein. Loss or reduction of Wwox protein is observed in many breast cancer cases. WWOX protein deficiency is increased in triple-negative breast cancer (TNBC). TNBC is a heterogeneous, highly aggressive, and difficult to treat tumor type. WWOX loss contributes to resistance to cisplatin therapy in patients with TNBC. Here, the aim of the study was to investigate the potential role of miRNAs in cisplatin therapy resistance of WWOX-deficient TNBC cells. This was a cell culture study. miRNA expression profiling was analyzed by LightCycler 480 system. miRNA Set Enrichment Analysis tool was used to integrate experimental data with literature-based biological knowledge to infer a new hypothesis. Increased miR-182 and decreased miR-214 were significantly correlated with cisplatin resistance in WWOX-deficient TNBC cells. miR-182 and miR-214 may involve in cisplatin resistance of WWOX-deficient TNBC cells by deregulating the DNA repair, apoptosis, or protein kinase B signaling pathways. These data highlight the mechanism by which WWOX regulates cisplatin resistance of TNBC and the potential use of WWOX as a predictor biomarker for cisplatin resistance.

Keywords: cisplatin, microRNA, triple-negative breast cancer, WWOX

Procedia PDF Downloads 111
3844 Numerical Aeroacoustics Investigation of Eroded and Coated Leading Edge of NACA 64- 618 Airfoil

Authors: Zeinab Gharibi, B. Stoevesandt, J. Peinke

Abstract:

Long term surface erosion of wind turbine blades, especially at the leading edge, impairs aerodynamic performance; therefore, lowers efficiency of the blades mostly in the high-speed rotor tip regions. Blade protection provides significant improvements in annual energy production, reduces costly downtime, and protects the integrity of the blades. However, this protection still influences the aerodynamic behavior, and broadband noise caused by interaction between the impinging turbulence and blade’s leading edge. This paper presents an extensive numerical aeroacoustics approach by investigating the sound power spectra of the eroded and coated NACA 64-618 wind turbine airfoil and evaluates aeroacoustics improvements after the protection procedure. Using computational fluid dynamics (CFD), different quasi 2D numerical grids were implemented and special attention was paid to the refinement of the boundary layers. The noise sources were captured and decoupled with acoustic propagation via the derived formulation of Curle’s analogy implemented in OpenFOAM. Therefore, the noise spectra were compared for clean, coated and eroded profiles in the range of chord-based Reynolds number (1.6e6 ≤ Re ≤ 11.5e6). Angle of attack was zero in all cases. Verifications were conducted for the clean profile using available experimental data. Sensitivity studies for the far-field were done on different observational positions. Furthermore, beamforming studies were done simulating an Archimedean spiral microphone array for far-field noise directivity patterns. Comparing the noise spectra of the coated and eroded geometries, results show that, coating clearly improves aerodynamic and acoustic performance of the eroded airfoil.

Keywords: computational fluid dynamics, computational aeroacoustics, leading edge, OpenFOAM

Procedia PDF Downloads 207
3843 Multi-Objective Optimization of the Thermal-Hydraulic Behavior for a Sodium Fast Reactor with a Gas Power Conversion System and a Loss of off-Site Power Simulation

Authors: Avent Grange, Frederic Bertrand, Jean-Baptiste Droin, Amandine Marrel, Jean-Henry Ferrasse, Olivier Boutin

Abstract:

CEA and its industrial partners are designing a gas Power Conversion System (PCS) based on a Brayton cycle for the ASTRID Sodium-cooled Fast Reactor. Investigations of control and regulation requirements to operate this PCS during operating, incidental and accidental transients are necessary to adapt core heat removal. To this aim, we developed a methodology to optimize the thermal-hydraulic behavior of the reactor during normal operations, incidents and accidents. This methodology consists of a multi-objective optimization for a specific sequence, whose aim is to increase component lifetime by reducing simultaneously several thermal stresses and to bring the reactor into a stable state. Furthermore, the multi-objective optimization complies with safety and operating constraints. Operating, incidental and accidental sequences use specific regulations to control the thermal-hydraulic reactor behavior, each of them is defined by a setpoint, a controller and an actuator. In the multi-objective problem, the parameters used to solve the optimization are the setpoints and the settings of the controllers associated with the regulations included in the sequence. In this way, the methodology allows designers to define an optimized and specific control strategy of the plant for the studied sequence and hence to adapt PCS piloting at its best. The multi-objective optimization is performed by evolutionary algorithms coupled to surrogate models built on variables computed by the thermal-hydraulic system code, CATHARE2. The methodology is applied to a loss of off-site power sequence. Three variables are controlled: the sodium outlet temperature of the sodium-gas heat exchanger, turbomachine rotational speed and water flow through the heat sink. These regulations are chosen in order to minimize thermal stresses on the gas-gas heat exchanger, on the sodium-gas heat exchanger and on the vessel. The main results of this work are optimal setpoints for the three regulations. Moreover, Proportional-Integral-Derivative (PID) control setting is considered and efficient actuators used in controls are chosen through sensitivity analysis results. Finally, the optimized regulation system and the reactor control procedure, provided by the optimization process, are verified through a direct CATHARE2 calculation.

Keywords: gas power conversion system, loss of off-site power, multi-objective optimization, regulation, sodium fast reactor, surrogate model

Procedia PDF Downloads 292
3842 Development of Earthquake and Typhoon Loss Models for Japan, Specifically Designed for Underwriting and Enterprise Risk Management Cycles

Authors: Nozar Kishi, Babak Kamrani, Filmon Habte

Abstract:

Natural hazards such as earthquakes and tropical storms, are very frequent and highly destructive in Japan. Japan experiences, every year on average, more than 10 tropical cyclones that come within damaging reach, and earthquakes of moment magnitude 6 or greater. We have developed stochastic catastrophe models to address the risk associated with the entire suite of damaging events in Japan, for use by insurance, reinsurance, NGOs and governmental institutions. KCC’s (Karen Clark and Company) catastrophe models are procedures constituted of four modular segments: 1) stochastic events sets that would represent the statistics of the past events, hazard attenuation functions that could model the local intensity, vulnerability functions that would address the repair need for local buildings exposed to the hazard, and financial module addressing policy conditions that could estimates the losses incurring as result of. The events module is comprised of events (faults or tracks) with different intensities with corresponding probabilities. They are based on the same statistics as observed through the historical catalog. The hazard module delivers the hazard intensity (ground motion or wind speed) at location of each building. The vulnerability module provides library of damage functions that would relate the hazard intensity to repair need as percentage of the replacement value. The financial module reports the expected loss, given the payoff policies and regulations. We have divided Japan into regions with similar typhoon climatology, and earthquake micro-zones, within each the characteristics of events are similar enough for stochastic modeling. For each region, then, a set of stochastic events is developed that results in events with intensities corresponding to annual occurrence probabilities that are of interest to financial communities; such as 0.01, 0.004, etc. The intensities, corresponding to these probabilities (called CE, Characteristics Events) are selected through a superstratified sampling approach that is based on the primary uncertainty. Region specific hazard intensity attenuation functions followed by vulnerability models leads to estimation of repair costs. Extensive economic exposure model addresses all local construction and occupancy types, such as post-linter Shinand Okabe wood, as well as concrete confined in steel, SRC (Steel-Reinforced Concrete), high-rise.

Keywords: typhoon, earthquake, Japan, catastrophe modelling, stochastic modeling, stratified sampling, loss model, ERM

Procedia PDF Downloads 248