Search results for: vector density
2822 The Research of Industrial Space Characteristics, Layout, and Strategy in Metropolitan Area in China: In Case of Wuhan
Authors: Min Zhou, Kaixuan Lin, Yaping Huang
Abstract:
In this paper, the industrial space of metropolitan area in Wuhan is taken as a sample. First of all, it puts forward that the structure of service economy, circle gradient relocation and high degree of regional collaboration are the rules of industrial spatial development in the modern world cities. Secondly, using the economic statistics and land use vector data (1993, 2004, 2010, and 2013) of Wuhan, it analyzes the present situation of industry development and the characteristics of industrial space layout from three aspects of the industrial economic structure, industrial layout, and industrial regional synergy. Then, based on the industrial development regularity of world cities, it puts forward to construct the industrial spatial level of ‘complex industrial concentration area + modular industry unit’ and the industrial spatial structure of ‘13525’. Finally, it comes up with the optimization tactics of the industrial space’s transformation in the future under the background of new economic era.Keywords: big city of metropolitan area, industrial space, characteristics, layout, strategy
Procedia PDF Downloads 3782821 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1212820 Multidirectional Product Support System for Decision Making in Textile Industry Using Collaborative Filtering Methods
Authors: A. Senthil Kumar, V. Murali Bhaskaran
Abstract:
In the information technology ground, people are using various tools and software for their official use and personal reasons. Nowadays, people are worrying to choose data accessing and extraction tools at the time of buying and selling their products. In addition, worry about various quality factors such as price, durability, color, size, and availability of the product. The main purpose of the research study is to find solutions to these unsolved existing problems. The proposed algorithm is a Multidirectional Rank Prediction (MDRP) decision making algorithm in order to take an effective strategic decision at all the levels of data extraction, uses a real time textile dataset and analyzes the results. Finally, the results are obtained and compared with the existing measurement methods such as PCC, SLCF, and VSS. The result accuracy is higher than the existing rank prediction methods.Keywords: Knowledge Discovery in Database (KDD), Multidirectional Rank Prediction (MDRP), Pearson’s Correlation Coefficient (PCC), VSS (Vector Space Similarity)
Procedia PDF Downloads 2862819 Crop Recommendation System Using Machine Learning
Authors: Prathik Ranka, Sridhar K, Vasanth Daniel, Mithun Shankar
Abstract:
With growing global food needs and climate uncertainties, informed crop choices are critical for increasing agricultural productivity. Here we propose a machine learning-based crop recommendation system to help farmers in choosing the most proper crops according to their geographical regions and soil properties. We can deploy algorithms like Decision Trees, Random Forests and Support Vector Machines on a broad dataset that consists of climatic factors, soil characteristics and historical crop yields to predict the best choice of crops. The approach includes first preprocessing the data after assessing them for missing values, unlike in previous jobs where we used all the available information and then transformed because there was no way such a model could have worked with missing data, and normalizing as throughput that will be done over a network to get best results out of our machine learning division. The model effectiveness is measured through performance metrics like accuracy, precision and recall. The resultant app provides a farmer-friendly dashboard through which farmers can enter their local conditions and receive individualized crop suggestions.Keywords: crop recommendation, precision agriculture, crop, machine learning
Procedia PDF Downloads 162818 Territorial Analysis of the Public Transport Supply: Case Study of Recife City
Authors: Cláudia Alcoforado, Anabela Ribeiro
Abstract:
This paper is part of an ongoing PhD thesis. It seeks to develop a model to identify the spatial failures of the public transportation supply. In the construction of the model, it also seeks to detect the social needs arising from the disadvantage in transport. The case study is carried out for the Brazilian city of Recife. Currently, Recife has a population density of 7,039.64 inhabitants per km². Unfortunately, only 46.9% of urban households on public roads have adequate urbanization. Allied to this reality, the trend of the occupation of the poorest population is that of the peripheries, a fact that has been consolidated in Brazil and Latin America, thus burdening the families' income, since the greater the distances covered for the basic activities and consequently also the transport costs. In this way, there have been great impacts caused by the supply of public transportation to locations with low demand or lack of urban infrastructure. The model under construction uses methods such as Currie’s Gap Assessment associated with the London’s Public Transport Access Level, and the Public Transport Accessibility Index developed by Saghapour. It is intended to present the stage of the thesis with the spatial/need gaps of the neighborhoods of Recife already detected. The benefits of the geographic information system are used in this paper. It should be noted that gaps are determined from the transport supply indices. In this case, considering the presence of walking catchment areas. Still in relation to the detection of gaps, the relevant demand index is also determined. This, in turn, is calculated through indicators that reflect social needs. With the use of the smaller Brazilian geographical unit, the census sector, the model with the inclusion of population density in the study areas should present more consolidated results. Based on the results achieved, an analysis of transportation disadvantage will be carried out as a factor of social exclusion in the study area. It is anticipated that the results obtained up to the present moment, already indicate a strong trend of public transportation in areas of higher income classes, leading to the understanding that the most disadvantaged population migrates to those neighborhoods in search of employment.Keywords: gap assessment, public transport supply, social exclusion, spatial gaps
Procedia PDF Downloads 1832817 Scalar Modulation Technique for Six-Phase Matrix Converter Fed Series-Connected Two-Motor Drives
Authors: A. Djahbar, M. Aillerie, E. Bounadja
Abstract:
In this paper we treat a new structure of a high-power actuator which is used to either industry or electric traction. Indeed, the actuator is constituted by two induction motors, the first is a six-phase motor connected in series with another three-phase motor via the stators. The whole is supplied by a single static converter. Our contribution in this paper is the optimization of the system supply source. This is feeding the multimotor group by a direct converter frequency without using the DC-link capacitor. The modelling of the components of multimotor system is presented first. Only the first component of stator currents is used to produce the torque/flux of the first machine in the group. The second component of stator currents is considered as additional degrees of freedom and which can be used for power conversion for the other connected motors. The decoupling of each motor from the group is obtained using the direct vector control scheme. Simulation results demonstrate the effectiveness of the proposed structure.Keywords: induction machine, motor drives, scalar modulation technique, three-to-six phase matrix converter
Procedia PDF Downloads 5482816 Investigation of Riprap Stability on Roughness Bridge Pier in River Bend
Authors: A. Alireza Masjedi, B. Amir Taeedi
Abstract:
In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.Keywords: riprap stability, roughness, river bend, froude number
Procedia PDF Downloads 3542815 Effect of Riprap Stability on Roughness Bridge Pier in River Bend
Authors: Alireza Masjedi, Amir Taeedi
Abstract:
In this research, by placing the two cylindrical piers without roughness and with roughness with riprap around its, they proceeded to a series of tests. Experiments were done by three relative diameters of riprap with density 2.1 and one rate of discharge 27 lit/s under pure water condition. In each experiment, flow depth measured in terms of failure threshold then stability number calculated by using data obtained. The results of the research showed that the riprap stability in pier with roughness is more pier without roughness because of the pier with roughness is sharp-pointed and reduced horseshoe vortex.Keywords: riprap stability, roughness, river bend, froude number
Procedia PDF Downloads 3512814 Geographic Mapping of Tourism in Rural Areas: A Case Study of Cumbria, United Kingdom
Authors: Emma Pope, Demos Parapanos
Abstract:
Rural tourism has become more obvious and prevalent, with tourists’ increasingly seeking authentic experiences. This movement accelerated post-Covid, putting destinations in danger of reaching levels of saturation called ‘overtourism’. Whereas the phenomenon of overtourism has been frequently discussed in the urban context by academics and practitioners over recent years, it has hardly been referred to in the context of rural tourism, where perhaps it is even more difficult to manage. Rural tourism was historically considered small-scale, marked by its traditional character and by having little impact on nature and rural society. The increasing number of rural areas experiencing overtourism, however, demonstrates the need for new approaches, especially as the impacts and enablers of overtourism are context specific. Cumbria, with approximately 47 million visitors each year, and 23,000 operational enterprises, is one of these rural areas experiencing overtourism in the UK. Using the county of Cumbria as an example, this paper aims to explore better planning and management in rural destinations by clustering the area into rural and ‘urban-rural’ tourism zones. To achieve the aim, this study uses secondary data from a variety of sources to identify variables relating to visitor economy development and demand. These data include census data relating to population and employment, tourism industry-specific data including tourism revenue, visitor activities, and accommodation stock, and big data sources such as Trip Advisor and All Trails. The combination of these data sources provides a breadth of tourism-related variables. The subsequent analysis of this data draws upon various validated models. For example, tourism and hospitality employment density, territorial tourism pressure, and accommodation density. In addition to these statistical calculations, other data are utilized to further understand the context of these zones, for example, tourist services, attractions, and activities. The data was imported into ARCGIS where the density of the different variables is visualized on maps. This study aims to provide an understanding of the geographical context of visitor economy development and tourist behavior in rural areas. The findings contribute to an understanding of the spatial dynamics of tourism within the region of Cumbria through the creation of thematized maps. Different zones of tourism industry clusters are identified, which include elements relating to attractions, enterprises, infrastructure, tourism employment and economic impact. These maps visualize hot and cold spots relating to a variety of tourism contexts. It is believed that the strategy used to provide a visual overview of tourism development and demand in Cumbria could provide a strategic tool for rural areas to better plan marketing opportunities and avoid overtourism. These findings can inform future sustainability policy and destination management strategies within the areas through an understanding of the processes behind the emergence of both hot and cold spots. It may mean that attract and disperse needs to be reviewed in terms of a strategic option. In other words, to use sector or zonal policies for the individual hot or cold areas with transitional zones dependent upon local economic, social and environmental factors.Keywords: overtourism, rural tourism, sustainable tourism, tourism planning, tourism zones
Procedia PDF Downloads 742813 Assessing the Clinicians’ Perspectives on Formulation with Minoxidil, Finasteride, and Capixyl™ in Androgenetic Alopecia: A Nationwide Dermatologist Survey
Authors: Sharma Aseem, Dhurat Rachita, Pawar Varsha, Khalse Manisha
Abstract:
Introduction: Androgenetic alopecia (AGA) is a prevalent condition characterized by progressive hair thinning driven by genetic and androgen-related factors. The current FDA-approved treatments include oral finasteride and topical minoxidil, though many patients seek combination therapies to enhance results. This study aims to evaluate the effectiveness of a combination therapy involving Minoxidil, Finasteride, and Capixyl™ based on feedback from dermatologists. Methodology: A survey, validated by experts, was distributed to 29 leading dermatologists across India (in Tier 1 and 2 cities). The survey examined real-world clinical experiences, focusing on patient outcomes and the overall effectiveness of the mentioned formulation. Results: Among the surveyed dermatologists, 41.4% identified women aged 35-40 as the most frequently diagnosed with female pattern hair loss. The combination therapy with Minoxidil, Finasteride, and Capixyl™ was utilized by 34.5% of dermatologists for over 60 patients per month. The majority highlighted the benefits of this combination therapy, which acts via multiple mechanisms, such as vasodilation and dihydrotestosterone (DHT) receptor blockade, resulting in improved hair regrowth. Additionally, patients demonstrated better clinical outcomes, enhanced compliance, and fewer side effects. Demographically, younger patients, particularly those with AGA for less than 10 years, responded more positively to the treatment. Early intervention led to quicker and more significant results. Overall satisfaction among dermatologists was high, with 86.2% expressing positive feedback on the therapy. In terms of treatment outcomes, 51.7% of dermatologists observed visible results within 4-6 months, while 34.5% noticed a significant reduction in hair fall within 8-12 weeks. Improvements in scalp health were reported by 48.3%, and 51.7% saw an increased hair density within 3-4 months. Despite mild side effects such as scalp irritation, dryness, flaking, and occasional issues like folliculitis, headaches, itching, and redness, patient satisfaction remained high. Dermatologists reported that 93.1% of patients experienced faster and better hair regrowth with Capixyl™ compared to Minoxidil alone. Suggestions for improving the formulation included incorporating peptides like Saw Palmetto and enhancing product packaging to better meet patient needs. Discussion: The combination of Minoxidil, Finasteride, and Capixyl™ yielded positive clinical outcomes, especially in improving hair density, scalp health, and overall patient satisfaction. Dermatologists found that Capixyl™ peptides enhanced the therapeutic effect, promoting hair regrowth and improving compliance. While side effects were generally mild, there were suggestions to further improve the formulation by adding additional peptides like Saw Palmetto. Conclusion: The combination of Minoxidil and Finasteride fortified with Capixyl™ presents a promising therapeutic option for managing AGA. Dermatologists reported significant improvements in hair density, scalp health, and patient satisfaction. With its favorable efficacy and manageable side effects, this formulation proves to be a valuable addition to the treatment landscape for AGA.Keywords: androgenetic alopecia, combination therapy, minoxidil, finasteride, capixyl
Procedia PDF Downloads 142812 Hyperelastic Formulation for Orthotropic Materials
Authors: Daniel O'Shea, Mario M. Attard, David C. Kellermann
Abstract:
In this paper, we propose a hyperelastic strain energy function that maps isotopic hyperelastic constitutive laws for the use of orthotropic materials without the use of structural tensors or any kind of fiber vector, or the use of standard invariants. In particular, we focus on neo-Hookean class of models and represent them using an invariant-free formulation. To achieve this, we revise the invariant-free formulation of isotropic hyperelasticity. The formulation uses quadruple contractions between fourth-order tensors, rather than scalar products of scalar invariants. We also propose a new decomposition of the orthotropic Hookean stiffness tensor into two fourth-order Lamé tensors that collapse down to the classic Lamé parameters for isotropic continua. The resulting orthotropic hyperelastic model naturally maintains all of the advanced properties of the isotropic counterparts, and similarly collapse back down to their isotropic form by nothing more than equality of parameters in all directions (isotropy). Comparisons are made with large strain experimental results for transversely isotropic rubber type materials under tension.Keywords: finite strain, hyperelastic, invariants, orthotropic
Procedia PDF Downloads 4462811 Astronomical Object Classification
Authors: Alina Muradyan, Lina Babayan, Arsen Nanyan, Gohar Galstyan, Vigen Khachatryan
Abstract:
We present a photometric method for identifying stars, galaxies and quasars in multi-color surveys, which uses a library of ∼> 65000 color templates for comparison with observed objects. The method aims for extracting the information content of object colors in a statistically correct way, and performs a classification as well as a redshift estimation for galaxies and quasars in a unified approach based on the same probability density functions. For the redshift estimation, we employ an advanced version of the Minimum Error Variance estimator which determines the redshift error from the redshift dependent probability density function itself. The method was originally developed for the Calar Alto Deep Imaging Survey (CADIS), but is now used in a wide variety of survey projects. We checked its performance by spectroscopy of CADIS objects, where the method provides high reliability (6 errors among 151 objects with R < 24), especially for the quasar selection, and redshifts accurate within σz ≈ 0.03 for galaxies and σz ≈ 0.1 for quasars. For an optimization of future survey efforts, a few model surveys are compared, which are designed to use the same total amount of telescope time but different sets of broad-band and medium-band filters. Their performance is investigated by Monte-Carlo simulations as well as by analytic evaluation in terms of classification and redshift estimation. If photon noise were the only error source, broad-band surveys and medium-band surveys should perform equally well, as long as they provide the same spectral coverage. In practice, medium-band surveys show superior performance due to their higher tolerance for calibration errors and cosmic variance. Finally, we discuss the relevance of color calibration and derive important conclusions for the issues of library design and choice of filters. The calibration accuracy poses strong constraints on an accurate classification, which are most critical for surveys with few, broad and deeply exposed filters, but less severe for surveys with many, narrow and less deep filters.Keywords: VO, ArVO, DFBS, FITS, image processing, data analysis
Procedia PDF Downloads 802810 A Xenon Mass Gauging through Heat Transfer Modeling for Electric Propulsion Thrusters
Authors: A. Soria-Salinas, M.-P. Zorzano, J. Martín-Torres, J. Sánchez-García-Casarrubios, J.-L. Pérez-Díaz, A. Vakkada-Ramachandran
Abstract:
The current state-of-the-art methods of mass gauging of Electric Propulsion (EP) propellants in microgravity conditions rely on external measurements that are taken at the surface of the tank. The tanks are operated under a constant thermal duty cycle to store the propellant within a pre-defined temperature and pressure range. We demonstrate using computational fluid dynamics (CFD) simulations that the heat-transfer within the pressurized propellant generates temperature and density anisotropies. This challenges the standard mass gauging methods that rely on the use of time changing skin-temperatures and pressures. We observe that the domes of the tanks are prone to be overheated, and that a long time after the heaters of the thermal cycle are switched off, the system reaches a quasi-equilibrium state with a more uniform density. We propose a new gauging method, which we call the Improved PVT method, based on universal physics and thermodynamics principles, existing TRL-9 technology and telemetry data. This method only uses as inputs the temperature and pressure readings of sensors externally attached to the tank. These sensors can operate during the nominal thermal duty cycle. The improved PVT method shows little sensitivity to the pressure sensor drifts which are critical towards the end-of-life of the missions, as well as little sensitivity to systematic temperature errors. The retrieval method has been validated experimentally with CO2 in gas and fluid state in a chamber that operates up to 82 bar within a nominal thermal cycle of 38 °C to 42 °C. The mass gauging error is shown to be lower than 1% the mass at the beginning of life, assuming an initial tank load at 100 bar. In particular, for a pressure of about 70 bar, just below the critical pressure of CO2, the error of the mass gauging in gas phase goes down to 0.1% and for 77 bar, just above the critical point, the error of the mass gauging of the liquid phase is 0.6% of initial tank load. This gauging method improves by a factor of 8 the accuracy of the standard PVT retrievals using look-up tables with tabulated data from the National Institute of Standards and Technology.Keywords: electric propulsion, mass gauging, propellant, PVT, xenon
Procedia PDF Downloads 3452809 Critical Parameters of a Square-Well Fluid
Authors: Hamza Javar Magnier, Leslie V. Woodcock
Abstract:
We report extensive molecular dynamics (MD) computational investigations into the thermodynamic description of supercritical properties for a model fluid that is the simplest realistic representation of atoms or molecules. The pair potential is a hard-sphere repulsion of diameter σ with a very short attraction of length λσ. When λ = 1.005 the range is so short that the model atoms are referred to as “adhesive spheres”. Molecular dimers, trimers …etc. up to large clusters, or droplets, of many adhesive-sphere atoms are unambiguously defined. This then defines percolation transitions at the molecular level that bound the existence of gas and liquid phases at supercritical temperatures, and which define the existence of a supercritical mesophase. Both liquid and gas phases are seen to terminate at the loci of percolation transitions, and below a second characteristic temperature (Tc2) are separated by the supercritical mesophase. An analysis of the distribution of clusters in gas, meso- and liquid phases confirms the colloidal nature of this mesophase. The general phase behaviour is compared with both experimental properties of the water-steam supercritical region and also with formally exact cluster theory of Mayer and Mayer. Both are found to be consistent with the present findings that in this system the supercritical mesophase narrows in density with increasing T > Tc and terminates at a higher Tc2 at a confluence of the primary percolation loci. The expended plot of the MD data points in the mesophase of 7 critical and supercritical isotherms in highlight this narrowing in density of the linear-slope region of the mesophase as temperature is increased above the critical. This linearity in the mesophase implies the existence of a linear combination rule between gas and liquid which is an extension of the Lever rule in the subcritical region, and can be used to obtain critical parameters without resorting to experimental data in the two-phase region. Using this combination rule, the calculated critical parameters Tc = 0.2007 and Pc = 0.0278 are found be agree with the values found by of Largo and coworkers. The properties of this supercritical mesophase are shown to be consistent with an alternative description of the phenomenon of critical opalescence seen in the supercritical region of both molecular and colloidal-protein supercritical fluids.Keywords: critical opalescence, supercritical, square-well, percolation transition, critical parameters.
Procedia PDF Downloads 5222808 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome
Authors: Mustafa M. Donma, Orkide Donma
Abstract:
Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity
Procedia PDF Downloads 1292807 Feature Extraction Based on Contourlet Transform and Log Gabor Filter for Detection of Ulcers in Wireless Capsule Endoscopy
Authors: Nimisha Elsa Koshy, Varun P. Gopi, V. I. Thajudin Ahamed
Abstract:
The entire visualization of GastroIntestinal (GI) tract is not possible with conventional endoscopic exams. Wireless Capsule Endoscopy (WCE) is a low risk, painless, noninvasive procedure for diagnosing diseases such as bleeding, polyps, ulcers, and Crohns disease within the human digestive tract, especially the small intestine that was unreachable using the traditional endoscopic methods. However, analysis of massive images of WCE detection is tedious and time consuming to physicians. Hence, researchers have developed software methods to detect these diseases automatically. Thus, the effectiveness of WCE can be improved. In this paper, a novel textural feature extraction method is proposed based on Contourlet transform and Log Gabor filter to distinguish ulcer regions from normal regions. The results show that the proposed method performs well with a high accuracy rate of 94.16% using Support Vector Machine (SVM) classifier in HSV colour space.Keywords: contourlet transform, log gabor filter, ulcer, wireless capsule endoscopy
Procedia PDF Downloads 5402806 Effect of Electromagnetic Fields at 27 GHz on Sperm Quality of Mytilus galloprovincialis
Authors: Carmen Sica, Elena M. Scalisi, Sara Ignoto, Ludovica Palmeri, Martina Contino, Greta Ferruggia, Antonio Salvaggio, Santi C. Pavone, Gino Sorbello, Loreto Di Donato, Roberta Pecoraro, Maria V. Brundo
Abstract:
Recently, a rise in the use of wireless internet technologies such as Wi-Fi and 5G routers/modems have been demonstrated. These devices emit a considerable amount of electromagnetic radiation (EMR), which could interact with the male reproductive system either by thermal or non-thermal mechanisms. The aim of this study was to investigate the direct in vitro influence of 5G radiation on sperm quality in Mytilus galloprovincialis, considered an excellent model for reproduction studies. The experiments at 27 GHz were conducted by using a no commercial high gain pyramidal horn antenna. To evaluate the specific absorption rate (SAR), a numerical simulation has been performed. The resulting incident power density was significantly lower than the power density limit of 10 mW/cm2 set by the international guidelines as a limit for nonthermal effects above 6 GHz. However, regarding temperature measurements of the aqueous sample, it has been verified an increase of 0.2°C, compared to the control samples. This very low-temperature increase couldn’t interfere with experiments. For experiments, sperm samples taken from sexually mature males of Mytilus galloprovincialis were placed in artificial seawater, salinity 30 + 1% and pH 8.3 filtered with a 0.2 m filter. After evaluating the number and quality of spermatozoa, sperm cells were exposed to electromagnetic fields a 27GHz. The effect of exposure on sperm motility and quality was evaluated after 10, 20, 30 and 40 minutes with a light microscope and also using the Eosin test to verify the vitality of the gametes. All the samples were performed in triplicate and statistical analysis was carried out using one-way analysis of variance (ANOVA) with Turkey test for multiple comparations of means to determine differences of sperm motility. A significant decrease (30%) in sperm motility was observed after 10 minutes of exposure and after 30 minutes, all sperms were immobile and not vital. Due to little literature data about this topic, these results could be useful for further studies concerning a great diffusion of these new technologies.Keywords: mussel, spermatozoa, sperm motility, millimeter waves
Procedia PDF Downloads 1692805 Damage Localization of Deterministic-Stochastic Systems
Authors: Yen-Po Wang, Ming-Chih Huang, Ming-Lian Chang
Abstract:
A scheme integrated with deterministic–stochastic subspace system identification and the method of damage localization vector is proposed in this study for damage detection of structures based on seismic response data. A series of shaking table tests using a five-storey steel frame has been conducted in National Center for Research on Earthquake Engineering (NCREE), Taiwan. Damage condition is simulated by reducing the cross-sectional area of some of the columns at the bottom. Both single and combinations of multiple damage conditions at various locations have been considered. In the system identification analysis, either full or partial observation conditions have been taken into account. It has been shown that the damaged stories can be identified from global responses of the structure to earthquakes if sufficiently observed. In addition to detecting damage(s) with respect to the intact structure, identification of new or extended damages of the as-damaged (ill-conditioned) counterpart has also been studied. The proposed scheme proves to be effective.Keywords: damage locating vectors, deterministic-stochastic subspace system, shaking table tests, system identification
Procedia PDF Downloads 3272804 Template-Assisted Synthesis of IrO2 Nanopores Membrane Electrode Assembly
Authors: Zhuo-Xin Lu, Yan Shi, Chang-Feng Yan, Ying Huang, Yuan Gan, Zhi-Da Wang
Abstract:
With TiO2 nanotube arrays (TNTA) as template, a IrO2 nanopores membrane electrode assembly (MEA) was synthesized by a novel depositi-assemble-etch strategy. By analysing the morphology of IrO2/TNTA and cyclic voltammetry (CV) curve at different deposition cycles, we proposed a reasonable scheme for the process of IrO2 electrodeposition on TNTA. The current density of IrO2/TNTA at 1.5V vs RHE reaches 5.12mA/cm2 after 55 cycles deposition, which shows promising performance for its high OER activity after template removal.Keywords: electrodeposition, IrO2 nanopores, MEA, OER
Procedia PDF Downloads 4462803 A Novel Method to Manufacture Superhydrophobic and Insulating Polyester Nanofibers via a Meso-Porous Aerogel Powder
Authors: Z. Mazrouei-Sebdani, A. Khoddami, H. Hadadzadeh, M. Zarrebini
Abstract:
Silica aerogels are well-known meso-porous materials with high specific surface area (500–1000 m2/g), high porosity (80–99.8%), and low density (0.003–0.8 g/cm3). However, the silica aerogels generally are highly brittle due to their nanoporous nature. Physical and mechanical properties of the silica aerogels can be enhanced by compounding with the fibers. Although some reports presented incorporation of the fibers into the sol, followed by further modification and drying stages, no information regarding the aerogel powders as filler in the polymeric fibers is available. In this research, waterglass based aerogel powder was prepared in the following steps: sol–gel process to prepare a gel, followed by subsequent washing with propan-2-ol, n-Hexane, and TMCS, then ambient pressure drying, and ball milling. Inspired by limited dust releasing, aerogel powder was introduced to the PET electrospinning solution in an attempt to create required bulk and surface structure for the nano fibers to improve their hydrophobic and insulation properties. The samples evaluation was carried out by measuring density, porosity, contact angle, sliding angle, heat transfer, FTIR, BET and SEM. According to the results, porous silica aerogel powder was fabricated with mean pore diameter of 24 nm and contact angle of 145.9º. The results indicated the usefulness of the aerogel powder confined into nano fibers to control surface roughness for manipulating superhydrophobic nanowebs with sliding angle of 5˚ and water contact angle of 147º. It can be due to a multi-scale surface roughness which was created by nanowebs structure itself and nano fibers surface irregularity in presence of the aerogels while a laye of fluorocarbon created low surface energy. The wettability of a solid substrate is an important property that is controlled by both the chemical composition and geometry of the surface. Also, a decreasing trend in the heat transfer was observed from 22% for the nano fibers without any aerogel powder to 8% for the nano fibers with 4% aerogel powder. The development of thermal insulating materials has become increasingly more important than ever in view of the fossil energy depletion and global warming that call for more demanding energy-saving practices.Keywords: Superhydrophobicity, Insulation, Sol-gel, Surface energy, Roughness.
Procedia PDF Downloads 3272802 Finite Element Modeling of Global Ti-6Al-4V Mechanical Behavior in Relationship with Microstructural Parameters
Authors: Fatna Benmessaoud, Mohammed Cheikh, Vencent Velay, Vanessa Vedal, Farhad Rezai-Aria, Christine Boher
Abstract:
The global mechanical behavior of materials is strongly linked to their microstructure, especially their crystallographic texture and their grains morphology. These material aspects determine the mechanical fields character (heterogeneous or homogeneous), thus, they give to the global behavior a degree of anisotropy according the initial microstructure. For these reasons, the prediction of global behavior of materials in relationship with the microstructure must be performed with a multi-scale approach. Therefore, multi-scale modeling in the context of crystal plasticity is widely used. In this present contribution, a phenomenological elasto-viscoplastic model developed in the crystal plasticity context and finite element method are used to investigate the effects of crystallographic texture and grains sizes on global behavior of a polycrystalline equiaxed Ti-6Al-4V alloy. The constitutive equations of this model are written on local scale for each slip system within each grain while the strain and stress mechanical fields are investigated at the global scale via finite element scale transition. The beta phase of Ti-6Al-4V alloy modeled is negligible; its percent is less than 10%. Three families of slip systems of alpha phase are considered: basal and prismatic families with a burgers vector and pyramidal family with aKeywords: microstructural parameters, multi-scale modeling, crystal plasticity, Ti-6Al-4V alloy
Procedia PDF Downloads 1262801 Lentiviral-Based Novel Bicistronic Therapeutic Vaccine against Chronic Hepatitis B Induces Robust Immune Response
Authors: Mohamad F. Jamiluddin, Emeline Sarry, Ana Bejanariu, Cécile Bauche
Abstract:
Introduction: Over 360 million people are chronically infected with hepatitis B virus (HBV), of whom 1 million die each year from HBV-associated liver cirrhosis or hepatocellular carcinoma. Current treatment options for chronic hepatitis B depend on interferon-α (IFNα) or nucleos(t)ide analogs, which control virus replication but rarely eliminate the virus. Treatment with PEG-IFNα leads to a sustained antiviral response in only one third of patients. After withdrawal of the drugs, the rebound of viremia is observed in the majority of patients. Furthermore, the long-term treatment is subsequently associated with the appearance of drug resistant HBV strains that is often the cause of the therapy failure. Among the new therapeutic avenues being developed, therapeutic vaccine aimed at inducing immune responses similar to those found in resolvers is of growing interest. The high prevalence of chronic hepatitis B necessitates the design of better vaccination strategies capable of eliciting broad-spectrum of cell-mediated immunity(CMI) and humoral immune response that can control chronic hepatitis B. Induction of HBV-specific T cells and B cells by therapeutic vaccination may be an innovative strategy to overcome virus persistence. Lentiviral vectors developed and optimized by THERAVECTYS, due to their ability to transduce non-dividing cells, including dendritic cells, and induce CMI response, have demonstrated their effectiveness as vaccination tools. Method: To develop a HBV therapeutic vaccine that can induce a broad but specific immune response, we generated recombinant lentiviral vector carrying IRES(Internal Ribosome Entry Site)-containing bicistronic constructs which allow the coexpression of two vaccine products, namely HBV T- cell epitope vaccine and HBV virus like particle (VLP) vaccine. HBV T-cell epitope vaccine consists of immunodominant cluster of CD4 and CD8 epitopes with spacer in between them and epitopes are derived from HBV surface protein, HBV core, HBV X and polymerase. While HBV VLP vaccine is a HBV core protein based chimeric VLP with surface protein B-cell epitopes displayed. In order to evaluate the immunogenicity, mice were immunized with lentiviral constructs by intramuscular injection. The T cell and antibody immune responses of the two vaccine products were analyzed using IFN-γ ELISpot assay and ELISA respectively to quantify the adaptive response to HBV antigens. Results: Following a single administration in mice, lentiviral construct elicited robust antigen-specific IFN-γ responses to the encoded antigens. The HBV T- cell epitope vaccine demonstrated significantly higher T cell immunogenicity than HBV VLP vaccine. Importantly, we demonstrated by ELISA that antibodies are induced against both HBV surface protein and HBV core protein when mice injected with vaccine construct (p < 0.05). Conclusion: Our results highlight that THERAVECTYS lentiviral vectors may represent a powerful platform for immunization strategy against chronic hepatitis B. Our data suggests the likely importance of Lentiviral vector based novel bicistronic construct for further study, in combination with drugs or as standalone antigens, as a therapeutic lentiviral based HBV vaccines. THERAVECTYS bicistronic HBV vaccine will be further evaluated in animal efficacy studies.Keywords: chronic hepatitis B, lentiviral vectors, therapeutic vaccine, virus-like particle
Procedia PDF Downloads 3352800 Development of Computational Approach for Calculation of Hydrogen Solubility in Hydrocarbons for Treatment of Petroleum
Authors: Abdulrahman Sumayli, Saad M. AlShahrani
Abstract:
For the hydrogenation process, knowing the solubility of hydrogen (H2) in hydrocarbons is critical to improve the efficiency of the process. We investigated the H2 solubility computation in four heavy crude oil feedstocks using machine learning techniques. Temperature, pressure, and feedstock type were considered as the inputs to the models, while the hydrogen solubility was the sole response. Specifically, we employed three different models: Support Vector Regression (SVR), Gaussian process regression (GPR), and Bayesian ridge regression (BRR). To achieve the best performance, the hyper-parameters of these models are optimized using the whale optimization algorithm (WOA). We evaluated the models using a dataset of solubility measurements in various feedstocks, and we compared their performance based on several metrics. Our results show that the WOA-SVR model tuned with WOA achieves the best performance overall, with an RMSE of 1.38 × 10− 2 and an R-squared of 0.991. These findings suggest that machine learning techniques can provide accurate predictions of hydrogen solubility in different feedstocks, which could be useful in the development of hydrogen-related technologies. Besides, the solubility of hydrogen in the four heavy oil fractions is estimated in different ranges of temperatures and pressures of 150 ◦C–350 ◦C and 1.2 MPa–10.8 MPa, respectivelyKeywords: temperature, pressure variations, machine learning, oil treatment
Procedia PDF Downloads 692799 Characterization of InP Semiconductor Quantum Dot Laser Diode after Am-Be Neutron Irradiation
Authors: Abdulmalek Marwan Rajkhan, M. S. Al Ghamdi, Mohammed Damoum, Essam Banoqitah
Abstract:
This paper is about the Am-Be neutron source irradiation of the InP Quantum Dot Laser diode. A QD LD was irradiated for 24 hours and 48 hours. The laser underwent IV characterization experiments before and after the first and second irradiations. A computer simulation using GAMOS helped in analyzing the given results from IV curves. The results showed an improvement in the QD LD series resistance, current density, and overall ideality factor at all measured temperatures. This is explained by the activation of the QD LD Indium composition to Strontium, ionization of the compound QD LD materials, and the energy deposited to the QD LD.Keywords: quantum dot laser diode irradiation, effect of radiation on QD LD, Am-Be irradiation effect on SC QD LD
Procedia PDF Downloads 622798 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids
Authors: Priya Arora, Ashutosh Mishra
Abstract:
Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences
Procedia PDF Downloads 1402797 Comprehensive Machine Learning-Based Glucose Sensing from Near-Infrared Spectra
Authors: Bitewulign Mekonnen
Abstract:
Context: This scientific paper focuses on the use of near-infrared (NIR) spectroscopy to determine glucose concentration in aqueous solutions accurately and rapidly. The study compares six different machine learning methods for predicting glucose concentration and also explores the development of a deep learning model for classifying NIR spectra. The objective is to optimize the detection model and improve the accuracy of glucose prediction. This research is important because it provides a comprehensive analysis of various machine-learning techniques for estimating aqueous glucose concentrations. Research Aim: The aim of this study is to compare and evaluate different machine-learning methods for predicting glucose concentration from NIR spectra. Additionally, the study aims to develop and assess a deep-learning model for classifying NIR spectra. Methodology: The research methodology involves the use of machine learning and deep learning techniques. Six machine learning regression models, including support vector machine regression, partial least squares regression, extra tree regression, random forest regression, extreme gradient boosting, and principal component analysis-neural network, are employed to predict glucose concentration. The NIR spectra data is randomly divided into train and test sets, and the process is repeated ten times to increase generalization ability. In addition, a convolutional neural network is developed for classifying NIR spectra. Findings: The study reveals that the SVMR, ETR, and PCA-NN models exhibit excellent performance in predicting glucose concentration, with correlation coefficients (R) > 0.99 and determination coefficients (R²)> 0.985. The deep learning model achieves high macro-averaging scores for precision, recall, and F1-measure. These findings demonstrate the effectiveness of machine learning and deep learning methods in optimizing the detection model and improving glucose prediction accuracy. Theoretical Importance: This research contributes to the field by providing a comprehensive analysis of various machine-learning techniques for estimating glucose concentrations from NIR spectra. It also explores the use of deep learning for the classification of indistinguishable NIR spectra. The findings highlight the potential of machine learning and deep learning in enhancing the prediction accuracy of glucose-relevant features. Data Collection and Analysis Procedures: The NIR spectra and corresponding references for glucose concentration are measured in increments of 20 mg/dl. The data is randomly divided into train and test sets, and the models are evaluated using regression analysis and classification metrics. The performance of each model is assessed based on correlation coefficients, determination coefficients, precision, recall, and F1-measure. Question Addressed: The study addresses the question of whether machine learning and deep learning methods can optimize the detection model and improve the accuracy of glucose prediction from NIR spectra. Conclusion: The research demonstrates that machine learning and deep learning methods can effectively predict glucose concentration from NIR spectra. The SVMR, ETR, and PCA-NN models exhibit superior performance, while the deep learning model achieves high classification scores. These findings suggest that machine learning and deep learning techniques can be used to improve the prediction accuracy of glucose-relevant features. Further research is needed to explore their clinical utility in analyzing complex matrices, such as blood glucose levels.Keywords: machine learning, signal processing, near-infrared spectroscopy, support vector machine, neural network
Procedia PDF Downloads 942796 A Study on The Relationship between Building Façade and Solar Energy Utilization Potential in Urban Residential Area in West China
Authors: T. Wen, Y. Liu, J. Wang, W. Zheng, T. Shao
Abstract:
Along with the increasing density of urban population, solar energy potential of building facade in high-density residential areas become a question that needs to be addressed. This paper studies how the solar energy utilization potential of building facades in different locations of a residential areas changes with different building layouts and orientations in Xining, a typical city in west China which possesses large solar radiation resource. Solar energy potential of three typical building layouts of residential areas, which are parallel determinant, gable misalignment, transverse misalignment, are discussed in detail. First of all, through the data collection and statistics of Xining new residential area, the most representative building parameters are extracted, including building layout, building height, building layers, and building shape. Secondly, according to the results of building parameters extraction, a general model is established and analyzed with rhinoceros 6.0 and its own plug-in grasshopper. Finally, results of the various simulations and data analyses are presented in a visualized way. The results show that there are great differences in the solar energy potential of building facades in different locations of residential areas under three typical building layouts. Generally speaking, the solar energy potential of the west peripheral location is the largest, followed by the East peripheral location, and the middle location is the smallest. When the deflection angle is the same, the solar energy potential shows the result that the West deflection is greater than the East deflection. In addition, the optimal building azimuth range under these three typical building layouts is obtained. Within this range, the solar energy potential of the residential area can always maintain a high level. Beyond this range, the solar energy potential drops sharply. Finally, it is found that when the solar energy potential is maximum, the deflection angle is not positive south, but 5 °or 15°south by west. The results of this study can provide decision analysis basis for residential design of Xining city to improve solar energy utilization potential and provide a reference for solar energy utilization design of urban residential buildings in other similar areas.Keywords: building facade, solar energy potential, solar radiation, urban residential area, visualization, Xining city
Procedia PDF Downloads 1792795 The Accuracy of Parkinson's Disease Diagnosis Using [123I]-FP-CIT Brain SPECT Data with Machine Learning Techniques: A Survey
Authors: Lavanya Madhuri Bollipo, K. V. Kadambari
Abstract:
Objective: To discuss key issues in the diagnosis of Parkinson disease (PD), To discuss features influencing PD progression, To discuss importance of brain SPECT data in PD diagnosis, and To discuss the essentiality of machine learning techniques in early diagnosis of PD. An accurate and early diagnosis of PD is nowadays a challenge as clinical symptoms in PD arise only when there is more than 60% loss of dopaminergic neurons. So far there are no laboratory tests for the diagnosis of PD, causing a high rate of misdiagnosis especially when the disease is in the early stages. Recent neuroimaging studies with brain SPECT using 123I-Ioflupane (DaTSCAN) as radiotracer shown to be widely used to assist the diagnosis of PD even in its early stages. Machine learning techniques can be used in combination with image analysis procedures to develop computer-aided diagnosis (CAD) systems for PD. This paper addressed recent studies involving diagnosis of PD in its early stages using brain SPECT data with Machine Learning Techniques.Keywords: Parkinson disease (PD), dopamine transporter, single-photon emission computed tomography (SPECT), support vector machine (SVM)
Procedia PDF Downloads 3992794 Detecting Paraphrases in Arabic Text
Authors: Amal Alshahrani, Allan Ramsay
Abstract:
Paraphrasing is one of the important tasks in natural language processing; i.e. alternative ways to express the same concept by using different words or phrases. Paraphrases can be used in many natural language applications, such as Information Retrieval, Machine Translation, Question Answering, Text Summarization, or Information Extraction. To obtain pairs of sentences that are paraphrases we create a system that automatically extracts paraphrases from a corpus, which is built from different sources of news article since these are likely to contain paraphrases when they report the same event on the same day. There are existing simple standard approaches (e.g. TF-IDF vector space, cosine similarity) and alignment technique (e.g. Dynamic Time Warping (DTW)) for extracting paraphrase which have been applied to the English. However, the performance of these approaches could be affected when they are applied to another language, for instance Arabic language, due to the presence of phenomena which are not present in English, such as Free Word Order, Zero copula, and Pro-dropping. These phenomena will affect the performance of these algorithms. Thus, if we can analysis how the existing algorithms for English fail for Arabic then we can find a solution for Arabic. The results are promising.Keywords: natural language processing, TF-IDF, cosine similarity, dynamic time warping (DTW)
Procedia PDF Downloads 3882793 A Fast Method for Graphene-Supported Pd-Co Nanostructures as Catalyst toward Ethanol Oxidation in Alkaline Media
Authors: Amir Shafiee Kisomi, Mehrdad Mofidi
Abstract:
Nowadays, fuel cells as a promising alternative for power source have been widely studied owing to their security, high energy density, low operation temperatures, renewable capability and low environmental pollutant emission. The nanoparticles of core-shell type could be widely described in a combination of a shell (outer layer material) and a core (inner material), and their characteristics are greatly conditional on dimensions and composition of the core and shell. In addition, the change in the constituting materials or the ratio of core to the shell can create their special noble characteristics. In this study, a fast technique for the fabrication of a Pd-Co/G/GCE modified electrode is offered. Thermal decomposition reaction of cobalt (II) formate salt over the surface of graphene/glassy carbon electrode (G/GCE) is utilized for the synthesis of Co nanoparticles. The nanoparticles of Pd-Co decorated on the graphene are created based on the following method: (1) Thermal decomposition reaction of cobalt (II) formate salt and (2) the galvanic replacement process Co by Pd2+. The physical and electrochemical performances of the as-prepared Pd-Co/G electrocatalyst are studied by Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Cyclic Voltammetry (CV), and Chronoamperometry (CHA). Galvanic replacement method is utilized as a facile and spontaneous approach for growth of Pd nanostructures. The Pd-Co/G is used as an anode catalyst for ethanol oxidation in alkaline media. The Pd-Co/G not only delivered much higher current density (262.3 mAcm-2) compared to the Pd/C (32.1 mAcm-2) catalyst, but also demonstrated a negative shift of the onset oxidation potential (-0.480 vs -0.460 mV) in the forward sweep. Moreover, the novel Pd-Co/G electrocatalyst represents large electrochemically active surface area (ECSA), lower apparent activation energy (Ea), higher levels of durability and poisoning tolerance compared to the Pd/C catalyst. The paper demonstrates that the catalytic activity and stability of Pd-Co/G electrocatalyst are higher than those of the Pd/C electrocatalyst toward ethanol oxidation in alkaline media.Keywords: thermal decomposition, nanostructures, galvanic replacement, electrocatalyst, ethanol oxidation, alkaline media
Procedia PDF Downloads 153