Search results for: reduce order aeroelastic model (ROAM)
29347 A Microwave Heating Model for Endothermic Reaction in the Cement Industry
Authors: Sofia N. Gonçalves, Duarte M. S. Albuquerque, José C. F. Pereira
Abstract:
Microwave technology has been gaining importance in contributing to decarbonization processes in high energy demand industries. Despite the several numerical models presented in the literature, a proper Verification and Validation exercise is still lacking. This is important and required to evaluate the physical process model accuracy and adequacy. Another issue addresses impedance matching, which is an important mechanism used in microwave experiments to increase electromagnetic efficiency. Such mechanism is not available in current computational tools, thus requiring an external numerical procedure. A numerical model was implemented to study the continuous processing of limestone with microwave heating. This process requires the material to be heated until a certain temperature that will prompt a highly endothermic reaction. Both a 2D and 3D model were built in COMSOL Multiphysics to solve the two-way coupling between Maxwell and Energy equations, along with the coupling between both heat transfer phenomena and limestone endothermic reaction. The 2D model was used to study and evaluate the required numerical procedure, being also a benchmark test, allowing other authors to implement impedance matching procedures. To achieve this goal, a controller built in MATLAB was used to continuously matching the cavity impedance and predicting the required energy for the system, thus successfully avoiding energy inefficiencies. The 3D model reproduces realistic results and therefore supports the main conclusions of this work. Limestone was modeled as a continuous flow under the transport of concentrated species, whose material and kinetics properties were taken from literature. Verification and Validation of the coupled model was taken separately from the chemical kinetic model. The chemical kinetic model was found to correctly describe the chosen kinetic equation by comparing numerical results with experimental data. A solution verification was made for the electromagnetic interface, where second order and fourth order accurate schemes were found for linear and quadratic elements, respectively, with numerical uncertainty lower than 0.03%. Regarding the coupled model, it was demonstrated that the numerical error would diverge for the heat transfer interface with the mapped mesh. Results showed numerical stability for the triangular mesh, and the numerical uncertainty was less than 0.1%. This study evaluated limestone velocity, heat transfer, and load influence on thermal decomposition and overall process efficiency. The velocity and heat transfer coefficient were studied with the 2D model, while different loads of material were studied with the 3D model. Both models demonstrated to be highly unstable when solving non-linear temperature distributions. High velocity flows exhibited propensity to thermal runways, and the thermal efficiency showed the tendency to stabilize for the higher velocities and higher filling ratio. Microwave efficiency denoted an optimal velocity for each heat transfer coefficient, pointing out that electromagnetic efficiency is a consequence of energy distribution uniformity. The 3D results indicated the inefficient development of the electric field for low filling ratios. Thermal efficiencies higher than 90% were found for the higher loads and microwave efficiencies up to 75% were accomplished. The 80% fill ratio was demonstrated to be the optimal load with an associated global efficiency of 70%.Keywords: multiphysics modeling, microwave heating, verification and validation, endothermic reactions modeling, impedance matching, limestone continuous processing
Procedia PDF Downloads 14229346 A Biometric Template Security Approach to Fingerprints Based on Polynomial Transformations
Authors: Ramon Santana
Abstract:
The use of biometric identifiers in the field of information security, access control to resources, authentication in ATMs and banking among others, are of great concern because of the safety of biometric data. In the general architecture of a biometric system have been detected eight vulnerabilities, six of them allow obtaining minutiae template in plain text. The main consequence of obtaining minutia templates is the loss of biometric identifier for life. To mitigate these vulnerabilities several models to protect minutiae templates have been proposed. Several vulnerabilities in the cryptographic security of these models allow to obtain biometric data in plain text. In order to increase the cryptographic security and ease of reversibility, a minutiae templates protection model is proposed. The model aims to make the cryptographic protection and facilitate the reversibility of data using two levels of security. The first level of security is the data transformation level. In this level generates invariant data to rotation and translation, further transformation is irreversible. The second level of security is the evaluation level, where the encryption key is generated and data is evaluated using a defined evaluation function. The model is aimed at mitigating known vulnerabilities of the proposed models, basing its security on the impossibility of the polynomial reconstruction.Keywords: fingerprint, template protection, bio-cryptography, minutiae protection
Procedia PDF Downloads 17029345 Models Development of Graphical Human Interface Using Fuzzy Logic
Authors: Érick Aragão Ribeiro, George André Pereira Thé, José Marques Soares
Abstract:
Graphical Human Interface, also known as supervision software, are increasingly present in industrial processes supported by Supervisory Control and Data Acquisition (SCADA) systems and so it is evident the need for qualified developers. In order to make engineering students able to produce high quality supervision software, method for the development must be created. In this paper we propose model, based on the international standards ISO/IEC 25010 and ISO/IEC 25040, for the development of graphical human interface. When compared with to other methods through experiments, the model here presented leads to improved quality indexes, therefore help guiding the decisions of programmers. Results show the efficiency of the models and the contribution to student learning. Students assessed the training they have received and considered it satisfactory.Keywords: software development models, software quality, supervision software, fuzzy logic
Procedia PDF Downloads 37329344 Numerical Modelling of Wind Dispersal Seeds of Bromeliad Tillandsia recurvata L. (L.) Attached to Electric Power Lines
Authors: Bruna P. De Souza, Ricardo C. De Almeida
Abstract:
In some cities in the State of Parana – Brazil and in other countries atmospheric bromeliads (Tillandsia spp - Bromeliaceae) are considered weeds in trees, electric power lines, satellite dishes and other artificial supports. In this study, a numerical model was developed to simulate the seed dispersal of the Tillandsia recurvata species by wind with the objective of evaluating seeds displacement in the city of Ponta Grossa – PR, Brazil, since it is considered that the region is already infested. The model simulates the dispersal of each individual seed integrating parameters from the atmospheric boundary layer (ABL) and the local wind, simulated by the Weather Research Forecasting (WRF) mesoscale atmospheric model for the 2012 to 2015 period. The dispersal model also incorporates the approximate number of bromeliads and source height data collected from most infested electric power lines. The seeds terminal velocity, which is an important input data but was not available in the literature, was measured by an experiment with fifty-one seeds of Tillandsia recurvata. Wind is the main dispersal agent acting on plumed seeds whereas atmospheric turbulence is a determinant factor to transport the seeds to distances beyond 200 meters as well as to introduce random variability in the seed dispersal process. Such variability was added to the model through the application of an Inverse Fast Fourier Transform to wind velocity components energy spectra based on boundary-layer meteorology theory and estimated from micrometeorological parameters produced by the WRF model. Seasonal and annual wind means were obtained from the surface wind data simulated by WRF for Ponta Grossa. The mean wind direction is assumed to be the most probable direction of bromeliad seed trajectory. Moreover, the atmospheric turbulence effect and dispersal distances were analyzed in order to identify likely regions of infestation around Ponta Grossa urban area. It is important to mention that this model could be applied to any species and local as long as seed’s biological data and meteorological data for the region of interest are available.Keywords: atmospheric turbulence, bromeliad, numerical model, seed dispersal, terminal velocity, wind
Procedia PDF Downloads 14229343 Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior
Authors: Mohammad Ehsani, Iman Zarei, Soudabeh Moazemigoudarzi
Abstract:
The aim of this study is to determine Pro-Environmental Behavioral Intention of Mountain Hikers to the Theory of Planned Behavior. According to many researchers nature-based recreation activities play a significant role in the tourism industry and have provided myriad opportunities for the protection of natural areas. It is essential to investigate individuals' behavior during such activities to avoid further damage to precious and dwindling natural resources. This study develops a robust model that provides a comprehensive understanding of the formation of pro-environmental behavioral intentions among climbers of Mount Damavand National Park in Iran. To this end, we combined the theory of planned behavior (TPB), value-belief-norm theory (VBN), and a hierarchical model of leisure constraints to predict individuals’ pro-environmental hiking behavior during outdoor recreation. It was used structural equation modeling to test the theoretical framework. A sample of 787 climbers was analyzed. Among the theory of planned behavior variables, perceived behavioral control showed the strongest association with behavioral intention (β = .57). This relationship indicates that if people feel they can have fewer negative impacts on national resources while hiking, it will result in more environmentally acceptable behavior. Subjective norms had a moderate positive impact on behavioral intention, indicating the importance of other people on the individual's behavior. Attitude had a small positive effect on intention. Ecological worldview positively influenced attitude and personal belief. Personal belief (awareness of consequences and ascribed responsibility) showed a positive association with TPB variables. Although the data showed a high average score in awareness of consequences (mean = 4.219 out of 5), evidence from Damavand Mount shows that there are many environmental issues that need addressing (e.g., vast amounts of garbage). National park managers need to make sure that their solutions result in awareness about proenvironmental behavior (PEB). Findings showed that negative relationship between constraints and all TPB predictors. Providing proper restrooms and parking spaces in campgrounds, strategies controlling limiting capacity and solutions for removing waste from high altitudes are helpful to decrease the negative impact of structural constraints. In order to address intrapersonal constraints, managers should provide opportunities to interest individuals in environmental activities, such as environmental celebrations or making documentaries about environmental issues. Moreover, promoting a culture of environmental protection in the Damavand Mount area would reduce interpersonal constraints. Overall, the proposed model improved the explanatory power of the TPB by predicting 64.7% of intention compared to the original TPB that accounted for 63.8% of the variance in intention.Keywords: theory of planned behavior, pro-environmental behavior, national park, constraints
Procedia PDF Downloads 9629342 A Multi-Objective Gate Assignment Model Based on Airport Terminal Configuration
Authors: Seyedmirsajad Mokhtarimousavi, Danial Talebi, Hamidreza Asgari
Abstract:
Assigning aircrafts’ activities to appropriate gates is one the most challenging issues in airport authorities’ multiple criteria decision making. The potential financial loss due to imbalances of demand and supply in congested airports, higher occupation rates of gates, and the existing restrictions to expand facilities provide further evidence for the need for an optimal supply allocation. Passengers walking distance, towing movements, extra fuel consumption (as a result of awaiting longer to taxi when taxi conflicts happen at the apron area), etc. are the major traditional components involved in GAP models. In particular, the total cost associated with gate assignment problem highly depends on the airport terminal layout. The study herein presents a well-elaborated literature review on the topic focusing on major concerns, applicable variables and objectives, as well as proposing a three-objective mathematical model for the gate assignment problem. The model has been tested under different concourse layouts in order to check its performance in different scenarios. Results revealed that terminal layout pattern is a significant parameter in airport and that the proposed model is capable of dealing with key constraints and objectives, which supports its practical usability for future decision making tools. Potential solution techniques were also suggested in this study for future works.Keywords: airport management, terminal layout, gate assignment problem, mathematical modeling
Procedia PDF Downloads 23129341 Artificial Neural Network-Based Prediction of Effluent Quality of Wastewater Treatment Plant Employing Data Preprocessing Approaches
Authors: Vahid Nourani, Atefeh Ashrafi
Abstract:
Prediction of treated wastewater quality is a matter of growing importance in water treatment procedure. In this way artificial neural network (ANN), as a robust data-driven approach, has been widely used for forecasting the effluent quality of wastewater treatment. However, developing ANN model based on appropriate input variables is a major concern due to the numerous parameters which are collected from treatment process and the number of them are increasing in the light of electronic sensors development. Various studies have been conducted, using different clustering methods, in order to classify most related and effective input variables. This issue has been overlooked in the selecting dominant input variables among wastewater treatment parameters which could effectively lead to more accurate prediction of water quality. In the presented study two ANN models were developed with the aim of forecasting effluent quality of Tabriz city’s wastewater treatment plant. Biochemical oxygen demand (BOD) was utilized to determine water quality as a target parameter. Model A used Principal Component Analysis (PCA) for input selection as a linear variance-based clustering method. Model B used those variables identified by the mutual information (MI) measure. Therefore, the optimal ANN structure when the result of model B compared with model A showed up to 15% percent increment in Determination Coefficient (DC). Thus, this study highlights the advantage of PCA method in selecting dominant input variables for ANN modeling of wastewater plant efficiency performance.Keywords: Artificial Neural Networks, biochemical oxygen demand, principal component analysis, mutual information, Tabriz wastewater treatment plant, wastewater treatment plant
Procedia PDF Downloads 13029340 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 23129339 Investigating Physician-Induced Demand among Mental Patients in East Azerbaijan, Iran: A Multilevel Approach of Hierarchical Linear Modeling
Authors: Hossein Panahi, Firouz Fallahi, Sima Nasibparast
Abstract:
Background & Aim: Unnecessary growth in health expenditures of developing countries in recent decades, and also the importance of physicians’ behavior in health market, have made the theory of physician-induced demand (PID) as one of the most important issues in health economics. Therefore, the main objective of this study is to investigate the hypothesis of induced demand among mental patients who receive services from either psychologists or psychiatrists in East Azerbaijan province. Methods: Using data from questionnaires in 2020 and employing the theoretical model of Jaegher and Jegers (2000) and hierarchical linear modeling (HLM), this study examines the PID hypothesis of selected psychologists and psychiatrists. The sample size of the study, after removing the questionnaires with missing data, is 45 psychologists and 203 people of their patients, as well as 30 psychiatrists and 160 people of their patients. Results: The results show that, although psychiatrists are ‘profit-oriented physicians’, there is no evidence of inducing unnecessary demand by them (PID), and the difference between the behavior of employers and employee doctors is due to differences in practice style. However, with regard to psychologists, the results indicate that they are ‘profit-oriented’, and there is a PID effect in this sector. Conclusion: According to the results, it is suggested that in order to reduce competition and eliminate the PID effect, the admission of students in the field of psychology should be reduced, patient information on mental illness should be increased, and government monitoring and control over the national health system must be increased.Keywords: physician-induced demand, national health system, hierarchical linear modeling methods, multilevel modela
Procedia PDF Downloads 13829338 Kinetics, Equilibrium and Thermodynamic Studies on Adsorption of Reactive Blue 29 from Aqueous Solution Using Activated Tamarind Kernel Powder
Authors: E. D. Paul, A. D. Adams, O. Sunmonu, U. S. Ishiaku
Abstract:
Activated tamarind kernel powder (ATKP) was prepared from tamarind fruit (Tamarindus indica), and utilized for the removal of Reactive Blue 29 (RB29) from its aqueous solution. The powder was activated using 4N nitric acid (HNO₃). The adsorbent was characterised using infrared spectroscopy, bulk density, ash content, pH, moisture content and dry matter content measurements. The effect of various parameters which include; temperature, pH, adsorbent dosage, ion concentration, and contact time were studied. Four different equilibrium isotherm models were tested on the experimental data, but the Temkin isotherm model was best-fitted into the experimental data. The pseudo-first order and pseudo-second-order kinetic models were also fitted into the graphs, but pseudo-second order was best fitted to the experimental data. The thermodynamic parameters showed that the adsorption of Reactive Blue 29 onto activated tamarind kernel powder is a physical process, feasible and spontaneous, exothermic in nature and there is decreased randomness at the solid/solution interphase during the adsorption process. Therefore, activated tamarind kernel powder has proven to be a very good adsorbent for the removal of Reactive Blue 29 dyes from industrial waste water.Keywords: tamarind kernel powder, reactive blue 29, isotherms, kinetics
Procedia PDF Downloads 24929337 Solubility of Water in CO2 Mixtures at Pipeline Operation Conditions
Authors: Mohammad Ahmad, Sander Gersen, Erwin Wilbers
Abstract:
Carbon capture, transport and underground storage have become a major solution to reduce CO2 emissions from power plants and other large CO2 sources. A big part of this captured CO2 stream is transported at high pressure dense phase conditions and stored in offshore underground depleted oil and gas fields. CO2 is also transported in offshore pipelines to be used for enhanced oil and gas recovery. The captured CO2 stream with impurities may contain water that causes severe corrosion problems, flow assurance failure and might damage valves and instrumentations. Thus, free water formation should be strictly prevented. The purpose of this work is to study the solubility of water in pure CO2 and in CO2 mixtures under real pipeline pressure (90-150 bar) and temperature operation conditions (5-35°C). A set up was constructed to generate experimental data. The results show the solubility of water in CO2 mixtures increasing with the increase of the temperature or/and with the increase in pressure. A drop in water solubility in CO2 is observed in the presence of impurities. The data generated were then used to assess the capabilities of two mixture models: the GERG-2008 model and the EOS-CG model. By generating the solubility data, this study contributes to determine the maximum allowable water content in CO2 pipelines.Keywords: carbon capture and storage, water solubility, equation of states, fluids engineering
Procedia PDF Downloads 30429336 Nonlinear Interaction of Free Surface Sloshing of Gaussian Hump with Its Container
Authors: Mohammad R. Jalali
Abstract:
Movement of liquid with a free surface in a container is known as slosh. For instance, slosh occurs when water in a closed tank is set in motion by a free surface displacement, or when liquid natural gas in a container is vibrated by an external driving force, such as an earthquake or movement induced by transport. Slosh is also derived from resonant switching of a natural basin. During sloshing, different types of motion are produced by energy exchange between the liquid and its container. In present study, a numerical model is developed to simulate the nonlinear even harmonic oscillations of free surface sloshing of an initial disturbance to the free surface of a liquid in a closed square basin. The response of the liquid free surface is affected by amplitude and motion frequencies of its container; therefore, sloshing involves complex fluid-structure interactions. In the present study, nonlinear interaction of free surface sloshing of an initial Gaussian hump with its uneven container is predicted numerically. For this purpose, Green-Naghdi (GN) equations are applied as governing equation of fluid field to produce nonlinear second-order and higher-order wave interactions. These equations reduce the dimensions from three to two, yielding equations that can be solved efficiently. The GN approach assumes a particular flow kinematic structure in the vertical direction for shallow and deep-water problems. The fluid velocity profile is finite sum of coefficients depending on space and time multiplied by a weighting function. It should be noted that in GN theory, the flow is rotational. In this study, GN numerical simulations of initial Gaussian hump are compared with Fourier series semi-analytical solutions of the linearized shallow water equations. The comparison reveals that satisfactory agreement exists between the numerical simulation and the analytical solution of the overall free surface sloshing patterns. The resonant free surface motions driven by an initial Gaussian disturbance are obtained by Fast Fourier Transform (FFT) of the free surface elevation time history components. Numerically predicted velocity vectors and magnitude contours for the free surface patterns indicate that interaction of Gaussian hump with its container has localized effect. The result of this sloshing is applicable to the design of stable liquefied oil containers in tankers and offshore platforms.Keywords: fluid-structure interactions, free surface sloshing, Gaussian hump, Green-Naghdi equations, numerical predictions
Procedia PDF Downloads 40029335 Approaches to Tsunami Mitigation and Prevention: Explaining Architectural Strategies for Reducing Urban Risk
Authors: Hedyeh Gamini, Hadi Abdus
Abstract:
Tsunami, as a natural disaster, is composed of waves that are usually caused by severe movements at the sea floor. Although tsunami and its consequences cannot be prevented in any way, by examining past tsunamis and extracting key points on how to deal with this incident and learning from it, a positive step can be taken to reduce the vulnerability of human settlements and reduce the risk of this phenomenon in architecture and urbanism. The method is reviewing and has examined the documents written and valid internet sites related to managing and reducing the vulnerability of human settlements in face of tsunami. This paper has explored the tsunamis in Indonesia (2004), Sri Lanka (2004) and Japan (2011), and of the study objectives has been understanding how they dealt with tsunami and extracting key points, and the lessons from them in terms of reduction of vulnerability of human settlements in dealing with the tsunami. Finally, strategies to prevent and reduce the vulnerability of communities at risk of tsunamis have been offered in terms of architecture and urban planning. According to what is obtained from the study of the recent tsunamis, the authorities' quality of dealing with them, how to manage the crisis and the manner of their construction, it can be concluded that to reduce the vulnerability of human settlements against tsunami, there are generally four ways that are: 1-Construction of tall buildings with opening on the first floor so that water can flow easily under and the direction of the building should be in a way that water passes easily from the side. 2- The construction of multi-purpose centers, which could be used as vertical evacuation during accidents. 3- Constructing buildings in core forms with diagonal orientation of the coastline, 4- Building physical barriers (natural and synthetic) such as water dams, mounds of earth, sea walls and creating forestsKeywords: tsunami, architecture, reducing vulnerability, human settlements, urbanism
Procedia PDF Downloads 39629334 Churn Prediction for Savings Bank Customers: A Machine Learning Approach
Authors: Prashant Verma
Abstract:
Commercial banks are facing immense pressure, including financial disintermediation, interest rate volatility and digital ways of finance. Retaining an existing customer is 5 to 25 less expensive than acquiring a new one. This paper explores customer churn prediction, based on various statistical & machine learning models and uses under-sampling, to improve the predictive power of these models. The results show that out of the various machine learning models, Random Forest which predicts the churn with 78% accuracy, has been found to be the most powerful model for the scenario. Customer vintage, customer’s age, average balance, occupation code, population code, average withdrawal amount, and an average number of transactions were found to be the variables with high predictive power for the churn prediction model. The model can be deployed by the commercial banks in order to avoid the customer churn so that they may retain the funds, which are kept by savings bank (SB) customers. The article suggests a customized campaign to be initiated by commercial banks to avoid SB customer churn. Hence, by giving better customer satisfaction and experience, the commercial banks can limit the customer churn and maintain their deposits.Keywords: savings bank, customer churn, customer retention, random forests, machine learning, under-sampling
Procedia PDF Downloads 14429333 A Strategic Partner Evaluation Model for the Project Based Enterprises
Authors: Woosik Jang, Seung H. Han
Abstract:
The optimal partner selection is one of the most important factors to pursue the project’s success. However, in practice, there is a gaps in perception of success depending on the role of the enterprises for the projects. This frequently makes a relations between the partner evaluation results and the project’s final performances, insufficiently. To meet this challenges, this study proposes a strategic partner evaluation model considering the perception gaps between enterprises. A total 3 times of survey was performed; factor selection, perception gap analysis, and case application. After then total 8 factors are extracted from independent sample t-test and Borich model to set-up the evaluation model. Finally, through the case applications, only 16 enterprises are re-evaluated to “Good” grade among the 22 “Good” grade from existing model. On the contrary, 12 enterprises are re-evaluated to “Good” grade among the 19 “Bad” grade from existing model. Consequently, the perception gaps based evaluation model is expected to improve the decision making quality and also enhance the probability of project’s success.Keywords: partner evaluation model, project based enterprise, decision making, perception gap, project performance
Procedia PDF Downloads 15929332 Psycholinguistic Analysis on Stuttering Treatment through Systemic Functional Grammar in Tom Hooper’s The King’s Speech
Authors: Nurvita Wijayanti
Abstract:
The movie titled The King’s Speech is based on a true story telling an English king suffers from stuttering and how he gets the treatment from the therapist, so that he can reduce the high frequency on stuttering. The treatment uses the unique approach implying the linguistic principles. This study shows how the language works significantly in order to treat the stuttering sufferer using psychological approach. Therefore, the linguistic study is done to analyze the treatment activity. Halliday’s Systemic Functional Grammar is used as the main approach in this study along with qualitative descriptive method. The study finds that the therapist though using the orthodox approach applies the psycholinguistic method to overcome the king’s stuttering.Keywords: psycholinguistics, stuttering, systemic functional grammar, treatment
Procedia PDF Downloads 25229331 Prioritizing Temporary Shelter Areas for Disaster Affected People Using Hybrid Decision Support Model
Authors: Ashish Trivedi, Amol Singh
Abstract:
In the recent years, the magnitude and frequency of disasters have increased at an alarming rate. Every year, more than 400 natural disasters affect global population. A large-scale disaster leads to destruction or damage to houses, thereby rendering a notable number of residents homeless. Since humanitarian response and recovery process takes considerable time, temporary establishments are arranged in order to provide shelter to affected population. These shelter areas are vital for an effective humanitarian relief; therefore, they must be strategically planned. Choosing the locations of temporary shelter areas for accommodating homeless people is critical to the quality of humanitarian assistance provided after a large-scale emergency. There has been extensive research on the facility location problem both in theory and in application. In order to deliver sufficient relief aid within a relatively short timeframe, humanitarian relief organisations pre-position warehouses at strategic locations. However, such approaches have received limited attention from the perspective of providing shelters to disaster-affected people. In present research work, this aspect of humanitarian logistics is considered. The present work proposes a hybrid decision support model to determine relative preference of potential shelter locations by assessing them based on key subjective criteria. Initially, the factors that are kept in mind while locating potential areas for establishing temporary shelters are identified by reviewing extant literature and through consultation from a panel of disaster management experts. In order to determine relative importance of individual criteria by taking into account subjectivity of judgements, a hybrid approach of fuzzy sets and Analytic Hierarchy Process (AHP) was adopted. Further, Technique for order preference by similarity to ideal solution (TOPSIS) was applied on an illustrative data set to evaluate potential locations for establishing temporary shelter areas for homeless people in a disaster scenario. The contribution of this work is to propose a range of possible shelter locations for a humanitarian relief organization, using a robust multi criteria decision support framework.Keywords: AHP, disaster preparedness, fuzzy set theory, humanitarian logistics, TOPSIS, temporary shelters
Procedia PDF Downloads 20529330 Design and Analysis of Semi-Active Isolation System in Low Frequency Excitation Region for Vehicle Seat to Reduce Discomfort
Authors: Andrea Tonoli, Nicola Amati, Maria Cavatorta, Reza Mirsanei, Behzad Mozaffari, Hamed Ahani, Akbar Karamihafshejani, Mohammad Ghazivakili, Mohammad Abuabiah
Abstract:
The vibrations transmitted to the drivers and passengers through vehicle seat seriously effect on the level of their attention, fatigue and physical health and reduce the comfort and efficiency of the occupants. Recently, some researchers have focused on vibrations at low excitation frequency(0.5-5 Hz) which are considered to be the main risk factors for lumbar part of the backbone but they were not applicable to A and B-segment cars regarding to the size and weight. A semi-active system with two symmetric negative stiffness structures (NSS) in parallel to a positive stiffness structure and actuators has been proposed to attenuate low frequency excitation and makes system flexible regarding to different weight of passengers which is applicable for A and B-Segment cars. Here, the 3 degree of freedom system is considered, dynamic equation clearly is presented, then simulated in MATLAB in order to analysis of performance of the system. The design procedure is derived so that the resonance peak of frequency–response curve shift to the left, the isolating range is increased and especially, the peak of the frequency–response curve is minimized. According to ISO standard different class of road profile as an input is applied to the system to evaluate the performance of the system. To evaluate comfort issues, we extract the RMS value of the vertical acceleration acting on the passenger's body. Then apply the band-pass filter, which takes into account the human sensitivity to acceleration. According to ISO, this weighted acceleration is lower than 0.315 m/s^2, so the ride is considered as comfortable.Keywords: low frequency excitation, negative stiffness, seat vehicle, vibration isolation
Procedia PDF Downloads 43929329 Numerical Treatment of Block Method for the Solution of Ordinary Differential Equations
Authors: A. M. Sagir
Abstract:
Discrete linear multistep block method of uniform order for the solution of first order Initial Value Problems (IVPs) in Ordinary Differential Equations (ODEs) is presented in this paper. The approach of interpolation and collocation approximation are adopted in the derivation of the method which is then applied to first order ordinary differential equations with associated initial conditions. The continuous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain four discrete schemes, which were used in block form for parallel or sequential solutions of the problems. Furthermore, a stability analysis and efficiency of the block method are tested on ordinary differential equations, and the results obtained compared favorably with the exact solution.Keywords: block method, first order ordinary differential equations, hybrid, self-starting
Procedia PDF Downloads 48329328 A Super-Efficiency Model for Evaluating Efficiency in the Presence of Time Lag Effect
Authors: Yanshuang Zhang, Byungho Jeong
Abstract:
In many cases, there is a time lag between the consumption of inputs and the production of outputs. This time lag effect should be considered in evaluating the performance of organizations. Recently, a couple of DEA models were developed for considering time lag effect in efficiency evaluation of research activities. Multi-periods input(MpI) and Multi-periods output(MpO) models are integrated models to calculate simple efficiency considering time lag effect. However, these models can’t discriminate efficient DMUs because of the nature of basic DEA model in which efficiency scores are limited to ‘1’. That is, efficient DMUs can’t be discriminated because their efficiency scores are same. Thus, this paper suggests a super-efficiency model for efficiency evaluation under the consideration of time lag effect based on the MpO model. A case example using a long-term research project is given to compare the suggested model with the MpO model.Keywords: DEA, super-efficiency, time lag, multi-periods input
Procedia PDF Downloads 47429327 Electronic Spectral Function of Double Quantum Dots–Superconductors Nanoscopic Junction
Authors: Rajendra Kumar
Abstract:
We study the Electronic spectral density of a double coupled quantum dots sandwich between superconducting leads, where one of the superconducting leads (QD1) are connected with left superconductor lead and (QD1) also connected right superconductor lead. (QD1) and (QD2) are coupling to each other. The electronic spectral density through a quantum dots between superconducting leads having s-wave symmetry of the superconducting order parameter. Such junction is called superconducting –quantum dot (S-QD-S) junction. For this purpose, we have considered a renormalized Anderson model that includes the double coupled of the superconducting leads with the quantum dots level and an attractive BCS-type effective interaction in superconducting leads. We employed the Green’s function technique to obtain superconducting order parameter with the BCS framework and Ambegaoker-Baratoff formalism to analyze the electronic spectral density through such (S-QD-S) junction. It has been pointed out that electronic spectral density through such a junction is dominated by the attractive the paring interaction in the leads, energy of the level on the dot with respect to Fermi energy and also on the coupling parameter of the two in an essential way. On the basis of numerical analysis we have compared the theoretical results of electronic spectral density with the recent transport existing theoretical analysis. QDs is the charging energy that may give rise to effects based on the interplay of Coulomb repulsion and superconducting correlations. It is, therefore, an interesting question to ask how the discrete level spectrum and the charging energy affect the DC and AC Josephson transport between two superconductors coupled via a QD. In the absence of a bias voltage, a finite DC current can be sustained in such an S-QD-S by the DC Josephson effect.Keywords: quantum dots, S-QD-S junction, BCS superconductors, Anderson model
Procedia PDF Downloads 37629326 Statistical Classification, Downscaling and Uncertainty Assessment for Global Climate Model Outputs
Authors: Queen Suraajini Rajendran, Sai Hung Cheung
Abstract:
Statistical down scaling models are required to connect the global climate model outputs and the local weather variables for climate change impact prediction. For reliable climate change impact studies, the uncertainty associated with the model including natural variability, uncertainty in the climate model(s), down scaling model, model inadequacy and in the predicted results should be quantified appropriately. In this work, a new approach is developed by the authors for statistical classification, statistical down scaling and uncertainty assessment and is applied to Singapore rainfall. It is a robust Bayesian uncertainty analysis methodology and tools based on coupling dependent modeling error with classification and statistical down scaling models in a way that the dependency among modeling errors will impact the results of both classification and statistical down scaling model calibration and uncertainty analysis for future prediction. Singapore data are considered here and the uncertainty and prediction results are obtained. From the results obtained, directions of research for improvement are briefly presented.Keywords: statistical downscaling, global climate model, climate change, uncertainty
Procedia PDF Downloads 37129325 Towards a Model of Support in the Areas of Services of Educational Assistance and Mentoring in Middle Education in Mexico
Authors: Margarita Zavala, Gabriel Chavira, José González, Jorge Orozco, Julio Rolón, Roberto Pichardo
Abstract:
Adolescence is a neuralgic stage in the formation of every human being, generally this stage is when the middle school level is studied. In 2006, Mexico incorporated 'mentoring' space to assist students in their integration and participation in life. In public middle schools, it is sometimes difficult to be aware of situations that affect students because of the number of them and traditional records management. With this, they lose the opportunity to provide timely support as a preventive way. In order to provide this support, it is required to know the students by detecting the relevant information that has greater impact on their learning process. This research is looking to check if it is possible to identify student’s relevant information to detect when it is at risk, and then to propose a model to manage in a proper way such information.Keywords: adolescence, mentoring, middle school students, mentoring system support
Procedia PDF Downloads 48229324 Optimal Tracking Control of a Hydroelectric Power Plant Incorporating Neural Forecasting for Uncertain Input Disturbances
Authors: Marlene Perez Villalpando, Kelly Joel Gurubel Tun
Abstract:
In this paper, we propose an optimal control strategy for a hydroelectric power plant subject to input disturbances like meteorological phenomena. The engineering characteristics of the system are described by a nonlinear model. The random availability of renewable sources is predicted by a high-order neural network trained with an extended Kalman filter, whereas the power generation is regulated by the optimal control law. The main advantage of the system is the stabilization of the amount of power generated in the plant. A control supervisor maintains stability and availability in hydropower reservoirs water levels for power generation. The proposed approach demonstrated a good performance to stabilize the reservoir level and the power generation along their desired trajectories in the presence of disturbances.Keywords: hydropower, high order neural network, Kalman filter, optimal control
Procedia PDF Downloads 29929323 An Integrated Experimental and Numerical Approach to Develop an Electronic Instrument to Study Apple Bruise Damage
Authors: Paula Pascoal-Faria, Rúben Pereira, Elodie Pinto, Miguel Belbut, Ana Rosa, Inês Sousa, Nuno Alves
Abstract:
Apple bruise damage from harvesting, handling, transporting and sorting is considered to be the major source of reduced fruit quality, resulting in loss of profits for the entire fruit industry. The three factors which can physically cause fruit bruising are vibration, compression load and impact, the latter being the most common source of bruise damage. Therefore, prediction of the level of damage, stress distribution and deformation of the fruits under external force has become a very important challenge. In this study, experimental and numerical methods were used to better understand the impact caused when an apple is dropped from different heights onto a plastic surface and a conveyor belt. Results showed that the extent of fruit damage is significantly higher for plastic surface, being dependent on the height. In order to support the development of a biomimetic electronic device for the determination of fruit damage, the mechanical properties of the apple fruit were determined using mechanical tests. Preliminary results showed different values for the Young’s modulus according to the zone of the apple tested. Along with the mechanical characterization of the apple fruit, the development of the first two prototypes is discussed and the integration of the results obtained to construct the final element model of the apple is presented. This work will help to reduce significantly the bruise damage of fruits or vegetables during the entire processing which will allow the introduction of exportation destines and consequently an increase in the economic profits in this sector.Keywords: apple, fruit damage, impact during crop and post-crop, mechanical characterization of the apple, numerical evaluation of fruit damage, electronic device
Procedia PDF Downloads 30629322 Impact Logistic Management to Reduce Costs
Authors: Waleerak Sittisom
Abstract:
The objectives of this research were to analyze transportation route management, to identify potential cost reductions in logistic operation. In-depth interview techniques and small group discussions were utilized with 25 participants from various backgrounds in the areas of logistics. The findings of this research revealed that there were four areas that companies are able to effectively manage a logistic cost reduction: managing the space within the transportation vehicles, managing transportation personnel, managing transportation cost, and managing control of transportation. On the other hand, there were four areas that companies were unable to effectively manage a logistic cost reduction: the working process of transportation, the route planning of transportation, the service point management, and technology management. There are five areas that cost reduction is feasible: personnel management, process of working, map planning, service point planning, and technology implementation. To be able to reduce costs, the transportation companies should suggest that customers use a file system to save truck space. Also, the transportation companies need to adopt new technology to manage their information system so that packages can be reached easy, safe, and fast. Staff needs to be trained regularly to increase knowledge and skills. Teamwork is required to effectively reduce the costs.Keywords: cost reduction, management, logistics, transportation
Procedia PDF Downloads 50229321 Development and Experimental Evaluation of a Semiactive Friction Damper
Authors: Juan S. Mantilla, Peter Thomson
Abstract:
Seismic events may result in discomfort on occupants of the buildings, structural damage or even buildings collapse. Traditional design aims to reduce dynamic response of structures by increasing stiffness, thus increasing the construction costs and the design forces. Structural control systems arise as an alternative to reduce these dynamic responses. A commonly used control systems in buildings are the passive friction dampers, which adds energy dissipation through damping mechanisms induced by sliding friction between their surfaces. Passive friction dampers are usually implemented on the diagonal of braced buildings, but such devices have the disadvantage that are optimal for a range of sliding force and out of that range its efficiency decreases. The above implies that each passive friction damper is designed, built and commercialized for a specific sliding/clamping force, in which the damper shift from a locked state to a slip state, where dissipates energy through friction. The risk of having a variation in the efficiency of the device according to the sliding force is that the dynamic properties of the building can change as result of many factor, even damage caused by a seismic event. In this case the expected forces in the building can change and thus considerably reduce the efficiency of the damper (that is designed for a specific sliding force). It is also evident than when a seismic event occurs the forces in each floor varies in the time what means that the damper's efficiency is not the best at all times. Semi-Active Friction devices adapt its sliding force trying to maintain its motion in the slipping phase as much as possible, because of this, the effectiveness of the device depends on the control strategy used. This paper deals with the development and performance evaluation of a low cost Semiactive Variable Friction Damper (SAVFD) in reduced scale to reduce vibrations of structures subject to earthquakes. The SAVFD consist in a (1) hydraulic brake adapted to (2) a servomotor which is controlled with an (3) Arduino board and acquires accelerations or displacement from (4) sensors in the immediately upper and lower floors and a (5) power supply that can be a pair of common batteries. A test structure, based on a Benchmark structure for structural control, was design and constructed. The SAVFD and the structure are experimentally characterized. A numerical model of the structure and the SAVFD is developed based on the dynamic characterization. Decentralized control algorithms were modeled and later tested experimentally using shaking table test using earthquake and frequency chirp signals. The controlled structure with the SAVFD achieved reductions greater than 80% in relative displacements and accelerations in comparison to the uncontrolled structure.Keywords: earthquake response, friction damper, semiactive control, shaking table
Procedia PDF Downloads 37829320 Vehicle Risk Evaluation in Low Speed Accidents: Consequences for Relevant Test Scenarios
Authors: Philip Feig, Klaus Gschwendtner, Julian Schatz, Frank Diermeyer
Abstract:
Projects of accident research analysis are mostly focused on accidents involving personal damage. Property damage only has a high frequency of occurrence combined with high economic impact. This paper describes main influencing parameters for the extent of damage and presents a repair cost model. For a prospective evaluation method of the monetary effect of advanced driver assistance systems (ADAS), it is necessary to be aware of and quantify all influencing parameters. Furthermore, this method allows the evaluation of vehicle concepts in combination with an ADAS at an early point in time of the product development process. In combination with a property damage database and the introduced repair cost model relevant test scenarios for specific vehicle configurations and their individual property damage risk may be determined. Currently, equipment rates of ADAS are low and a purchase incentive for customers would be beneficial. The next ADAS generation will prevent property damage to a large extent or at least reduce damage severity. Both effects may be a purchasing incentive for the customer and furthermore contribute to increased traffic safety.Keywords: accident research, accident scenarios, ADAS, effectiveness, property damage analysis
Procedia PDF Downloads 34029319 A Simulation-Optimization Approach to Control Production, Subcontracting and Maintenance Decisions for a Deteriorating Production System
Authors: Héctor Rivera-Gómez, Eva Selene Hernández-Gress, Oscar Montaño-Arango, Jose Ramon Corona-Armenta
Abstract:
This research studies the joint production, maintenance and subcontracting control policy for an unreliable deteriorating manufacturing system. Production activities are controlled by a derivation of the Hedging Point Policy, and given that the system is subject to deterioration, it reduces progressively its capacity to satisfy product demand. Multiple deterioration effects are considered, reflected mainly in the quality of the parts produced and the reliability of the machine. Subcontracting is available as support to satisfy product demand; also overhaul maintenance can be conducted to reduce the effects of deterioration. The main objective of the research is to determine simultaneously the production, maintenance and subcontracting rate which minimize the total incurred cost. A stochastic dynamic programming model is developed and solved through a simulation-based approach composed of statistical analysis and optimization with the response surface methodology. The obtained results highlight the strong interactions between production, deterioration and quality which justify the development of an integrated model. A numerical example and a sensitivity analysis are presented to validate our results.Keywords: subcontracting, optimal control, deterioration, simulation, production planning
Procedia PDF Downloads 58029318 Collision Avoidance Based on Model Predictive Control for Nonlinear Octocopter Model
Authors: Doğan Yıldız, Aydan Müşerref Erkmen
Abstract:
The controller of the octocopter is mostly based on the PID controller. For complex maneuvers, PID controllers have limited performance capability like in collision avoidance. When an octocopter needs avoidance from an obstacle, it must instantly show an agile maneuver. Also, this kind of maneuver is affected severely by the nonlinear characteristic of octocopter. When these kinds of limitations are considered, the situation is highly challenging for the PID controller. In the proposed study, these challenges are tried to minimize by using the model predictive controller (MPC) for collision avoidance with a nonlinear octocopter model. The aim is to show that MPC-based collision avoidance has the capability to deal with fast varying conditions in case of obstacle detection and diminish the nonlinear effects of octocopter with varying disturbances.Keywords: model predictive control, nonlinear octocopter model, collision avoidance, obstacle detection
Procedia PDF Downloads 191