Search results for: periphery stakeholder network
3458 Prediction of Positive Cloud-to-Ground Lightning Striking Zones for Charged Thundercloud Based on Line Charge Model
Authors: Surajit Das Barman, Rakibuzzaman Shah, Apurv Kumar
Abstract:
Bushfire is known as one of the ascendant factors to create pyrocumulus thundercloud that causes the ignition of new fires by pyrocumulonimbus (pyroCb) lightning strikes and creates major losses of lives and property worldwide. A conceptual model-based risk planning would be beneficial to predict the lightning striking zones on the surface of the earth underneath the pyroCb thundercloud. PyroCb thundercloud can generate both positive cloud-to-ground (+CG) and negative cloud-to-ground (-CG) lightning in which +CG tends to ignite more bushfires and cause massive damage to nature and infrastructure. In this paper, a simple line charge structured thundercloud model is constructed in 2-D coordinates using the method of image charge to predict the probable +CG lightning striking zones on the earth’s surface for two conceptual thundercloud charge configurations: titled dipole and conventional tripole structure with excessive lower positive charge regions that lead to producing +CG lightning. The electric potential and surface charge density along the earth’s surface for both structures via continuously adjusting the position and the charge density of their charge regions is investigated. Simulation results for tilted dipole structure confirm the down-shear extension of the upper positive charge region in the direction of the cloud’s forward flank by 4 to 8 km, resulting in negative surface density, and would expect +CG lightning to strike within 7.8 km to 20 km around the earth periphery in the direction of the cloud’s forward flank. On the other hand, the conceptual tripole charge structure with enhanced lower positive charge region develops negative surface charge density on the earth’s surface in the range |x| < 6.5 km beneath the thundercloud and highly favors producing +CG lightning strikes.Keywords: pyrocumulonimbus, cloud-to-ground lightning, charge structure, surface charge density, forward flank
Procedia PDF Downloads 1133457 Sea of Light: A Game 'Based Approach for Evidence-Centered Assessment of Collaborative Problem Solving
Authors: Svenja Pieritz, Jakab Pilaszanovich
Abstract:
Collaborative Problem Solving (CPS) is recognized as being one of the most important skills of the 21st century with having a potential impact on education, job selection, and collaborative systems design. Therefore, CPS has been adopted in several standardized tests, including the Programme for International Student Assessment (PISA) in 2015. A significant challenge of evaluating CPS is the underlying interplay of cognitive and social skills, which requires a more holistic assessment. However, the majority of the existing tests are using a questionnaire-based assessment, which oversimplifies this interplay and undermines ecological validity. Two major difficulties were identified: Firstly, the creation of a controllable, real-time environment allowing natural behaviors and communication between at least two people. Secondly, the development of an appropriate method to collect and synthesize both cognitive and social metrics of collaboration. This paper proposes a more holistic and automated approach to the assessment of CPS. To address these two difficulties, a multiplayer problem-solving game called Sea of Light was developed: An environment allowing students to deploy a variety of measurable collaborative strategies. This controlled environment enables researchers to monitor behavior through the analysis of game actions and chat. The according solution for the statistical model is a combined approach of Natural Language Processing (NLP) and Bayesian network analysis. Social exchanges via the in-game chat are analyzed through NLP and fed into the Bayesian network along with other game actions. This Bayesian network synthesizes evidence to track and update different subdimensions of CPS. Major findings focus on the correlations between the evidences collected through in- game actions, the participants’ chat features and the CPS self- evaluation metrics. These results give an indication of which game mechanics can best describe CPS evaluation. Overall, Sea of Light gives test administrators control over different problem-solving scenarios and difficulties while keeping the student engaged. It enables a more complete assessment based on complex, socio-cognitive information on actions and communication. This tool permits further investigations of the effects of group constellations and personality in collaborative problem-solving.Keywords: bayesian network, collaborative problem solving, game-based assessment, natural language processing
Procedia PDF Downloads 1323456 An Evaluation of the Lae City Road Network Improvement Project
Authors: Murray Matarab Konzang
Abstract:
Lae Port Development Project, Four Lane Highway and other development in the extraction industry which have direct road link to Lae City are predicted to have significant impact on its road network system. This paper evaluates Lae roads improvement program with forecast on planning, economic and the installation of bypasses to ease congestion, effective and convenient transport service for bulk goods and reduce travel time. Land-use transportation study and plans for local area traffic management scheme will be considered. City roads are faced with increased number of traffic and some inadequate road pavement width, poor transport plans, and facilities to meet this transportation demand. Lae also has drainage system which might not hold a 100 year flood. Proper evaluation, plan, design and intersection analysis is needed to evaluate road network system thus recommend improvement and estimate future growth. Repetitive and cyclic loading by heavy commercial vehicles with different axle configurations apply on the flexible pavement which weakens and tear the pavement surface thus small cracks occur. Rain water seeps through and overtime it creates potholes. Effective planning starts from experimental research and appropriate design standards to enable firm embankment, proper drains and quality pavement material. This paper will address traffic problems as well as road pavement, capacities of intersections, and pedestrian flow during peak hours. The outcome of this research will be to identify heavily trafficked road sections and recommend treatments to reduce traffic congestions, road classification, and proposal for bypass routes and improvement. First part of this study will describe transport or traffic related problems within the city. Second part would be to identify challenges imposed by traffic and road related problems and thirdly to recommend solutions after the analyzing traffic data that will indicate current capacities of road intersections and finally recommended treatment for improvement and future growth.Keywords: Lae, road network, highway, vehicle traffic, planning
Procedia PDF Downloads 3583455 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 3333454 Optimal Design of the Power Generation Network in California: Moving towards 100% Renewable Electricity by 2045
Authors: Wennan Long, Yuhao Nie, Yunan Li, Adam Brandt
Abstract:
To fight against climate change, California government issued the Senate Bill No. 100 (SB-100) in 2018 September, which aims at achieving a target of 100% renewable electricity by the end of 2045. A capacity expansion problem is solved in this case study using a binary quadratic programming model. The optimal locations and capacities of the potential renewable power plants (i.e., solar, wind, biomass, geothermal and hydropower), the phase-out schedule of existing fossil-based (nature gas) power plants and the transmission of electricity across the entire network are determined with the minimal total annualized cost measured by net present value (NPV). The results show that the renewable electricity contribution could increase to 85.9% by 2030 and reach 100% by 2035. Fossil-based power plants will be totally phased out around 2035 and solar and wind will finally become the most dominant renewable energy resource in California electricity mix.Keywords: 100% renewable electricity, California, capacity expansion, mixed integer non-linear programming
Procedia PDF Downloads 1713453 Historical Hashtags: An Investigation of the #CometLanding Tweets
Authors: Noor Farizah Ibrahim, Christopher Durugbo
Abstract:
This study aims to investigate how the Twittersphere reacted during the recent historical event of robotic landing on a comet. The news is about Philae, a robotic lander from European Space Agency (ESA), which successfully made the first-ever rendezvous and touchdown of its kind on a nucleus comet on November 12, 2014. In order to understand how Twitter is practically used in spreading messages on historical events, we conducted an analysis of one-week tweet feeds that contain the #CometLanding hashtag. We studied the trends of tweets, the diffusion of the information and the characteristics of the social network created. The results indicated that the use of Twitter as a platform enables online communities to engage and spread the historical event through social media network (e.g. tweets, retweets, mentions and replies). In addition, it was found that comprehensible and understandable hashtags could influence users to follow the same tweet stream compared to other laborious hashtags which were difficult to understand by users in online communities.Keywords: diffusion of information, hashtag, social media, Twitter
Procedia PDF Downloads 3253452 Game-Theory-Based on Downlink Spectrum Allocation in Two-Tier Networks
Authors: Yu Zhang, Ye Tian, Fang Ye Yixuan Kang
Abstract:
The capacity of conventional cellular networks has reached its upper bound and it can be well handled by introducing femtocells with low-cost and easy-to-deploy. Spectrum interference issue becomes more critical in peace with the value-added multimedia services growing up increasingly in two-tier cellular networks. Spectrum allocation is one of effective methods in interference mitigation technology. This paper proposes a game-theory-based on OFDMA downlink spectrum allocation aiming at reducing co-channel interference in two-tier femtocell networks. The framework is formulated as a non-cooperative game, wherein the femto base stations are players and frequency channels available are strategies. The scheme takes full account of competitive behavior and fairness among stations. In addition, the utility function reflects the interference from the standpoint of channels essentially. This work focuses on co-channel interference and puts forward a negative logarithm interference function on distance weight ratio aiming at suppressing co-channel interference in the same layer network. This scenario is more suitable for actual network deployment and the system possesses high robustness. According to the proposed mechanism, interference exists only when players employ the same channel for data communication. This paper focuses on implementing spectrum allocation in a distributed fashion. Numerical results show that signal to interference and noise ratio can be obviously improved through the spectrum allocation scheme and the users quality of service in downlink can be satisfied. Besides, the average spectrum efficiency in cellular network can be significantly promoted as simulations results shown.Keywords: femtocell networks, game theory, interference mitigation, spectrum allocation
Procedia PDF Downloads 1563451 A Learning Automata Based Clustering Approach for Underwater Sensor Networks to Reduce Energy Consumption
Authors: Motahareh Fadaei
Abstract:
Wireless sensor networks that are used to monitor a special environment, are formed from a large number of sensor nodes. The role of these sensors is to sense special parameters from ambient and to make connection. In these networks, the most important challenge is the management of energy usage. Clustering is one of the methods that are broadly used to face this challenge. In this paper, a distributed clustering protocol based on learning automata is proposed for underwater wireless sensor networks. The proposed algorithm that is called LA-Clustering forms clusters in the same energy level, based on the energy level of nodes and the connection radius regardless of size and the structure of sensor network. The proposed approach is simulated and is compared with some other protocols with considering some metrics such as network lifetime, number of alive nodes, and number of transmitted data. The simulation results demonstrate the efficiency of the proposed approach.Keywords: clustering, energy consumption, learning automata, underwater sensor networks
Procedia PDF Downloads 3143450 Subway Ridership Estimation at a Station-Level: Focus on the Impact of Bus Demand, Commercial Business Characteristics and Network Topology
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The primary purpose of this study is to develop a methodological framework to predict daily subway ridership at a station-level and to examine the association between subway ridership and bus demand incorporating commercial business facility in the vicinity of each subway station. The socio-economic characteristics, land-use, and built environment as factors may have an impact on subway ridership. However, it should be considered not only the endogenous relationship between bus and subway demand but also the characteristics of commercial business within a subway station’s sphere of influence, and integrated transit network topology. Regarding a statistical approach to estimate subway ridership at a station level, therefore it should be considered endogeneity and heteroscedastic issues which might have in the subway ridership prediction model. This study focused on both discovering the impacts of bus demand, commercial business characteristics, and network topology on subway ridership and developing more precise subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers entire Seoul city in South Korea and includes 243 stations with the temporal scope set at twenty-four hours with one-hour interval time panels each. The data for subway and bus ridership was collected Seoul Smart Card data from 2015 and 2016. Three-Stage Least Square(3SLS) approach was applied to develop daily subway ridership model as capturing the endogeneity and heteroscedasticity between bus and subway demand. Independent variables incorporating in the modeling process were commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. As a result, it was found that bus ridership and subway ridership were endogenous each other and they had a significantly positive sign of coefficients which means one transit mode could increase another transportation mode’s ridership. In other words, two transit modes of subway and bus have a mutual relationship instead of the competitive relationship. The commercial business characteristics are the most critical dimension among the independent variables. The variables of commercial business facility rate in the paper containing six types; medical, educational, recreational, financial, food service, and shopping. From the model result, a higher rate in medical, financial buildings, shopping, and food service facility lead to increment of subway ridership at a station, while recreational and educational facility shows lower subway ridership. The complex network theory was applied for estimating integrated network topology measures that cover the entire Seoul transit network system, and a framework for seeking an impact on subway ridership. The centrality measures were found to be significant and showed a positive sign indicating higher centrality led to more subway ridership at a station level. The results of model accuracy tests by out of samples provided that 3SLS model has less mean square error rather than OLS and showed the methodological approach for the 3SLS model was plausible to estimate more accurate subway ridership. Acknowledgement: This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science and ICT (2017R1C1B2010175).Keywords: subway ridership, bus ridership, commercial business characteristic, endogeneity, network topology
Procedia PDF Downloads 1443449 Inferential Reasoning for Heterogeneous Multi-Agent Mission
Authors: Sagir M. Yusuf, Chris Baber
Abstract:
We describe issues bedeviling the coordination of heterogeneous (different sensors carrying agents) multi-agent missions such as belief conflict, situation reasoning, etc. We applied Bayesian and agents' presumptions inferential reasoning to solve the outlined issues with the heterogeneous multi-agent belief variation and situational-base reasoning. Bayesian Belief Network (BBN) was used in modeling the agents' belief conflict due to sensor variations. Simulation experiments were designed, and cases from agents’ missions were used in training the BBN using gradient descent and expectation-maximization algorithms. The output network is a well-trained BBN for making inferences for both agents and human experts. We claim that the Bayesian learning algorithm prediction capacity improves by the number of training data and argue that it enhances multi-agents robustness and solve agents’ sensor conflicts.Keywords: distributed constraint optimization problem, multi-agent system, multi-robot coordination, autonomous system, swarm intelligence
Procedia PDF Downloads 1553448 An Application to Predict the Best Study Path for Information Technology Students in Learning Institutes
Authors: L. S. Chathurika
Abstract:
Early prediction of student performance is an important factor to be gained academic excellence. Whatever the study stream in secondary education, students lay the foundation for higher studies during the first year of their degree or diploma program in Sri Lanka. The information technology (IT) field has certain improvements in the education domain by selecting specialization areas to show the talents and skills of students. These specializations can be software engineering, network administration, database administration, multimedia design, etc. After completing the first-year, students attempt to select the best path by considering numerous factors. The purpose of this experiment is to predict the best study path using machine learning algorithms. Five classification algorithms: decision tree, support vector machine, artificial neural network, Naïve Bayes, and logistic regression are selected and tested. The support vector machine obtained the highest accuracy, 82.4%. Then affecting features are recognized to select the best study path.Keywords: algorithm, classification, evaluation, features, testing, training
Procedia PDF Downloads 1193447 Geometry of the Right Ventricular Outflow Tract - Clinical Significance in Electrocardiological Procedures
Authors: Marcin Jakiel, Maria Kurek, Karolina Gutkowska, Sylwia Sanakiewicz, Dominika Stolarczyk, Jakub Batko, Rafał Jakiel, Mateusz K. Hołda
Abstract:
The geometry of RVOT is extremely complicated. It is an irregular block with an ellipsoidal cross-section, whose dimensions decrease toward the pulmonary valve and measure 33.82 (IQR 30,51-39,36), 28.82 (IQR 26,11-32,22), 27.95 ± 4,11 for width [mm] and 33.41 ± 6,14, 26.99 ± 4,41, 26.91 ± 4,00 [mm] for depth, in the basal, middle and subpulmonary parts, respectively. In a sagittal section view, the RVOT heads upward and slightly backward. Its anterior perimeter has an average length of 41.96 mm and inclines to the transverse plane at an angle of 50.77° (IQR 46,53°-58,70°). In the posterior region, the RVOT is shorter (18.17mm) and flexes anteriorly. Therefore, the slope of the upper part of the rear wall to the transverse plane is an acute angle (open toward the rear) of 44,58° (IQR 37,30°-51,25°), while in the lower part it is an angle close to a right angle of 94,30°±15,44°. In addition, the thickness of the RVOT wall in the diastolic phase, at the posterior perimeter at the base, in the middle of the length and subpulmonary measure 3,80 mm ± 0,88 mm, 3,56 mm ± 0,73 mm, 3,56 mm ± 0,65 mm, respectively. In frontal cross-section, the RVOT rises on the interventricular septum, which makes it possible to distinguish the septal and supraseptal parts on its left periphery. The angles (facing the vertices to the right) of the inclination of these parts to the transverse plane are 75.5° (IQR 66,44°-81,11°) and 107.01° (IQR 99,09 – 115,23°), respectively, which allows us to conclude that the direction of the RVOT long axis changes from left to right. The above analysis shows that there is no single RVOT axis. Two axes can be distinguished, the one for the upper RVOT being more backward and leftward. The aforementioned forward deflection of the posterior wall and the RVOT's elevation over the interventricular septum, suggest that access to the subpulmonary region may be difficult. It should be emphasized that this area is often the target for ablation of ventricular arrhythmias. The small thickness of the RVOT posterior wall, with its difficult geometry, may favor its perforation into the pericardium or ascending aorta.Keywords: angle, geometry, operation access, position, RVOT, shape
Procedia PDF Downloads 1103446 Community Engagement: Experience from the SIREN Study in Sub-Saharan Africa
Authors: Arti Singh, Carolyn Jenkins, Oyedunni S. Arulogun, Mayowa O. Owolabi, Fred S. Sarfo, Bruce Ovbiagele, Enzinne Sylvia
Abstract:
Background: Stroke, the leading cause of adult-onset disability and the second leading cause of death, is a major public health concern particularly pertinent in Sub-Saharan Africa (SSA), where nearly 80% of all global stroke mortalities occur. The Stroke Investigative Research and Education Network (SIREN) seeks to comprehensively characterize the genomic, sociocultural, economic, and behavioral risk factors for stroke and to build effective teams for research to address and decrease the burden of stroke and other non communicable diseases in SSA. One of the first steps to address this goal was to effectively engage the communities that suffer the high burden of disease in SSA. This study describes how the SIREN project engaged six sites in Ghana and Nigeria over the past three years, describing the community engagement activities that have arisen since inception. Aim: The aim of community engagement (CE) within SIREN is to elucidate information about knowledge, attitudes, beliefs, and practices (KABP) about stroke and its risk factors from individuals of African ancestry in SSA, and to educate the community about stroke and ways to decrease disabilities and deaths from stroke using socioculturally appropriate messaging and messengers. Methods: Community Advisory Board (CABs), Focus Group Discussions (FGDs) and community outreach programs. Results: 27 FGDs with 168 participants including community heads, religious leaders, health professionals and individuals with stroke among others, were conducted, and over 60 CE outreaches have been conducted within the SIREN performance sites. Over 5,900 individuals have received education on cardiovascular risk factors and about 5,000 have been screened for cardiovascular risk factors during the outreaches. FGDs and outreach programs indicate that knowledge of stroke, as well as risk factors and follow-up evidence-based care is limited and often late. Other findings include: 1) Most recognize hypertension as a major risk factor for stroke. 2) About 50% report that stroke is hereditary and about 20% do not know organs affected by stroke. 3) More than 95% willing to participate in genetic testing research and about 85% willing to pay for testing and recommend the test to others. 4) Almost all indicated that genetic testing could help health providers better treat stroke and help scientists better understand the causes of stroke. The CABs provided stakeholder input into SIREN activities and facilitated collaborations among investigators, community members and stakeholders. Conclusion: The CE core within SIREN is a first-of-its kind public outreach engagement initiative to evaluate and address perceptions about stroke and genomics by patients, caregivers, and local leaders in SSA and has implications as a model for assessment in other high-stroke risk populations. SIREN’s CE program uses best practices to build capacity for community-engaged research, accelerate integration of research findings into practice and strengthen dynamic community-academic partnerships within our communities. CE has had several major successes over the past three years including our multi-site collaboration examining the KABP about stroke (symptoms, risk factors, burden) and genetic testing across SSA.Keywords: community advisory board, community engagement, focus groups, outreach, SSA, stroke
Procedia PDF Downloads 4283445 Cellular Architecture of Future Wireless Communication Networks
Authors: Mohammad Yahaghifar
Abstract:
Nowadays Wireless system designers have been facing the continuously increasing demand for high data rates and mobility required by new wireless applications. Evolving future communication network generation cellular wireless networks are envisioned to overcome the fundamental challenges of existing cellular networks, for example, higher data rates, excellent end-to-end performance, and user coverage in hot-spots and crowded areas with lower latency,energy consumption and cost per information transfer. In this paper we propose a potential cellular architecture that separates indoor and outdoor scenarios and discuss various promising technologies for future wireless communication systemssystems, such as massive MIMO, energy-efficient communications,cognitive radio networks, and visible light communications and we disscuse about 5G that is next generation of wireless networks.Keywords: future challenges in networks, cellur architecture, visible light communication, 5G wireless technologies, spatial modulation, massiva mimo, cognitive radio network, green communications
Procedia PDF Downloads 4883444 Impact on the Results of Sub-Group Analysis on Performance of Recommender Systems
Authors: Ho Yeon Park, Kyoung-Jae Kim
Abstract:
The purpose of this study is to investigate whether friendship in social media can be an important factor in recommender system through social scientific analysis of friendship in popular social media such as Facebook and Twitter. For this purpose, this study analyzes data on friendship in real social media using component analysis and clique analysis among sub-group analysis in social network analysis. In this study, we propose an algorithm to reflect the results of sub-group analysis on the recommender system. The key to this algorithm is to ensure that recommendations from users in friendships are more likely to be reflected in recommendations from users. As a result of this study, outcomes of various subgroup analyzes were derived, and it was confirmed that the results were different from the results of the existing recommender system. Therefore, it is considered that the results of the subgroup analysis affect the recommendation performance of the system. Future research will attempt to generalize the results of the research through further analysis of various social data.Keywords: sub-group analysis, social media, social network analysis, recommender systems
Procedia PDF Downloads 3653443 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 893442 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm
Procedia PDF Downloads 3743441 Natural and Construction/Demolition Waste Aggregates: A Comparative Study
Authors: Debora C. Mendes, Matthias Eckert, Claudia S. Moço, Helio Martins, Jean-Pierre Gonçalves, Miguel Oliveira, Jose P. Da Silva
Abstract:
Disposal of construction and demolition waste (C&DW) in embankments in the periphery of cities causes both environmental and social problems. To achieve the management of C&DW, a detailed analysis of the properties of these materials should be done. In this work we report a comparative study of the physical, chemical and environmental properties of natural and C&DW aggregates from 25 different origins. Assays were performed according to European Standards. Analysis of heavy metals and organic compounds, namely polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed. Finally, properties of concrete prepared with C&DW aggregates are reported. Physical analyses of C&DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. The characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants
Procedia PDF Downloads 3593440 Social Entrepreneurship and Inclusive Growth
Authors: Sudheer Gupta
Abstract:
Approximately 4 billion citizens of the world live on the equivalent of less than $8 a day. This segment constitutes a $5 trillion global market that remains under-served. Multinational corporations have historically tended to focus their innovation efforts on the upper segments of the economic pyramid. The academic literature has also been dominated by theories and frameworks of innovation that are valid when applied to the developed markets and consumer segments, but fail to adequately account for the challenges and realities of new product and service creation for the poor. Theories of entrepreneurship developed in the context of developed markets similarly ignore the challenges and realities of operating in developing economies that can be characterized by missing institutions, missing markets, information and infrastructural challenges, and resource constraints. Social entrepreneurs working in such contexts develop solutions differently. In this talk, we summarize lessons learnt from a long-term research project that involves data collection from a broad range of social entrepreneurs in developing countries working towards solutions to alleviate poverty, and grounded theory-building efforts. We aim to develop a better understanding of consumers, producers, and other stakeholder involvement, thus laying the foundation to build a robust theory of innovation and entrepreneurship for the poor.Keywords: poverty alleviation, social enterprise, social innovation, development
Procedia PDF Downloads 3993439 Application of Artificial Neural Network for Prediction of Retention Times of Some Secoestrane Derivatives
Authors: Nataša Kalajdžija, Strahinja Kovačević, Davor Lončar, Sanja Podunavac Kuzmanović, Lidija Jevrić
Abstract:
In order to investigate the relationship between retention and structure, a quantitative Structure Retention Relationships (QSRRs) study was applied for the prediction of retention times of a set of 23 secoestrane derivatives in a reversed-phase thin-layer chromatography. After the calculation of molecular descriptors, a suitable set of molecular descriptors was selected by using step-wise multiple linear regressions. Artificial Neural Network (ANN) method was employed to model the nonlinear structure-activity relationships. The ANN technique resulted in 5-6-1 ANN model with the correlation coefficient of 0.98. We found that the following descriptors: Critical pressure, total energy, protease inhibition, distribution coefficient (LogD) and parameter of lipophilicity (miLogP) have a significant effect on the retention times. The prediction results are in very good agreement with the experimental ones. This approach provided a new and effective method for predicting the chromatographic retention index for the secoestrane derivatives investigated.Keywords: lipophilicity, QSRR, RP TLC retention, secoestranes
Procedia PDF Downloads 4573438 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images
Authors: Xiang Shijie, Zhou Dong, Tian Dan
Abstract:
This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition
Procedia PDF Downloads 253437 Developing New Algorithm and Its Application on Optimal Control of Pumps in Water Distribution Network
Authors: R. Rajabpour, N. Talebbeydokhti, M. H. Ahmadi
Abstract:
In recent years, new techniques for solving complex problems in engineering are proposed. One of these techniques is JPSO algorithm. With innovative changes in the nature of the jump algorithm JPSO, it is possible to construct a graph-based solution with a new algorithm called G-JPSO. In this paper, a new algorithm to solve the optimal control problem Fletcher-Powell and optimal control of pumps in water distribution network was evaluated. Optimal control of pumps comprise of optimum timetable operation (status on and off) for each of the pumps at the desired time interval. Maximum number of status on and off for each pumps imposed to the objective function as another constraint. To determine the optimal operation of pumps, a model-based optimization-simulation algorithm was developed based on G-JPSO and JPSO algorithms. The proposed algorithm results were compared well with the ant colony algorithm, genetic and JPSO results. This shows the robustness of proposed algorithm in finding near optimum solutions with reasonable computational cost.Keywords: G-JPSO, operation, optimization, pumping station, water distribution networks
Procedia PDF Downloads 4013436 RBF Modelling and Optimization Control for Semi-Batch Reactors
Authors: Magdi M. Nabi, Ding-Li Yu
Abstract:
This paper presents a neural network based model predictive control (MPC) strategy to control a strongly exothermic reaction with complicated nonlinear kinetics given by Chylla-Haase polymerization reactor that requires a very precise temperature control to maintain product uniformity. In the benchmark scenario, the operation of the reactor must be guaranteed under various disturbing influences, e.g., changing ambient temperatures or impurity of the monomer. Such a process usually controlled by conventional cascade control, it provides a robust operation, but often lacks accuracy concerning the required strict temperature tolerances. The predictive control strategy based on the RBF neural model is applied to solve this problem to achieve set-point tracking of the reactor temperature against disturbances. The result shows that the RBF based model predictive control gives reliable result in the presence of some disturbances and keeps the reactor temperature within a tight tolerance range around the desired reaction temperature.Keywords: Chylla-Haase reactor, RBF neural network modelling, model predictive control, semi-batch reactors
Procedia PDF Downloads 4683435 Cognitive Dysfunctioning and the Fronto-Limbic Network in Bipolar Disorder Patients: A Fmri Meta-Analysis
Authors: Rahele Mesbah, Nic Van Der Wee, Manja Koenders, Erik Giltay, Albert Van Hemert, Max De Leeuw
Abstract:
Introduction: Patients with bipolar disorder (BD), characterized by depressive and manic episodes, often suffer from cognitive dysfunction. An up-to-date meta-analysis of functional Magnetic Resonance Imaging (fMRI) studies examining cognitive function in BD is lacking. Objective: The aim of the current fMRI meta-analysis is to investigate brain functioning of bipolar patients compared with healthy subjects within three domains of emotion processing, reward processing, and working memory. Method: Differences in brain regions activation were tested within whole-brain analysis using the activation likelihood estimation (ALE) method. Separate analyses were performed for each cognitive domain. Results: A total of 50 fMRI studies were included: 20 studies used an emotion processing (316 BD and 369 HC) task, 9 studies a reward processing task (215 BD and 213 HC), and 21 studies used a working memory task (503 BD and 445 HC). During emotion processing, BD patients hyperactivated parts of the left amygdala and hippocampus as compared to HC’s, but showed hypoactivation in the inferior frontal gyrus (IFG). Regarding reward processing, BD patients showed hyperactivation in part of the orbitofrontal cortex (OFC). During working memory, BD patients showed increased activity in the prefrontal cortex (PFC) and anterior cingulate cortex (ACC). Conclusions: This meta-analysis revealed evidence for activity disturbances in several brain areas involved in the cognitive functioning of BD patients. Furthermore, most of the found regions are part of the so-called fronto-limbic network which is hypothesized to be affected as a result of BD candidate genes' expression.Keywords: cognitive functioning, fMRI analysis, bipolar disorder, fronto-limbic network
Procedia PDF Downloads 4623434 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method
Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng
Abstract:
To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal
Procedia PDF Downloads 1653433 The Effect of Critical Activity on Critical Path and Project Duration in Precedence Diagram Method
Abstract:
The additional relationships i.e., start-to-start, finish-to-finish, and start-to-finish, between activity in Precedence Diagram Method (PDM) provides a more flexible schedule than traditional Critical Path Method (CPM). But, changing the duration of critical activities in the PDM network will have an anomalous effect on the critical path and the project completion date. In this study, we classified the critical activities in two groups i.e., 1. activity on single critical path and 2. activity on multi-critical paths, and six classes i.e., normal, reverse, neutral, perverse, decrease-reverse and increase-normal, based on their effects on project duration in PDM. Furthermore, we determined the maximum float of time by which the duration each type of critical activities can be changed without effecting the project duration. This study would help the project manager to clearly understand the behavior of each critical activity on critical path, and he/she would be able to change the project duration by shortening or lengthening activities based on project budget and project deadline.Keywords: construction management, critical path method, project scheduling network, precedence diagram method
Procedia PDF Downloads 2223432 Similar Script Character Recognition on Kannada and Telugu
Authors: Gurukiran Veerapur, Nytik Birudavolu, Seetharam U. N., Chandravva Hebbi, R. Praneeth Reddy
Abstract:
This work presents a robust approach for the recognition of characters in Telugu and Kannada, two South Indian scripts with structural similarities in characters. To recognize the characters exhaustive datasets are required, but there are only a few publicly available datasets. As a result, we decided to create a dataset for one language (source language),train the model with it, and then test it with the target language.Telugu is the target language in this work, whereas Kannada is the source language. The suggested method makes use of Canny edge features to increase character identification accuracy on pictures with noise and different lighting. A dataset of 45,150 images containing printed Kannada characters was created. The Nudi software was used to automatically generate printed Kannada characters with different writing styles and variations. Manual labelling was employed to ensure the accuracy of the character labels. The deep learning models like CNN (Convolutional Neural Network) and Visual Attention neural network (VAN) are used to experiment with the dataset. A Visual Attention neural network (VAN) architecture was adopted, incorporating additional channels for Canny edge features as the results obtained were good with this approach. The model's accuracy on the combined Telugu and Kannada test dataset was an outstanding 97.3%. Performance was better with Canny edge characteristics applied than with a model that solely used the original grayscale images. The accuracy of the model was found to be 80.11% for Telugu characters and 98.01% for Kannada words when it was tested with these languages. This model, which makes use of cutting-edge machine learning techniques, shows excellent accuracy when identifying and categorizing characters from these scripts.Keywords: base characters, modifiers, guninthalu, aksharas, vattakshara, VAN
Procedia PDF Downloads 533431 Artificial Bee Colony Based Modified Energy Efficient Predictive Routing in MANET
Authors: Akhil Dubey, Rajnesh Singh
Abstract:
In modern days there occur many rapid modifications in field of ad hoc network. These modifications create many revolutionary changes in the routing. Predictive energy efficient routing is inspired on the bee’s behavior of swarm intelligence. Predictive routing improves the efficiency of routing in the energetic point of view. The main aim of this routing is the minimum energy consumption during communication and maximized intermediate node’s remaining battery power. This routing is based on food searching behavior of bees. There are two types of bees for the exploration phase the scout bees and for the evolution phase forager bees use by this routing. This routing algorithm computes the energy consumption, fitness ratio and goodness of the path. In this paper we review the literature related with predictive routing, presenting modified routing and simulation result of this algorithm comparison with artificial bee colony based routing schemes in MANET and see the results of path fitness and probability of fitness.Keywords: mobile ad hoc network, artificial bee colony, PEEBR, modified predictive routing
Procedia PDF Downloads 4163430 Developing an Advanced Algorithm Capable of Classifying News, Articles and Other Textual Documents Using Text Mining Techniques
Authors: R. B. Knudsen, O. T. Rasmussen, R. A. Alphinas
Abstract:
The reason for conducting this research is to develop an algorithm that is capable of classifying news articles from the automobile industry, according to the competitive actions that they entail, with the use of Text Mining (TM) methods. It is needed to test how to properly preprocess the data for this research by preparing pipelines which fits each algorithm the best. The pipelines are tested along with nine different classification algorithms in the realm of regression, support vector machines, and neural networks. Preliminary testing for identifying the optimal pipelines and algorithms resulted in the selection of two algorithms with two different pipelines. The two algorithms are Logistic Regression (LR) and Artificial Neural Network (ANN). These algorithms are optimized further, where several parameters of each algorithm are tested. The best result is achieved with the ANN. The final model yields an accuracy of 0.79, a precision of 0.80, a recall of 0.78, and an F1 score of 0.76. By removing three of the classes that created noise, the final algorithm is capable of reaching an accuracy of 94%.Keywords: Artificial Neural network, Competitive dynamics, Logistic Regression, Text classification, Text mining
Procedia PDF Downloads 1213429 Investigation of Resilient Circles in Local Community and Industry: Waju-Traditional Culture in Japan and Modern Technology Application
Authors: R. Ueda
Abstract:
Today global society is seeking resilient partnership in local organizations and individuals, which realizes multi-stakeholders relationship. Although it is proposed by modern global framework of sustainable development, it is conceivable that such affiliation can be found out in the traditional local community in Japan, and that traditional spirit is tacitly sustaining in modern context of disaster mitigation in society and economy. Then this research is aiming to clarify and analyze implication for the global world by actual case studies. Regional and urban resilience is the ability of multi-stakeholders to cooperate flexibly and to adapt in response to changes in the circumstances caused by disasters, but there are various conflicts affecting coordination of disaster relief measures. These conflicts arise not only from a lack of communication and an insufficient network, but also from the difficulty to jointly draw common context from fragmented information. This is because of the weakness of our modern engineering which focuses on maintenance and restoration of individual systems. Here local ‘circles’ holistically includes local community and interacts periodically. Focusing on examples of resilient organizations and wisdom created in communities, what can be seen throughout history is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. And the wisdom of a solid and autonomous disaster prevention formed by the historical community called’ Waju’ – an area surrounded by circle embankment to protect the settlement from flood – lives on in government efforts of the coastal industrial island of today. Industrial company there collaborates to create a circle including common evacuation space, road access improvement and infrastructure recovery. These days, people here adopts new interface technology. Large-scale AR- Augmented Reality for more than hundred people is expressing detailed hazard by tsunami and liquefaction. Common experiences of the major disaster space and circle of mutual discussion are enforcing resilience. Collaboration spirit lies in the center of circle. A consistent key point is a virtuous cycle where the information and the knowledge are structured, the context to be adapted becomes clear, and an adaptation at a higher level is made possible, by which the collaboration between organizations is deepened and expanded. This writer believes that both self-governing human organizations and the societal implementation of technical systems are necessary. Infrastructure should be autonomously instituted by associations of companies and other entities in industrial areas for working closely with local governments. To develop advanced disaster prevention and multi-stakeholder collaboration, partnerships among industry, government, academia and citizens are important.Keywords: industrial recovery, multi-sakeholders, traditional culture, user experience, Waju
Procedia PDF Downloads 113