Search results for: operating temperature
7174 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure
Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser
Abstract:
Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model
Procedia PDF Downloads 4497173 Financial Innovations for Companies Offered by Banks: Polish Experience
Authors: Joanna Błach, Anna Doś, Maria Gorczyńska, Monika Wieczorek-Kosmala
Abstract:
Financial innovations can be regarded as the cause and the effect of the evolution of the financial system. Most of financial innovations are created by various financial institutions for their own purposes and needs. However, due to their diversity, financial innovations can be also applied by various business entities (other than financial institutions). This paper focuses on the potential application of financial innovations by non-financial companies. It is assumed that financial innovations may be effectively applied in all fields of corporate financial decisions integrating financial management with the risk management process. Appropriate application of financial innovations may enhance the development of the company and increase its value by improving its financial situation and reducing the level of risk. On the other hand, misused financial innovations may become the source of extra risk for the company threatening its further operation. The main objective of the paper is to identify the major types of financial innovations offered to non-financial companies by the banking system in Poland. It also aims at identifying the main factors determining the creation of financial innovations in the banking system in Poland and indicating future directions of their development. This paper consists of conceptual and empirical part. Conceptual part based on theoretical study is focused on the determinants of the process of financial innovations and their application by the non-financial companies. Theoretical study is followed by the empirical research based on the analysis of the actual offer of the 20 biggest banks operating in Poland with regard to financial innovations offered to SMEs and large corporations. These innovations are classified according to the main functions of the integrated financial management, such as: Financing, investment, working capital management and risk management. Empirical study has proved that the biggest banks operating in the Polish market offer to their business customers many types and classes of financial innovations. This offer appears vast and adequate to the needs and purposes of the Polish non-financial companies. It was observed that financial innovations pertained to financing decisions dominate in the banks’ offer. However, due to high diversification of the offered financial innovations, business customers may effectively apply them in all fields and areas of integrated financial management. It should be underlined, that the banks’ offer is highly dispersed, which may limit the implementation of financial innovations in the corporate finance. It would be also recommended for the banks operating in the Polish market to intensify the education campaign aiming at increasing knowledge about financial innovations among business customers.Keywords: banking products and services, banking sector in Poland, corporate financial management, financial innovations, theory of innovation
Procedia PDF Downloads 3087172 Energy Management System with Temperature Rise Prevention on Hybrid Ships
Authors: Asser S. Abdelwahab, Nabil H. Abbasy, Ragi A. Hamdy
Abstract:
Marine shipping has now become one of the major worldwide contributors to pollution and greenhouse gas emissions. Hybrid ships technology based on multiple energy sources has taken a great scope of research to get rid of ship emissions and cut down fuel expenses. Insufficiency between power generated and the demand load to withstand the transient behavior on ships during severe climate conditions will lead to a blackout. Thus, an efficient energy management system (EMS) is a mandatory scope for achieving higher system efficiency while enhancing the lifetime of the onboard storage systems is another salient EMS scope. Considering energy storage system conditions, both the battery state of charge (SOC) and temperature represent important parameters to prevent any malfunction of the storage system that eventually degrades the whole system. In this paper, a two battery packs ratio fuzzy logic control model is proposed. The overall aim is to control the charging/discharging current while including both the battery SOC and temperature in the energy management system. The full designs of the proposed controllers are described and simulated using Matlab. The results prove the successfulness of the proposed controller in stabilizing the system voltage during both loading and unloading while keeping the energy storage system in a healthy condition.Keywords: energy storage system, power shipboard, hybrid ship, thermal runaway
Procedia PDF Downloads 2067171 A Basic Concept for Installing Cooling and Heating System Using Seawater Thermal Energy from the West Coast of Korea
Authors: Jun Byung Joon, Seo Seok Hyun, Lee Seo Young
Abstract:
As carbon dioxide emissions increase due to rapid industrialization and reckless development, abnormal climates such as floods and droughts are occurring. In order to respond to such climate change, the use of existing fossil fuels is reduced, and the proportion of eco-friendly renewable energy is gradually increasing. Korea is an energy resource-poor country that depends on imports for 93% of its total energy. As the global energy supply chain instability experienced due to the Russia-Ukraine crisis increases, countries around the world are resetting energy policies to minimize energy dependence and strengthen security. Seawater thermal energy is a renewable energy that replaces the existing air heat energy. It uses the characteristic of having a higher specific heat than air to cool and heat main spaces of buildings to increase heat transfer efficiency and minimize power consumption to generate electricity using fossil fuels, and Carbon dioxide emissions can be minimized. In addition, the effect on the marine environment is very small by using only the temperature characteristics of seawater in a limited way. K-water carried out a demonstration project of supplying cooling and heating energy to spaces such as the central control room and presentation room in the management building by acquiring the heat source of seawater circulated through the power plant's waterway by using the characteristics of the tidal power plant. Compared to the East Sea and the South Sea, the main system was designed in consideration of the large tidal difference, small temperature difference, and low-temperature characteristics, and its performance was verified through operation during the demonstration period. In addition, facility improvements were made for major deficiencies to strengthen monitoring functions, provide user convenience, and improve facility soundness. To spread these achievements, the basic concept was to expand the seawater heating and cooling system with a scale of 200 USRT at the Tidal Culture Center. With the operational experience of the demonstration system, it will be possible to establish an optimal seawater heat cooling and heating system suitable for the characteristics of the west coast ocean. Through this, it is possible to reduce operating costs by KRW 33,31 million per year compared to air heat, and through industry-university-research joint research, it is possible to localize major equipment and materials and develop key element technologies to revitalize the seawater heat business and to advance into overseas markets. The government's efforts are needed to expand the seawater heating and cooling system. Seawater thermal energy utilizes only the thermal energy of infinite seawater. Seawater thermal energy has less impact on the environment than river water thermal energy, except for environmental pollution factors such as bottom dredging, excavation, and sand or stone extraction. Therefore, it is necessary to increase the sense of speed in project promotion by innovatively simplifying unnecessary licensing/permission procedures. In addition, support should be provided to secure business feasibility by dramatically exempting the usage fee of public waters to actively encourage development in the private sector.Keywords: seawater thermal energy, marine energy, tidal power plant, energy consumption
Procedia PDF Downloads 1077170 Evaluation of Heating/Cooling Potential of a Passive Building
Authors: M. Jamil Ahmad
Abstract:
In this paper, the heating/cooling potential of a passive building (mosque) of Prof. K. A. Nizami center for Quranic studies at AMU Aligarh, has been evaluated on the basis of energy balance under quasi-steady state condition by incorporating the effect of ventilation. The study has been carried out for composite climate of Aligarh. The performance of the above mentioned building has been presented in this study. It is observed that the premises of the mosque are cooler than the outside ambient temperature by an average of 2°C and 4°C during the month of March and April respectively. Provision of excellent ventilation, high amount of thermal mass, high ceilings and circulation of cool natural air helps in maintaining an optimal thermal comfort temperature in the passive building.Keywords: heating/cooling potential, passive building, ambient temperatures
Procedia PDF Downloads 3927169 Thermophoresis Particle Precipitate on Heated Surfaces
Authors: Rebhi A. Damseh, H. M. Duwairi, Benbella A. Shannak
Abstract:
This work deals with heat and mass transfer by steady laminar boundary layer flow of a Newtonian, viscous fluid over a vertical flat plate with variable surface heat flux embedded in a fluid saturated porous medium in the presence of thermophoresis particle deposition effect. The governing partial differential equations are transformed into no-similar form by using special transformation and solved numerically by using an implicit finite difference method. Many results are obtained and a representative set is displaced graphically to illustrate the influence of the various physical parameters on the wall thermophoresis deposition velocity and concentration profiles. It is found that the increasing of thermophoresis constant or temperature differences enhances heat transfer rates from vertical surfaces and increase wall thermophoresis velocities; this is due to favourable temperature gradients or buoyancy forces. It is also found that the effect of thermophoresis phenomena is more pronounced near pure natural convection heat transfer limit; because this phenomenon is directly a temperature gradient or buoyancy forces dependent. Comparisons with previously published work in the limits are performed and the results are found to be in excellent agreement.Keywords: thermophoresis, porous medium, variable surface heat flux, heat transfer
Procedia PDF Downloads 2057168 Preparation of Nb Silicide-Based Alloy Powder by Hydrogenation-Dehydrogenation (HDH) Reaction
Authors: Gi-Beom Park, Hyong-Gi Park, Seong-Yong Lee, Jaeho Choi, Seok Hong Min, Tae Kwon Ha
Abstract:
The Nb silicide-based alloy has the excellent high-temperature strength and relatively lower density than the Ni-based superalloy; therefore, it has been receiving a lot of attention for the next generation high-temperature material. To enhance the high temperature creep property and oxidation resistance, Si was added to the Nb-based alloy, resulting in a multi-phase microstructure with metal solid solution and silicide phase. Since the silicide phase has a low machinability due to its brittle nature, it is necessary to fabricate components using the powder metallurgy. However, powder manufacturing techniques for the alloys have not yet been developed. In this study, we tried to fabricate Nb-based alloy powder by the hydrogenation-dehydrogenation reaction. The Nb-based alloy ingot was prepared by vacuum arc melting and it was annealed in the hydrogen atmosphere for the hydrogenation. After annealing, the hydrogen concentration was increased from 0.004wt% to 1.22wt% and Nb metal phase was transformed to Nb hydride phase. The alloy after hydrogenation could be easily pulverized into powder by ball milling due to its brittleness. For dehydrogenation, the alloy powders were annealed in the vacuum atmosphere. After vacuum annealing, the hydrogen concentration was decreased to 0.003wt% and Nb hydride phase was transformed back to Nb metal phase.Keywords: Nb alloy, Nb metal and silicide composite, powder, hydrogenation-dehydrogenation reaction
Procedia PDF Downloads 2507167 Spatiotemporal Analysis of Land Surface Temperature and Urban Heat Island Evaluation of Four Metropolitan Areas of Texas, USA
Authors: Chunhong Zhao
Abstract:
Remotely sensed land surface temperature (LST) is vital to understand the land-atmosphere energy balance, hydrological cycle, and thus is widely used to describe the urban heat island (UHI) phenomenon. However, due to technical constraints, satellite thermal sensors are unable to provide LST measurement with both high spatial and high temporal resolution. Despite different downscaling techniques and algorithms to generate high spatiotemporal resolution LST. Four major metropolitan areas in Texas, USA: Dallas-Fort Worth, Houston, San Antonio, and Austin all demonstrate UHI effects. Different cities are expected to have varying SUHI effect during the urban development trajectory. With the help of the Landsat, ASTER, and MODIS archives, this study focuses on the spatial patterns of UHIs and the seasonal and annual variation of these metropolitan areas. With Gaussian model, and Local Indicators of Spatial Autocorrelations (LISA), as well as data fusion methods, this study identifies the hotspots and the trajectory of the UHI phenomenon of the four cities. By making comparison analysis, the result can help to alleviate the advent effect of UHI and formulate rational urban planning in the long run.Keywords: spatiotemporal analysis, land surface temperature, urban heat island evaluation, metropolitan areas of Texas, USA
Procedia PDF Downloads 4217166 Application of Water Soluble Polymers in Chemical Enhanced Oil Recovery
Authors: M. Shahzad Kamal, Abdullah S. Sultan, Usamah A. Al-Mubaiyedh, Ibnelwaleed A. Hussein
Abstract:
Oil recovery from reservoirs using conventional oil recovery techniques like water flooding is less than 20%. Enhanced oil recovery (EOR) techniques are applied to recover additional oil. Surfactant-polymer flooding is a promising EOR technique used to recover residual oil from reservoirs. Water soluble polymers are used to increase the viscosity of displacing fluids. Surfactants increase the capillary number by reducing the interfacial tension between oil and displacing fluid. Hydrolyzed polyacrylamide (HPAM) is widely used in polymer flooding applications due to its low cost and other desirable properties. HPAM works well in low-temperature and low salinity-environment. In the presence of salts HPAM viscosity decrease due to charge screening effect and it can precipitate at high temperatures in the presence of salts. Various strategies have been adopted to extend the application of water soluble polymers to high-temperature high-salinity (HTHS) reservoir. These include addition of monomers to acrylamide chain that can protect it against thermal hydrolysis. In this work, rheological properties of various water soluble polymers were investigated to find out suitable polymer and surfactant-polymer systems for HTHS reservoirs. Polymer concentration ranged from 0.1 to 1 % (w/v). Effect of temperature, salinity and polymer concentration was investigated using both steady shear and dynamic measurements. Acrylamido tertiary butyl sulfonate based copolymer showed better performance under HTHS conditions compared to HPAM. Moreover, thermoviscosifying polymer showed excellent rheological properties and increase in the viscosity was observed with increase temperature. This property is highly desirable for EOR application.Keywords: rheology, polyacrylamide, salinity, enhanced oil recovery, polymer flooding
Procedia PDF Downloads 4177165 Effects of Heat Treatment on the Mechanical Properties of Kenaf Fiber
Authors: Paulo Teodoro De Luna Carada, Toru Fujii, Kazuya Okubo
Abstract:
Natural fibers have wide variety of uses (e.g., rope, paper, and building materials). One specific application of it is in the field of composite materials (i.e., green composites). Huge amount of research are being done in this field due to rising concerns in the harmful effects of synthetic materials to the environment. There are several natural fibers used in this field, one of which can be extracted from a plant called kenaf (Hibiscus cannabinus L.). Kenaf fiber is regarded as a good alternative because the plant is easy to grow and the fiber is easy to extract. Additionally, it has good properties. Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the properties of the fiber. The aim of this study is to assess the effects of heat treatment in kenaf fiber. It specifically aims to observe the effect in the tensile strength and modulus of the fiber. Kenaf fiber bundles with an average diameter of at most 100μm was used for this purpose. Heat treatment was done using a constant temperature oven with the following heating temperatures: (1) 160̊C, (2) 180̊C, and (3) 200̊C for a duration of one hour. As a basis for comparison, tensile test was first done to kenaf fibers without any heat treatment. For every heating temperature, three groups of samples were prepared. Two groups of which were for doing tensile test (one group was tested right after heat treatment while the remaining group was kept inside a closed container with relative humidity of at least 95% for two days). The third group was used to observe how much moisture the treated fiber will absorb when it is enclosed in a high moisture environment for two days. The results showed that kenaf fiber can retain its tensile strength when heated up to a temperature of 160̊C. However, when heated at a temperature of about 180̊C or higher, the tensile strength decreases significantly. The same behavior was observed for the tensile modulus of the fiber. Additionally, the fibers which were stored for two days absorbed nearly the same amount of moisture (about 20% of the dried weight) regardless of the heating temperature. Heat treatment might have damaged the fiber in some way. Additional test was done in order to see if the damage due to heat treatment is attributed to changes in the viscoelastic property of the fiber. The findings showed that kenaf fibers can be heated for at most 160̊C to attain good tensile strength and modulus. Additionally, heating the fiber at high temperature (>180̊C) causes changes in its viscoelastic property. The results of this study is significant for processes which requires heat treatment not only in kenaf fiber but might also be helpful for natural fibers in general.Keywords: heat treatment, kenaf fiber, natural fiber, mechanical properties
Procedia PDF Downloads 3577164 Vulnerability of Indian Agriculture to Climate Change: A Study of the Himalayan Region State
Authors: Rajendra Kumar Isaac, Monisha Isaac
Abstract:
Climate variability and changes are the emerging challenges for Indian agriculture with the growing population to ensure national food security. A study was conducted to assess the Climatic Change effects in medium to low altitude areas of the Himalayan region causing changes in land use and cereal crop productivity with the various climatic parameters. The rainfall and temperature changes from 1951 to 2013 were studied at four locations of varying altitudes, namely Hardwar, Rudra Prayag, Uttar Kashi and Tehri Garwal. It was observed that there is noticeable increment in temperature on all the four locations. It was surprisingly observed that the mean rainfall intensity of 30 minutes duration has increased at the rate of 0.1 mm/hours since 2000. The study shows that the combined effect of increasing temperature, rainfall, runoff and urbanization at the mid-Himalayan region is causing an increase in various climatic disasters and changes in agriculture patterns. A noticeable change in cropping patterns, crop productivity and land use change was observed. Appropriate adaptation and mitigation strategies are necessary to ensure that sustainable and climate-resilient agriculture. Appropriate information is necessary for farmers, as well as planners and decision makers for developing, disseminating and adopting climate-smart technologies.Keywords: climate variability, agriculture, land use, mitigation strategies
Procedia PDF Downloads 2747163 Thermal Fatigue Behavior of 400 Series Ferritic Stainless Steels
Authors: Seok Hong Min, Tae Kwon Ha
Abstract:
In this study, thermal fatigue properties of 400 series ferritic stainless steels have been evaluated in the temperature ranges of 200-800oC and 200-900oC. Systematic methods for control of temperatures within the predetermined range and measurement of load applied to specimens as a function of temperature during thermal cycles have been established. Thermal fatigue tests were conducted under fully constrained condition, where both ends of specimens were completely fixed. It has been revealed that load relaxation behavior at the temperatures of thermal cycle was closely related with the thermal fatigue property. Thermal fatigue resistance of 430J1L stainless steel is found to be superior to the other steels.Keywords: ferritic stainless steel, automotive exhaust, thermal fatigue, microstructure, load relaxation
Procedia PDF Downloads 3487162 Climate Change Scenario Phenomenon in Malaysia: A Case Study in MADA Area
Authors: Shaidatul Azdawiyah Abdul Talib, Wan Mohd Razi Idris, Liew Ju Neng, Tukimat Lihan, Muhammad Zamir Abdul Rasid
Abstract:
Climate change has received great attention worldwide due to the impact of weather causing extreme events. Rainfall and temperature are crucial weather components associated with climate change. In Malaysia, increasing temperatures and changes in rainfall distribution patterns lead to drought and flood events involving agricultural areas, especially rice fields. Muda Agricultural Development Authority (MADA) is the largest rice growing area among the 10 granary areas in Malaysia and has faced floods and droughts in the past due to changing climate. Changes in rainfall and temperature patter affect rice yield. Therefore, trend analysis is important to identify changes in temperature and rainfall patterns as it gives an initial overview for further analysis. Six locations across the MADA area were selected based on the availability of meteorological station (MetMalaysia) data. Historical data (1991 to 2020) collected from MetMalaysia and future climate projection by multi-model ensemble of climate model from CMIP5 (CNRM-CM5, GFDL-CM3, MRI-CGCM3, NorESM1-M and IPSL-CM5A-LR) have been analyzed using Mann-Kendall test to detect the time series trend, together with standardized precipitation anomaly, rainfall anomaly index, precipitation concentration index and temperature anomaly. Future projection data were analyzed based on 3 different periods; early century (2020 – 2046), middle century (2047 – 2073) and late-century (2074 – 2099). Results indicate that the MADA area does encounter extremely wet and dry conditions, leading to drought and flood events in the past. The Mann-Kendall (MK) trend analysis test discovered a significant increasing trend (p < 0.05) in annual rainfall (z = 0.40; s = 15.12) and temperature (z = 0.61; s = 0.04) during the historical period. Similarly, for both RCP 4.5 and RCP 8.5 scenarios, a significant increasing trend (p < 0.05) was found for rainfall (RCP 4.5: z = 0.15; s = 2.55; RCP 8.5: z = 0.41; s = 8.05;) and temperature (RCP 4.5: z = 0.84; s = 0.02; RCP 8.5: z = 0.94; s = 0.05). Under the RCP 4.5 scenario, the average temperature is projected to increase up to 1.6 °C in early century, 2.0 °C in the middle century and 2.4 °C in the late century. In contrast, under RCP 8.5 scenario, the average temperature is projected to increase up to 1.8 °C in the early century, 3.1 °C in the middle century and 4.3 °C in late century. Drought is projected to occur in 2038 and 2043 (early century); 2052 and 2069 (middle century); and 2095, 2097 to 2099 (late century) under RCP 4.5 scenario. As for RCP 8.5 scenario, drought is projected to occur in 2021, 2031 and 2034 (early century); and 2069 (middle century). No drought is projected to occur in the late century under the RCP 8.5 scenario. Thus, this information can be used for the analysis of the impact of climate change scenarios on rice growth and yield besides other crops found in MADA area. Additionally, this study, it would be helpful for researchers and decision-makers in developing applicable adaptation and mitigation strategies to reduce the impact of climate change.Keywords: climate projection, drought, flood, rainfall, RCP 4.5, RCP 8.5, temperature
Procedia PDF Downloads 827161 The Influence of Reaction Parameters on Magnetic Properties of Synthesized Strontium Ferrite
Authors: M. Bahgat, F. M. Awan, H. A. Hanafy
Abstract:
The conventional ceramic route was utilized to prepare a hard magnetic powder (M-type strontium ferrite, SrFe12O19). The stoichiometric mixture of iron oxide and strontium carbonate were calcined at 1000°C and then fired at various temperatures. The influence of various reaction parameters such as mixing ratio, calcination temperature, firing temperature and firing time on the magnetic behaviors of the synthesized magnetic powder were investigated.The magnetic properties including Coercivity (Hc), Magnetic saturation (Ms), and Magnetic remnance (Mr) were measured by vibrating sample magnetometer. Morphologically the produced magnetic powder has a dense hexagonal grain shape structure.Keywords: hard magnetic materials, ceramic route, strontium ferrite, magnetic properties
Procedia PDF Downloads 6997160 A Note on MHD Flow and Heat Transfer over a Curved Stretching Sheet by Considering Variable Thermal Conductivity
Authors: M. G. Murtaza, E. E. Tzirtzilakis, M. Ferdows
Abstract:
The mixed convective flow of MHD incompressible, steady boundary layer in heat transfer over a curved stretching sheet due to temperature dependent thermal conductivity is studied. We use curvilinear coordinate system in order to describe the governing flow equations. Finite difference solutions with central differencing have been used to solve the transform governing equations. Numerical results for the flow velocity and temperature profiles are presented as a function of the non-dimensional curvature radius. Skin friction coefficient and local Nusselt number at the surface of the curved sheet are discussed as well.Keywords: curved stretching sheet, finite difference method, MHD, variable thermal conductivity
Procedia PDF Downloads 2007159 The Electric Car Wheel Hub Motor Work Analysis with the Use of 2D FEM Electromagnetic Method and 3D CFD Thermal Simulations
Authors: Piotr Dukalski, Bartlomiej Bedkowski, Tomasz Jarek, Tomasz Wolnik
Abstract:
The article is concerned with the design of an electric in wheel hub motor installed in an electric car with two-wheel drive. It presents the construction of the motor on the 3D cross-section model. Work simulation of the motor (applicated to Fiat Panda car) and selected driving parameters such as driving on the road with a slope of 20%, driving at maximum speed, maximum acceleration of the car from 0 to 100 km/h are considered by the authors in the article. The demand for the drive power taking into account the resistance to movement was determined for selected driving conditions. The parameters of the motor operation and the power losses in its individual elements, calculated using the FEM 2D method, are presented for the selected car driving parameters. The calculated power losses are used in 3D models for thermal calculations using the CFD method. Detailed construction of thermal models with materials data, boundary conditions and losses calculated using the FEM 2D method are presented in the article. The article presents and describes calculated temperature distributions in individual motor components such as winding, permanent magnets, magnetic core, body, cooling system components. Generated losses in individual motor components and their impact on the limitation of its operating parameters are described by authors. Attention is paid to the losses generated in permanent magnets, which are a source of heat as the removal of which from inside the motor is difficult. Presented results of calculations show how individual motor power losses, generated in different load conditions while driving, affect its thermal state.Keywords: electric car, electric drive, electric motor, thermal calculations, wheel hub motor
Procedia PDF Downloads 1787158 Modification of Magneto-Transport Properties of Ferrimagnetic Mn₄N Thin Films by Ni Substitution and Their Magnetic Compensation
Authors: Taro Komori, Toshiki Gushi, Akihito Anzai, Taku Hirose, Kaoru Toko, Shinji Isogami, Takashi Suemasu
Abstract:
Ferrimagnetic antiperovskite Mn₄₋ₓNiₓN thin film exhibits both small saturation magnetization and rather large perpendicular magnetic anisotropy (PMA) when x is small. Both of them are suitable features for application to current induced domain wall motion devices using spin transfer torque (STT). In this work, we successfully grew antiperovskite 30-nm-thick Mn₄₋ₓNiₓN epitaxial thin films on MgO(001) and STO(001) substrates by MBE in order to investigate their crystalline qualities and magnetic and magneto-transport properties. Crystalline qualities were investigated by X-ray diffraction (XRD). The magnetic properties were measured by vibrating sample magnetometer (VSM) at room temperature. Anomalous Hall effect was measured by physical properties measurement system. Both measurements were performed at room temperature. Temperature dependence of magnetization was measured by VSM-Superconducting quantum interference device. XRD patterns indicate epitaxial growth of Mn₄₋ₓNiₓN thin films on both substrates, ones on STO(001) especially have higher c-axis orientation thanks to greater lattice matching. According to VSM measurement, PMA was observed in Mn₄₋ₓNiₓN on MgO(001) when x ≤ 0.25 and on STO(001) when x ≤ 0.5, and MS decreased drastically with x. For example, MS of Mn₃.₉Ni₀.₁N on STO(001) was 47.4 emu/cm³. From the anomalous Hall resistivity (ρAH) of Mn₄₋ₓNiₓN thin films on STO(001) with the magnetic field perpendicular to the plane, we found out Mr/MS was about 1 when x ≤ 0.25, which suggests large magnetic domains in samples and suitable features for DW motion device application. In contrast, such square curves were not observed for Mn₄₋ₓNiₓN on MgO(001), which we attribute to difference in lattice matching. Furthermore, it’s notable that although the sign of ρAH was negative when x = 0 and 0.1, it reversed positive when x = 0.25 and 0.5. The similar reversal occurred for temperature dependence of magnetization. The magnetization of Mn₄₋ₓNiₓN on STO(001) increases with decreasing temperature when x = 0 and 0.1, while it decreases when x = 0.25. We considered that these reversals were caused by magnetic compensation which occurred in Mn₄₋ₓNiₓN between x = 0.1 and 0.25. We expect Mn atoms of Mn₄₋ₓNiₓN crystal have larger magnetic moments than Ni atoms do. The temperature dependence stated above can be explained if we assume that Ni atoms preferentially occupy the corner sites, and their magnetic moments have different temperature dependence from Mn atoms at the face-centered sites. At the compensation point, Mn₄₋ₓNiₓN is expected to show very efficient STT and ultrafast DW motion with small current density. What’s more, if angular momentum compensation is found, the efficiency will be best optimized. In order to prove the magnetic compensation, X-ray magnetic circular dichroism will be performed. Energy dispersive X-ray spectrometry is a candidate method to analyze the accurate composition ratio of samples.Keywords: compensation, ferrimagnetism, Mn₄N, PMA
Procedia PDF Downloads 1397157 Energy Efficiency Improvement of Excavator with Independent Metering Valve by Continuous Mode Changing Considering Engine Fuel Consumption
Authors: Sang-Wook Lee, So-Yeon Jeon, Min-Gi Cho, Dae-Young Shin, Sung-Ho Hwang
Abstract:
Hydraulic system of excavator gets working energy from hydraulic pump which is connected to output shaft of engine. Recently, main control valve (MCV) which is composed of several independent metering valve (IMV) has been introduced for better energy efficiency of the hydraulic system so that fuel efficiency of the excavator can be improved. Excavator with IMV has 5 operating modes depending on the quantity of regeneration flow. In this system, the hydraulic pump is controlled to supply demanded flow which is needed to operate each mode. Because the regenerated flow supply energy to actuators, the hydraulic pump consumes less energy to make same motion than one that does not regenerate flow. The horse power control is applied to the hydraulic pump of excavator for maintaining engine start under a heavy load and this control makes the flow of hydraulic pump reduced. When excavator is in complex operation such as loading or unloading soil, the hydraulic pump discharges small quantity of working fluid in high pressure. At this operation, the engine of excavator does not run at optimal operating line (OOL). The engine needs to be operated on OOL to improve fuel efficiency and by controlling hydraulic pump the engine can drive on OOL. By continuous mode changing of IMV, the hydraulic pump is controlled to make engine runs on OOL. The simulation result of this study shows that fuel efficiency of excavator with IMV can be improved by considering engine OOL and continuous mode changing algorithm.Keywords: continuous mode changing, engine fuel consumption, excavator, fuel efficiency, IMV
Procedia PDF Downloads 3887156 Impact of Meteorological Factors on Influenza Activity in Pakistan; A Tale of Two Cities
Authors: Nadia Nisar
Abstract:
Background: In the temperate regions Influenza activities occur sporadically all year round with peaks coinciding during cold months. Meteorological and environmental conditions play significant role in the transmission of influenza globally. In this study, we assessed the relationship between meteorological parameters and influenza activity in two geographical areas of Pakistan. Methods: Influenza data were collected from Islamabad (north) and Multan (south) regions of national influenza surveillance system during 2010-2015. Meteorological database was obtained from National Climatic Data Center (Pakistan). Logistic regression model with a stepwise approach was used to explore the relationship between meteorological parameters with influenza peaks. In statistical model, we used the weekly proportion of laboratory-confirmed influenza positive samples to represent Influenza activity with metrological parameters as the covariates (temperature, humidity and precipitation). We also evaluate the link between environmental conditions associated with seasonal influenza epidemics: 'cold-dry' and 'humid-rainy'. Results: We found that temperature and humidity was positively associated with influenza in north and south both locations (OR = 0.927 (0.88-0.97)) & (OR = 0.1.078 (1.027-1.132)) and (OR = 1.023 (1.008-1.037)) & (OR = 0.978 (0.964-0.992)) respectively, whilst precipitation was negatively associated with influenza (OR = 1.054 (1.039-1.070)) & (OR = 0.949 (0.935-0.963)). In both regions, temperature and humidity had the highest contribution to the model as compared to the precipitation. We revealed that the p-value for all of climate parameters is <0.05 by Independent-sample t-test. These results demonstrate that there were significant relationships between climate factors and influenza infection with correlation coefficients: 0.52-0.90. The total contribution of these three climatic variables accounted for 89.04%. The reported number of influenza cases increased sharply during the cold-dry season (i.e., winter) when humidity and temperature are at minimal levels. Conclusion: Our findings showed that measures of temperature, humidity and cold-dry season (winter) can be used as indicators to forecast influenza infections. Therefore integrating meteorological parameters for influenza forecasting in the surveillance system may benefit the public health efforts in reducing the burden of seasonal influenza. More studies are necessary to understand the role of these parameters in the viral transmission and host susceptibility process.Keywords: influenza, climate, metrological, environmental
Procedia PDF Downloads 2037155 Observation of a Phase Transition in Adsorbed Hydrogen at 101 Kelvin
Authors: Raina J. Olsen, Andrew K. Gillespie, John W. Taylor, Cristian I. Contescu, Peter Pfeifer, James R. Morris
Abstract:
While adsorbent surfaces such as graphite are known to increase the melting temperature of solid H2, this effect is normally rather small, increasing to 20 Kelvin (K) relative to 14 K in the bulk. An as-yet unidentified phase transition has been observed in a system of H2 adsorbed in a porous, locally graphitic, Saran carbon with sub-nanometer sized pores at temperatures (74-101 K) and pressures ( > 76 bar) well above the critical point of bulk H2 using hydrogen adsorption and neutron scattering experiments. Adsorption data shows a discontinuous pressure jump in the kinetics at 76 bar after nearly an hour of equilibration time, which is identified as an exothermic phase transition. This discontinuity is observed in the 87 K isotherm, but not the 77 K isotherm. At higher pressures, the measured isotherms show greater excess adsorption at 87 K than 77 K. Inelastic neutron scattering measurements also show a striking phase transition, with the amount of high angle scattering (corresponding to large momentum transfer/ large effective mass) increasing by up to a factor of 5 in the novel phase. During the course of the neutron scattering experiment, three of these reversible spectral phase transitions were observed to occur in response to only changes in sample temperature. The novel phase was observed by neutron scattering only at high H2 pressure (123 bar and 187 bar) and temperatures between 74-101 K in the sample of interest, but not at low pressure (30 bar), or in a control activated carbon at 186 bar of H2 pressure. Based on several of the more unusual observations, such as the slow equilibration and the presence of both an upper and lower temperature bound, a reasonable hypothesis is that this phase forms only in the presence of a high concentration of ortho-H2 (nuclear spin S=1). The increase in adsorption with temperature, temperatures which cross the lower temperature bound observed by neutron scattering, indicates that this novel phase is denser. Structural characterization data on the adsorbent shows that it may support a commensurate solid phase denser than those known to exist on graphite at much lower temperatures. Whatever this phase is eventually proven to be, these results show that surfaces can have a more striking effect on hydrogen phases than previously thought.Keywords: adsorbed phases, hydrogen, neutron scattering, nuclear spin
Procedia PDF Downloads 4687154 RF Plasma Discharge Equipment for Conservation Treatments of Paper Supports
Authors: Emil Ghiocel Ioanid, Viorica Frunză, Dorina Rusu, Ana Maria Vlad, Catalin Tanase, Simona Dunca
Abstract:
The application of cold radio-frequency (RF) plasma in the conservation of cultural heritage became important in the last decades due to the positive results obtained in decontamination treatments. This paper presents an equipment especially designed for RF cold plasma application on paper documents, developed within a research project. The equipment allows the application of decontamination and cleaning treatments on any type of paper support, as well as the coating with a protective polymer. The equipment consists in a Pyrex vessel, inside which are placed two plane-parallel electrodes, capacitively coupled to a radio-frequency generator. The operating parameters of the equipment are: 1.2 MHz frequency, 50V/cm electric field intensity, current intensity in the discharge 100 mA, 40 W power in the discharge, the pressure varying from 5∙10-1 mbar to 5.5∙10-1 mbar, depending on the fragility of the material, operating in gaseous nitrogen. In order to optimize the equipment treatments in nitrogen plasma have been performed on samples infested with microorganisms, then the decontamination and the changes in surface properties (color, pH) were assessed. The analyses results presented in the table revealed only minor modifications of surface pH the colorimetric analysis showing a slight change to yellow. The equipment offers the possibility of performing decontamination, cleaning and protective coating of paper-based documents in successive stages, thus avoiding the recontamination with harmful biological agents.Keywords: nitrogen plasma, cultural heritage, paper support, radio-frequency
Procedia PDF Downloads 5297153 Probing Multiple Relaxation Process in Zr-Cu Base Alloy Using Mechanical Spectroscopy
Authors: A. P. Srivastava, D. Srivastava, D. J. Browne
Abstract:
Relaxation dynamics of Zr44Cu40Al8Ag8 bulk metallic glass (BMG) has been probed using dynamic mechanical analyzer. The BMG sample was casted in the form of a plate of dimension 55 mm x 40 mm x 3 mm using tilt casting technique. X-ray diffraction and transmission electron microscope have been used for the microstructural characterization of as-cast BMG. For the mechanical spectroscopy study, samples in the form of a bar of size 55 mm X 2 mm X 3 mm were machined from the BMG plate. The mechanical spectroscopy was performed on dynamic mechanical analyzer (DMA) by 50 mm 3-point bending method in a nitrogen atmosphere. It was observed that two glass transition process were competing in supercooled liquid region around temperature 390°C and 430°C. The supercooled liquid state was completely characterized using DMA and differential scanning calorimeter (DSC). In addition to the main α-relaxation process, presence of β relaxation process around temperature 360°C; below the glass transition temperature was also observed. The β relaxation process could be described by Arrhenius law with the activation energy of 160 kJ/mole. The volume of the flow unit associated with this relaxation process has been estimated. The results from DMA study has been used to characterize the shear transformation zone in terms of activation volume and size. High fragility parameter value of 34 and higher activation volume indicates that this alloy could show good plasticity in supercooled liquid region. The possible mechanism for the relaxation processes has been discussed.Keywords: DMA, glass transition, metallic glass, thermoplastic forming
Procedia PDF Downloads 2997152 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment
Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo
Abstract:
Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature
Procedia PDF Downloads 2877151 Investigating Nanocrystalline CaF2:Tm for Carbon Beam and Gamma Radiation Dosimetry
Authors: Kanika Sharma, Shaila Bahl, Birendra Singh, Pratik Kumar, S. P. Lochab, A. Pandey
Abstract:
In the present investigation, initially nano-particles of CaF2 were prepared by the chemical co-precipitation method and later the prepared salt was activated by thulium (0.1 mol%) using the combustion technique. The final product was characterized and confirmed by X-Ray diffraction (XRD) and transmission electron microscopy (TEM). Further, the thermoluminescence (TL) properties of the nanophosphor were studied by irradiating it with 1.25 MeV of gamma radiation and 65 MeV of carbon (C6+) ion beam. For gamma rays, two prominent TL peaks were observed with a low temperature peak at around 1070C and a high temperature peak at around 1570C. Furthermore, the nanophosphor maintained a linear TL response for the entire range of studied doses i.e. 10 Gy to 2000 Gy for both the temperature peaks. Moreover, when the nanophosphor was irradiated with 65 MeV of C6+ ion beam the shape and structure of the glow curves remained spectacularly similar and the nanophosphor displayed a linear TL response for the full range of studied fluences i.e. 5*1010 ions/cm2 to 1 *1012 ions/ cm2. Finally, various tests like reproducibility test and batch homogeneity were also carried out to define the final product. Thus, co-precipitation method followed by combustion technique was successful in effectively producing dosimetric grade CaF2:Tm for dosimetry of gamma as well as carbon (C6+) beam.Keywords: gamma radiation, ion beam, nanocrystalline, radiation dosimetry
Procedia PDF Downloads 1877150 Beating Heart Coronary Artery Bypass Grafting on Intermittent Pump Support
Authors: Sushil Kumar Singh, Vivek Tewarson, Sarvesh Kumar, Shobhit Kumar
Abstract:
Objective: ‘Beating Heart coronary artery bypass grafting on Intermittent Pump Support’ is a more reliable method of coronary revascularization that takes advantage of off and on-pump CABG while eliminating the disadvantage of both techniques. Methods: From January 2015 to December 2021, a new technique, “Intermittent On pump beating heart CABG” using a suction stabilizer was used by putting aortic and venous cannulas electively in all the patients. Patients were supported by a pump intermittently, as and when required (Group 1, n=254). Retrospective data were collected from our record of the patients who underwent off-pump CABG electively by the same surgeon and team (Group 2, n=254). Results: Significant advantage was noted in Group 1 patients in terms of the number of grafts (3.31 ± 1.16 vs. 2.30 ±0.66), grafting of lateral vessels (316 vs.202), mean operating time (1.37 ± 0.23 hrs vs. 2.22 ± 0.45 hrs) and postoperative blood loss (406.30 ± 257.90 ml vs. 567.41 ± 265.20 ml).CPB support time was less than 15 minutes in the majority of patients (n=179, 70.37 %), with a mean of 16.81 minutes. It was required, particularly during the grafting of lateral vessels. A rise in enzymes level (CRP, CKMB, Trop I, and NTPro BNP) was noted in Group 1 patients. But, these did not affect the postoperative course in patients. There was no mortality in Group 1 patients, while four patients in Group 2 died. Coclusions: Intermittent on-pump CABG technique is a promising method of surgical revascularization for all patients requiring CABG. It has shown its superiority in terms of safety, the number of grafts, operating time, and better perioperative course.Keywords: cardiopulmonary bypass, CABG, beating heart CABG, on-pump CABG
Procedia PDF Downloads 1237149 Numerical Simulation of Different Configurations for a Combined Gasification/Carbonization Reactors
Authors: Mahmoud Amer, Ibrahim El-Sharkawy, Shinichi Ookawara, Ahmed Elwardany
Abstract:
Gasification and carbonization are two of the most common ways for biomass utilization. Both processes are using part of the waste to be accomplished, either by incomplete combustion or for heating for both gasification and carbonization, respectively. The focus of this paper is to minimize the part of the waste that is used for heating biomass for gasification and carbonization. This will occur by combining both gasifiers and carbonization reactors in a single unit to utilize the heat in the product biogas to heating up the wastes in the carbonization reactors. Three different designs are proposed for the combined gasification/carbonization (CGC) reactor. These include a parallel combination of two gasifiers and carbonized syngas, carbonizer and combustion chamber, and one gasifier, carbonizer, and combustion chamber. They are tested numerically using ANSYS Fluent Computational Fluid Dynamics to ensure homogeneity of temperature distribution inside the carbonization part of the CGC reactor. 2D simulations are performed for the three cases after performing both mesh-size and time-step independent solutions. The carbonization part is common among the three different cases, and the difference among them is how this carbonization reactor is heated. The simulation results showed that the first design could provide only partial homogeneous temperature distribution, not across the whole reactor. This means that the produced carbonized biomass will be reduced as it will only fill a specified height of the reactor. To keep the carbonized product production high, a series combination is proposed. This series configuration resulted in a uniform temperature distribution across the whole reactor as it has only one source for heat with no temperature distribution on any surface of the carbonization section. The simulations provided a satisfactory result that either the first parallel combination of gasifier and carbonization reactor could be used with a reduced carbonized amount or a series configuration to keep the production rate high.Keywords: numerical simulation, carbonization, gasification, biomass, reactor
Procedia PDF Downloads 1067148 Viscoelastic Modeling of Hot Mix Asphalt (HMA) under Repeated Loading by Using Finite Element Method
Authors: S. A. Tabatabaei, S. Aarabi
Abstract:
Predicting the hot mix asphalt (HMA) response and performance is a challenging task because of the subjectivity of HMA under the complex loading and environmental condition. The behavior of HMA is a function of temperature of loading and also shows the time and rate-dependent behavior directly affecting design criteria of mixture. Velocity of load passing make the time and rate. The viscoelasticity illustrates the reaction of HMA under loading and environmental conditions such as temperature and moisture effect. The behavior has direct effect on design criteria such as tensional strain and vertical deflection. In this paper, the computational framework for viscoelasticity and implementation in 3D dimensional HMA model is introduced to use in finite element method. The model was lied under various repeated loading conditions at constant temperature. The response of HMA viscoelastic behavior is investigated in loading condition under speed vehicle and sensitivity of behavior to the range of speed and compared to HMA which is supposed to have elastic behavior as in conventional design methods. The results show the importance of loading time pulse, unloading time and various speeds on design criteria. Also the importance of memory fading of material to storing the strain and stress due to repeated loading was shown. The model was simulated by ABAQUS finite element packageKeywords: viscoelasticity, finite element method, repeated loading, HMA
Procedia PDF Downloads 4017147 The Microstructural Evolution of X45CrNiW189 Valve Steel during Hot Deformation
Authors: A. H. Meysami
Abstract:
In this paper, the hot compression tests were carried on X45CrNiW189 valve steel (X45) in the temperature range of 1000–1200°C and the strain rate range of 0.004–0.5 s^(-1) in order to study the high temperature softening behavior of the steel. For the exact prediction of flow stress, the effective stress - effective strain curves were obtained from experiments under various conditions. On the basis of experimental results, the dynamic recrystallization fraction (DRX), AGS, hot deformation and activation energy behavior were investigated. It was found that the calculated results were in a good agreement with the experimental flow stress and microstructure of the steel for different conditions of hot deformation.Keywords: X45CrNiW189, valve steel, hot compression test, dynamic recrystallization, hot deformation
Procedia PDF Downloads 2817146 The Interaction of Climate Change and Human Health in Italy
Authors: Vito Telesca, Giuseppina A. Giorgio, M. Ragosta
Abstract:
The effects of extreme heat events are increasing in recent years. Humans are forced to adjust themselves to adverse climatic conditions. The impact of weather on human health has become public health significance, especially in light of climate change and rising frequency of devasting weather events (e.g., heat waves and floods). The interest of scientific community is widely known. In particular, the associations between temperature and mortality are well studied. Weather conditions are natural factors that affect the human organism. Recent works show that the temperature threshold at which an impact is seen varies by geographic area and season. These results suggest heat warning criteria should consider local thresholds to account for acclimation to local climatology as well as the seasonal timing of a forecasted heat wave. Therefore, it is very important the problem called ‘local warming’. This is preventable with adequate warning tools and effective emergency planning. Since climate change has the potential to increase the frequency of these types of events, improved heat warning systems are urgently needed. This would require a better knowledge of the full impact of extreme heat on morbidity and mortality. The majority of researchers who analyze the associations between human health and weather variables, investigate the effect of air temperature and bioclimatic indices. These indices combine air temperature, relative humidity, and wind speed and are very important to determine the human thermal comfort. Health impact studies of weather events showed that the prevention is an essential element to dramatically reduce the impact of heat waves. The summer Italian of 2012 was characterized with high average temperatures (con un +2.3°C in reference to the period 1971-2000), enough to be considered as the second hottest summer since 1800. Italy was the first among countries in Europe which adopted tools for to predict these phenomena with 72 hours in advance (Heat Health Watch Warning System - HHWWS). Furthermore, in Italy heat alert criteria relies on the different Indexes, for example Apparent temperature, Scharlau index, Thermohygrometric Index, etc. This study examines the importance of developing public health policies that protect the most vulnerable people (such as the elderly) to extreme temperatures, highlighting the factors that confer susceptibility.Keywords: heat waves, Italy, local warming, temperature
Procedia PDF Downloads 2497145 Simulation Research of Diesel Aircraft Engine
Authors: Łukasz Grabowski, Michał Gęca, Mirosław Wendeker
Abstract:
This paper presents the simulation results of a new opposed piston diesel engine to power a light aircraft. Created in the AVL Boost, the model covers the entire charge passage, from the inlet up to the outlet. The model shows fuel injection into cylinders and combustion in cylinders. The calculation uses the module for two-stroke engines. The model was created using sub-models available in this software that structure the model. Each of the sub-models is complemented with parameters in line with the design premise. Since engine weight resulting from geometric dimensions is fundamental in aircraft engines, two configurations of stroke were studied. For each of the values, there were calculated selected operating conditions defined by crankshaft speed. The required power was achieved by changing air fuel ratio (AFR). There was also studied brake specific fuel consumption (BSFC). For stroke S1, the BSFC was lowest at all of the three operating points. This difference is approximately 1-2%, which means higher overall engine efficiency but the amount of fuel injected into cylinders is larger by several mg for S1. The cylinder maximum pressure is lower for S2 due to the fact that compressor gear driving remained the same and boost pressure was identical in the both cases. Calculations for various values of boost pressure were the next stage of the study. In each of the calculation case, the amount of fuel was changed to achieve the required engine power. In the former case, the intake system dimensions were modified, i.e. the duct connecting the compressor and the air cooler, so its diameter D = 40 mm was equal to the diameter of the compressor outlet duct. The impact of duct length was also examined to be able to reduce the flow pulsation during the operating cycle. For the so selected geometry of the intake system, there were calculations for various values of boost pressure. The boost pressure was changed by modifying the gear driving the compressor. To reach the required level of cruising power N = 68 kW. Due to the mechanical power consumed by the compressor, high pressure ratio results in a worsened overall engine efficiency. The figure on the change in BSFC from 210 g/kWh to nearly 270 g/kWh shows this correlation and the overall engine efficiency is reduced by about 8%. Acknowledgement: This work has been realized in the cooperation with The Construction Office of WSK "PZL-KALISZ" S.A." and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish National Centre for Research and Development.Keywords: aircraft, diesel, engine, simulation
Procedia PDF Downloads 210