Search results for: linear convective systems
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12363

Search results for: linear convective systems

10683 Improving Law Enforcement Strategies Through Geographic Information Systems: A Spatio-Temporal Analysis of Antisocial Activities in Móstoles (2022)

Authors: Daniel Suarez Alonso

Abstract:

This study has tried to focus on the alternatives offered to police institutions by the implementation of Geographic Information systems. Providing operational police commanders with effective and efficient tools, providing analytical capacity to reduce criminal opportunities, must be a priority. Given the intimate connection of crimes and infractions to the environment, law enforcement institutions must respond proactively to changing circumstances of anti-norm behaviors. To this end, it has been intended to analyze the antisocial spatial distribution of the city of Móstoles, trying to identify those spatiotemporal patterns that occur to anticipate their commission through the planning of dynamic preventive strategies. The application of GIS offers alternative analytical approaches to the different problems that underlie the development of life in society, focusing resources on those places with the highest concentration of incidents.

Keywords: data analysis, police organizations, police prevention, geographic information systems

Procedia PDF Downloads 50
10682 Design Patterns for Emergency Management Processes

Authors: Tomáš Ludík, Jiří Barta, Josef Navrátil

Abstract:

Natural or human made disasters have a significant negative impact on the environment. At the same time there is an extensive effort to support management and decision making in emergency situations by information technologies. Therefore the purpose of the paper is to propose a design patterns applicable in emergency management, enabling better analysis and design of emergency management processes and therefore easier development and deployment of information systems in the field of emergency management. It will be achieved by detailed analysis of existing emergency management legislation, contingency plans, and information systems. The result is a set of design patterns focused at emergency management processes that enable easier design of emergency plans or development of new information system. These results will have a major impact on the development of new information systems as well as to more effective and faster solving of emergencies.

Keywords: analysis and design, Business Process Modelling Notation, contingency plans, design patterns, emergency management

Procedia PDF Downloads 485
10681 An Investigation of Direct and Indirect Geo-Referencing Techniques on the Accuracy of Points in Photogrammetry

Authors: F. Yildiz, S. Y. Oturanc

Abstract:

Advances technology in the field of photogrammetry replaces analog cameras with reflection on aircraft GPS/IMU system with a digital aerial camera. In this system, when determining the position of the camera with the GPS, camera rotations are also determined by the IMU systems. All around the world, digital aerial cameras have been used for the photogrammetry applications in the last ten years. In this way, in terms of the work done in photogrammetry it is possible to use time effectively, costs to be reduced to a minimum level, the opportunity to make fast and accurate. Geo-referencing techniques that are the cornerstone of the GPS / INS systems, photogrammetric triangulation of images required for balancing (interior and exterior orientation) brings flexibility to the process. Also geo-referencing process; needed in the application of photogrammetry targets to help to reduce the number of ground control points. In this study, the use of direct and indirect geo-referencing techniques on the accuracy of the points was investigated in the production of photogrammetric mapping.

Keywords: photogrammetry, GPS/IMU systems, geo-referecing, digital aerial camera

Procedia PDF Downloads 411
10680 Living Wall Systems: An Approach for Reducing Energy Consumption in Curtain Wall Façades

Authors: Salma Maher, Ahmed Elseragy, Sally Eldeeb

Abstract:

Nowadays, Urbanism and climate change lead to the rapid growth in energy consumption and the increase of using air-conditioning for cooling. In a hot climate area, there is a need for a new sustainable alternative that is more convenient for an existing situation. The Building envelope controls the heat transfer between the outside and inside the building. While the building façade is the most critical part, types of façade material play a vital role in influences of the energy demand for heating and cooling due to exposure to direct solar radiation throughout the day. Since the beginning of the twentieth century, the use of curtain walls in office buildings façades started to increase rapidly, which lead to more cooling loads in energy consumption. Integrating the living wall system in urban areas as a sustainable renovation and energy-saving method for the built environment will reduce the energy demand of buildings and will also provide environmental benefits. Also, it will balance the urban ecology and enhance urban life quality. The results show that the living wall systems reduce the internal temperature up to 4.0 °C. This research carries on an analytical study by highlighting the different types of living wall systems and verifying their thermal performance, energy-saving, and life potential on the building. These assessing criteria include the reason for using the Living wall systems in the building façade as well as the effect it has upon the surrounding environment. Finally, the paper ends with concluding the effect of using living wall systems on building. And, it suggests a system as long-lasting, and energy-efficient solution to be applied in curtain wall façades in a hot climate area.

Keywords: living wall systems, energy consumption, curtain walls, energy-saving, sustainability, urban life quality

Procedia PDF Downloads 141
10679 Developing a Framework to Aid Sustainable Assessment in Indian Buildings

Authors: P. Amarnath, Albert Thomas

Abstract:

Buildings qualify to be the major consumer of energy and resources thereby urging the designers, architects and policy makers to place a great deal of effort in achieving and implementing sustainable building strategies in construction. Green building rating systems help a great deal in this by measuring the effectiveness of these strategies along with the escalation of building performance in social, environmental and economic perspective, and construct new sustainable buildings. However, for a country like India, enormous population and its rapid rate of growth impose an increasing burden on the country's limited and continuously degrading natural resource base, which also includes the land available for construction. In general, the number of sustainable rated buildings in India is very minimal primarily due to the complexity and obstinate nature of the assessment systems/regulations that restrict the stakeholders and designers in proper implementation and utilization of these rating systems. This paper aims to introduce a data driven and user-friendly framework which cross compares the present prominent green building rating systems such as LEED, BREEAM, and GRIHA and subsequently help the users to rate their proposed building design as per the regulations of these assessment frameworks. This framework is validated using the input data collected from green buildings constructed globally. The proposed system has prospects to encourage the users to test the efficiency of various sustainable construction practices and thereby promote more sustainable buildings in the country.

Keywords: BREEAM, GRIHA, green building rating systems, LEED, sustainable buildings

Procedia PDF Downloads 138
10678 Intelligent Parking Systems for Quasi-Close Communities

Authors: Ayodele Adekunle Faiyetole, Olumide Olawale Jegede

Abstract:

This paper presents the experimental design and needs justifications for a localized intelligent parking system (L-IPS), ideal for quasi-close communities with increasing vehicular volume that depends on limited or constant parking facilities. For a constant supply in parking facilities, the demand for an increasing vehicular volume could lead to poor time conservation or extended travel time, traffic congestion or impeded mobility, and safety issues. Increased negative environmental and economic externalities are other associated and consequent downsides of disparities in demand and supply. This L-IPS is designed using a microcontroller, ultrasonic sensors, LED indicators, such that the current status, in terms of parking spots availability, can be known from the main entrance to the community or a parking zone on a LCD screen. As an advanced traffic management system (ATMS), the L-IPS is designed to resolve aspects of infrastructure-to-driver (I2D) communication and parking detection issues. Thus, this L-IPS can act as a timesaver for users by helping them know the availability of parking spots. Providing on-time, informed routing, to a next preference or seamless moving to berth on the available spot on a proximate facility as the case may be. Its use could also increase safety and increase mobility, and fuel savings and costs, therefore, reducing negative environmental and economic externalities due to transportation systems.

Keywords: intelligent parking systems, localized intelligent parking system, intelligent transport systems, advanced traffic management systems, infrastructure-to-drivers communication

Procedia PDF Downloads 171
10677 A Review of Emerging Technologies in Antennas and Phased Arrays for Avionics Systems

Authors: Muhammad Safi, Abdul Manan

Abstract:

In recent years, research in aircraft avionics systems (i.e., radars and antennas) has grown revolutionary. Aircraft technology is experiencing an increasing inclination from all mechanical to all electrical aircraft, with the introduction of inhabitant air vehicles and drone taxis over the last few years. This develops an overriding need to summarize the history, latest trends, and future development in aircraft avionics research for a better understanding and development of new technologies in the domain of avionics systems. This paper focuses on the future trends in antennas and phased arrays for avionics systems. Along with the general overview of the future avionics trend, this work describes the review of around 50 high-quality research papers on aircraft communication systems. Electric-powered aircraft have been a hot topic in the modern aircraft world. Electric aircraft have supremacy over their conventional counterparts. Due to increased drone taxi and urban air mobility, fast and reliable communication is very important, so concepts of Broadband Integrated Digital Avionics Information Exchange Networks (B-IDAIENs) and Modular Avionics are being researched for better communication of future aircraft. A Ku-band phased array antenna based on a modular design can be used in a modular avionics system. Furthermore, integrated avionics is also emerging research in future avionics. The main focus of work in future avionics will be using integrated modular avionics and infra-red phased array antennas, which are discussed in detail in this paper. Other work such as reconfigurable antennas and optical communication, are also discussed in this paper. The future of modern aircraft avionics would be based on integrated modulated avionics and small artificial intelligence-based antennas. Optical and infrared communication will also replace microwave frequencies.

Keywords: AI, avionics systems, communication, electric aircrafts, infra-red, integrated avionics, modular avionics, phased array, reconfigurable antenna, UAVs

Procedia PDF Downloads 81
10676 Mobile Systems: History, Technology, and Future

Authors: Shivendra Pratap Singh, Rishabh Sharma

Abstract:

The widespread adoption of mobile technology in recent years has revolutionized the way we communicate and access information. The evolution of mobile systems has been rapid and impactful, shaping our lives and changing the way we live and work. However, despite its significant influence, the history and development of mobile technology are not well understood by the general public. This research paper aims to examine the history, technology and future of mobile systems, exploring their evolution from early mobile phones to the latest smartphones and beyond. The study will analyze the technological advancements and innovations that have shaped the mobile industry, from the introduction of mobile internet and multimedia capabilities to the integration of artificial intelligence and 5G networks. Additionally, the paper will also address the challenges and opportunities facing the future of mobile technology, such as privacy concerns, battery life, and the increasing demand for high-speed internet. Finally, the paper will also provide insights into potential future developments and innovations in the mobile sector, such as foldable phones, wearable technology, and the Internet of Things (IoT). The purpose of this research paper is to provide a comprehensive overview of the history, technology, and future of mobile systems, shedding light on their impact on society and the challenges and opportunities that lie ahead.

Keywords: mobile technology, artificial intelligence, networking, iot, technological advancements, smartphones

Procedia PDF Downloads 92
10675 Climate Changes in Albania and Their Effect on Cereal Yield

Authors: Lule Basha, Eralda Gjika

Abstract:

This study is focused on analyzing climate change in Albania and its potential effects on cereal yields. Initially, monthly temperature and rainfalls in Albania were studied for the period 1960-2021. Climacteric variables are important variables when trying to model cereal yield behavior, especially when significant changes in weather conditions are observed. For this purpose, in the second part of the study, linear and nonlinear models explaining cereal yield are constructed for the same period, 1960-2021. The multiple linear regression analysis and lasso regression method are applied to the data between cereal yield and each independent variable: average temperature, average rainfall, fertilizer consumption, arable land, land under cereal production, and nitrous oxide emissions. In our regression model, heteroscedasticity is not observed, data follow a normal distribution, and there is a low correlation between factors, so we do not have the problem of multicollinearity. Machine-learning methods, such as random forest, are used to predict cereal yield responses to climacteric and other variables. Random Forest showed high accuracy compared to the other statistical models in the prediction of cereal yield. We found that changes in average temperature negatively affect cereal yield. The coefficients of fertilizer consumption, arable land, and land under cereal production are positively affecting production. Our results show that the Random Forest method is an effective and versatile machine-learning method for cereal yield prediction compared to the other two methods.

Keywords: cereal yield, climate change, machine learning, multiple regression model, random forest

Procedia PDF Downloads 92
10674 Efficient and Timely Mutual Authentication Scheme for RFID Systems

Authors: Hesham A. El Zouka, Mustafa M. Hosni ka

Abstract:

The Radio Frequency Identification (RFID) technology has a diverse base of applications, but it is also prone to security threats. There are different types of security attacks that limit the range of the RFID applications. For example, deploying the RFID networks in insecure environments could make the RFID system vulnerable to many types of attacks such as spoofing attack, location traceability attack, physical attack and many more. Therefore, security is often an important requirement for RFID systems. In this paper, RFID mutual authentication protocol is implemented based on mobile agent technology and timestamp, which are used to provide strong authentication and integrity assurances to both the RFID readers and their corresponding RFID tags. The integration of mobile agent technology and timestamp provides promising results towards achieving this goal and towards reducing the security threats in RFID systems.

Keywords: RFID, security, authentication protocols, privacy, agent-based architecture, time-stamp, digital signature

Procedia PDF Downloads 269
10673 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with a probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if the cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy of an ensemble of Lipschitz classifiers is relevant in the multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble

Procedia PDF Downloads 492
10672 Characterization of Optical Systems for Intraocular Projection

Authors: Charles Q. Yu, Victoria H. Fan, Ahmed F. Al-Qahtani, Ibraim Viera

Abstract:

Introduction: Over 12 million people are blind due to opacity of the cornea, the clear tissue forming the front of the eye. Current methods use plastic implants to produce a clear optical pathway into the eye but are limited by a high rate of complications. New implants utilizing completely inside-the-eye projection technology can overcome blindness due to scarring of the eye by producing images on the retina without need for a clear optical pathway into the eye and may be free of the complications of traditional treatments. However, the interior of the eye is a challenging location for the design of optical focusing systems which can produce a sufficiently high quality image. No optical focusing systems have previously been characterized for this purpose. Methods: 3 optical focusing systems for intraocular (inside the eye) projection were designed and then modeled with ray tracing software, including a pinhole system, a planoconvex, and an achromatic system. These were then constructed using off-the-shelf components and tested in the laboratory. Weight, size, magnification, depth of focus, image quality and brightness were characterized. Results: Image quality increased with complexity of system design, as did weight and size. A dual achromatic doublet optical system produced the highest image quality. The visual acuity equivalent achieved with this system was better than 20/200. Its weight was less than that of the natural human crystalline lens. Conclusions: We demonstrate for the first time that high quality images can be produced by optical systems sufficiently small and light to be implanted within the eye.

Keywords: focusing, projection, blindness, cornea , achromatic, pinhole

Procedia PDF Downloads 132
10671 Improved Performance of AlGaN/GaN HEMTs Using N₂/NH₃ Pretreatment before Passivation

Authors: Yifan Gao

Abstract:

Owing to the high breakdown field, high saturation drift velocity, 2DEG with high density and mobility and so on, AlGaN/GaN HEMTs have been widely used in high-frequency and high-power applications. To acquire a higher power often means higher breakdown voltage and higher drain current. Surface leakage current is usually the key issue affecting the breakdown voltage and power performance. In this work, we have performed in-situ N₂/NH₃ pretreatment before the passivation to suppress the surface leakage and achieve device performance enhancement. The AlGaN/GaN HEMT used in this work was grown on a 3-in. SiC substrate, whose epitaxial structure consists of a 3.5-nm GaN cap layer, a 25-nm Al₀.₂₅GaN barrier layer, a 1-nm AlN layer, a 400-nm i-GaN layer and a buffer layer. In order to analyze the mechanism for the N-based pretreatment, the details are measured by XPS analysis. It is found that the intensity of Ga-O bonds is decreasing and the intensity of Ga-N bonds is increasing, which means with the supplement of N, the dangling bonds on the surface are indeed reduced with the forming of Ga-N bonds, reducing the surface states. The surface states have a great influence on the leakage current, and improved surface states represent a better off-state of the device. After the N-based pretreatment, the breakdown voltage of the device with Lₛ𝒹=6 μm increased from 93V to 170V, which increased by 82.8%. Moreover, for HEMTs with Lₛ𝒹 of 6-μm, we can obtain a peak output power (Pout) of 12.79W/mm, power added efficiency (PAE) of 49.84% and a linear gain of 20.2 dB at 60V under 3.6GHz. Comparing the result with the reference 6-μm device, Pout is increased by 16.5%. Meanwhile, PAE and the linear gain also have a slight increase. The experimental results indicate that using N₂/NH₃ pretreatment before passivation is an attractive approach to achieving power performance enhancement.

Keywords: AlGaN/GaN HEMT, N-based pretreatment, output power, passivation

Procedia PDF Downloads 317
10670 Comparison of Fuel Cell Installation Methods at Large Commercial and Industrial Sites

Authors: Masood Sattari

Abstract:

Using fuel cell technology to generate electricity for large commercial and industrial sites is a growing segment in the fuel cell industry. The installation of these systems involves design, permitting, procurement of long-lead electrical equipment, and construction involving multiple utilities. The installation of each fuel cell system requires the same amount of coordination as the construction of a new structure requiring a foundation, gas, water, and electricity. Each of these components provide variables that can delay and possibly eliminate a new project. As the manufacturing process and efficiency of fuel cell systems improves, so must the installation methods to prevent a ‘bottle-neck’ in the installation phase of the deployment. Installation methodologies to install the systems vary among companies and this paper will examine the methodologies, describe the benefits and drawbacks for each, and provide guideline for the industry to improve overall installation efficiency.

Keywords: construction, installation, methodology, procurement

Procedia PDF Downloads 196
10669 Efficient HVAC System in Green Building Design

Authors: Omid Khabiri, Maryam Ghavami

Abstract:

Buildings designed and built as high performance, sustainable or green are the vanguard in a movement to make buildings more energy efficient and less environmentally harmful. Although Heating, Ventilating, and Air Conditioning (HVAC) systems offer many opportunities for recovery and re-use of thermal energy; however, the amount of energy used annually by these systems typically ranges from 40 to 60 percent of the overall energy consumption in a building, depending on the building design, function, condition, climate, and the use of renewable energy strategies. HVAC systems may also damage the environment by unnecessary use of non-renewable energy sources, which contribute to environmental pollution, and by creating noise and discharge of contaminated water and air containing chemicals, lubricating oils, refrigerants, heat transfer fluids, and particulate (gases matter). In fact, HVAC systems will significantly impact how “green” a building is, where an efficient HVAC system design can result in considerable energy, emissions and cost savings as well as providing increased user thermal comfort. This paper presents the basic concepts of green building design and discusses the role of efficient HVAC system and practical strategies for ensuring high performance sustainable buildings in design and operation.

Keywords: green building, hvac system, design strategies, high-performance equipment, efficient technologies

Procedia PDF Downloads 577
10668 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain

Procedia PDF Downloads 470
10667 Classifying ERP Implementation’s Risks in Banking Sectors Based on Different Implementation Phases

Authors: Farnaz Farzadnia, Ahmad Alibabaei

Abstract:

Enterprise Resource Planning (ERP) systems are considered as complicated information systems. Many organizations failed implementing ERP systems because it is a very difficult, time-consuming and expensive process. Enterprise resource planning system is appropriate for organizations in all economic sectors. As banking is currently considered a non-typical area for ERP usage, there are very little studies on ERP implementation in banking. This paper presents a general risks taxonomy. In this research, after identifying implementation risks, a process quality management method has been applied to identify relations between risks of implementation ERP in banking sectors and implementation phases. Oracle application implementation method titled as AIM used in this research for classifying the risks. These findings will help managers to develop better strategies for supervising and controlling ERP implementation projects.

Keywords: AIM implementation, bank, enterprise resource planning, risk, process quality management method

Procedia PDF Downloads 543
10666 Domain Driven Design vs Soft Domain Driven Design Frameworks

Authors: Mohammed Salahat, Steve Wade

Abstract:

This paper presents and compares the SSDDD “Systematic Soft Domain Driven Design Framework” to DDD “Domain Driven Design Framework” as a soft system approach of information systems development. The framework use SSM as a guiding methodology within which we have embedded a sequence of design tasks based on the UML leading to the implementation of a software system using the Naked Objects framework. This framework has been used in action research projects that have involved the investigation and modelling of business processes using object-oriented domain models and the implementation of software systems based on those domain models. Within this framework, Soft Systems Methodology (SSM) is used as a guiding methodology to explore the problem situation and to develop the domain model using UML for the given business domain. The framework is proposed and evaluated in our previous works, a comparison between SSDDD and DDD is presented in this paper, to show how SSDDD improved DDD as an approach to modelling and implementing business domain perspectives for Information Systems Development. The comparison process, the results, and the improvements are presented in the following sections of this paper.

Keywords: domain-driven design, soft domain-driven design, naked objects, soft language

Procedia PDF Downloads 298
10665 Mitigation of Seismic Forces Effect on Highway Bridge Using Aseismic Bearings

Authors: Kaoutar Zellat, Tahar Kadri

Abstract:

The purpose of new aseismic techniques is to provide an additional means of energy dissipation, thereby reducing the transmitted acceleration into the superstructure. In order to demonstrate the effectiveness of aseismic bearings technique and understand the behavior of seismically isolated bridges by such devices a three-span continuous deck bridge made of reinforced concrete is considered. The bridge is modeled as a discrete model and the relative displacements of the isolation bearing are crucial from the design point of view of isolation system and separation joints at the abutment level. The systems presented here are passive control systems and the results of some important experimental tests are also included. The results show that the base shear in the piers is significantly reduced for the isolated system as compared to the non isolated system in the both directions of the bridge. This indicates that the use of aseismic systems is effective in reducing the earthquake response of the bridge.

Keywords: aseismic bearings, bridge isolation, bridge, seismic response

Procedia PDF Downloads 359
10664 The Aspect of the Human Bias in Decision Making within Quality Management Systems and LEAN Theory

Authors: Adriana Avila Zuniga Nordfjeld

Abstract:

This paper provides a literature review to document the state of the art with respect to handling 'human bias' in decision making within the established quality management systems (QMS) and LEAN theory, in the context of shipbuilding. Previous research shows that in shipbuilding there is a huge deviation from the planned man-hours under the project management to the actual man-hours used because of errors in planning and reworks caused by human bias in the information flows among others. This reduces the efficiency and increases operational costs. Thus, the research question is how QMS and LEAN handle biases. The findings show the gap in studying the integration of methods to handle human bias in decision making into QMS and lean, not only within shipbuilding but also in general. Theoretical and practical implications are discussed for researchers and practitioners in the areas of decision making QMS, LEAN, and future research is suggested.

Keywords: human bias, decision making, LEAN shipbuilding, quality management systems

Procedia PDF Downloads 547
10663 Performance and Processing Evaluation of Solid Oxide Cells by Co-Sintering of GDC Buffer Layer and LSCF Air Electrode

Authors: Hyun-Jong Choi, Minjun Kwak, Doo-Won Seo, Sang-Kuk Woo, Sun-Dong Kim

Abstract:

Solid Oxide Cell(SOC) systems can contribute to the transition to the hydrogen society by utilized as a power and hydrogen generator by the electrochemical reaction with high efficiency at high operation temperature (>750 ℃). La1-xSrxCo1-yFeyO3, which is an air electrode, is occurred stability degradations due to reaction and delamination with yittria stabilized zirconia(YSZ) electrolyte in a water electrolysis mode. To complement this phenomenon SOCs need gadolinium doped ceria(GDC) buffer layer between electrolyte and air electrode. However, GDC buffer layer requires a high sintering temperature and it causes a reaction with YSZ electrolyte. This study carried out low temperature sintering of GDC layer by applying Cu-oxide as a sintering aid. The effect of a copper additive as a sintering aid to lower the sintering temperature for the construction of solid oxide fuel cells (SOFCs) was investigated. GDC buffer layer with 0.25-10 mol% CuO sintering aid was prepared by reacting GDC power and copper nitrate solution followed by heating at 600 ℃. The sintering of CuO-added GDC powder was optimized by investigating linear shrinkage, microstructure, grain size, ionic conductivity, and activation energy of CuO-GDC electrolytes at temperatures ranging from 1100 to 1400 ℃. The sintering temperature of the CuO-GDC electrolyte decreases from 1400 ℃ to 1100 ℃ by adding the CuO sintering aid. The ionic conductivity of the CuO-GDC electrolyte shows a maximum value at 0.5 mol% of CuO. However, the addition of CuO has no significant effects on the activation energy of GDC electrolyte. GDC-LSCF layers were co-sintering at 1050 and 1100 ℃ and button cell tests were carried out at 750 ℃.

Keywords: Co-Sintering, GDC-LSCF, Sintering Aid, solid Oxide Cells

Procedia PDF Downloads 245
10662 Rehabilitation Team after Brain Damages as Complex System Integrating Consciousness

Authors: Olga Maksakova

Abstract:

A work with unconscious patients after acute brain damages besides special knowledge and practical skills of all the participants requires a very specific organization. A lot of said about team approach in neurorehabilitation, usually as for outpatient mode. Rehabilitologists deal with fixed patient problems or deficits (motion, speech, cognitive or emotional disorder). Team-building means superficial paradigm of management psychology. Linear mode of teamwork fits casual relationships there. Cases with deep altered states of consciousness (vegetative states, coma, and confusion) require non-linear mode of teamwork: recovery of consciousness might not be the goal due to phenomenon uncertainty. Rehabilitation team as Semi-open Complex System includes the patient as a part. Patient's response pattern becomes formed not only with brain deficits but questions-stimuli, context, and inquiring person. Teamwork is sourcing of phenomenology knowledge of patient's processes as Third-person approach is replaced with Second- and after First-person approaches. Here is a chance for real-time change. Patient’s contacts with his own body and outward things create a basement for restoration of consciousness. The most important condition is systematic feedbacks to any minimal movement or vegetative signal of the patient. Up to now, recovery work with the most severe contingent is carried out in the mode of passive physical interventions, while an effective rehabilitation team should include specially trained psychologists and psychotherapists. It is they who are able to create a network of feedbacks with the patient and inter-professional ones building up the team. Characteristics of ‘Team-Patient’ system (TPS) are energy, entropy, and complexity. Impairment of consciousness as the absence of linear contact appears together with a loss of essential functions (low energy), vegetative-visceral fits (excessive energy and low order), motor agitation (excessive energy and excessive order), etc. Techniques of teamwork are different in these cases for resulting optimization of the system condition. Directed regulation of the system complexity is one of the recovery tools. Different signs of awareness appear as a result of system self-organization. Joint meetings are an important part of teamwork. Regular or event-related discussions form the language of inter-professional communication, as well as the patient's shared mental model. Analysis of complex communication process in TPS may be useful for creation of the general theory of consciousness.

Keywords: rehabilitation team, urgent rehabilitation, severe brain damage, consciousness disorders, complex system theory

Procedia PDF Downloads 146
10661 Modelling of Exothermic Reactions during Carbon Fibre Manufacturing and Coupling to Surrounding Airflow

Authors: Musa Akdere, Gunnar Seide, Thomas Gries

Abstract:

Carbon fibres are fibrous materials with a carbon atom amount of more than 90%. They combine excellent mechanicals properties with a very low density. Thus carbon fibre reinforced plastics (CFRP) are very often used in lightweight design and construction. The precursor material is usually polyacrylonitrile (PAN) based and wet-spun. During the production of carbon fibre, the precursor has to be stabilized thermally to withstand the high temperatures of up to 1500 °C which occur during carbonization. Even though carbon fibre has been used since the late 1970s in aerospace application, there is still no general method available to find the optimal production parameters and the trial-and-error approach is most often the only resolution. To have a much better insight into the process the chemical reactions during stabilization have to be analyzed particularly. Therefore, a model of the chemical reactions (cyclization, dehydration, and oxidation) based on the research of Dunham and Edie has been developed. With the presented model, it is possible to perform a complete simulation of the fibre undergoing all zones of stabilization. The fiber bundle is modeled as several circular fibers with a layer of air in-between. Two thermal mechanisms are considered to be the most important: the exothermic reactions inside the fiber and the convective heat transfer between the fiber and the air. The exothermic reactions inside the fibers are modeled as a heat source. Differential scanning calorimetry measurements have been performed to estimate the amount of heat of the reactions. To shorten the required time of a simulation, the number of fibers is decreased by similitude theory. Experiments were conducted to validate the simulation results of the fibre temperature during stabilization. The experiments for the validation were conducted on a pilot scale stabilization oven. To measure the fibre bundle temperature, a new measuring method is developed. The comparison of the results shows that the developed simulation model gives good approximations for the temperature profile of the fibre bundle during the stabilization process.

Keywords: carbon fibre, coupled simulation, exothermic reactions, fibre-air-interface

Procedia PDF Downloads 273
10660 Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach

Authors: Tran Gia Khanh, Dao Phuong Nam, Do Trong Tan, Nguyen Van Huong, Mai Xuan Sinh

Abstract:

This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system.

Keywords: input state stability (ISS), tube-based robust MPC, continuous-time nonlinear systems, wheeled inverted pendulum

Procedia PDF Downloads 220
10659 Assessing the Actual Status and Farmer’s Attitude towards Agroforestry in Chiniot, Pakistan

Authors: M. F. Nawaz, S. Gul, T. H. Farooq, M. T. Siddiqui, M. Asif, I. Ahmad, N. K. Niazi

Abstract:

In Pakistan, major demands of fuel wood and timber wood are fulfilled by agroforestry. However, the information regarding economic significance of agroforestry and its productivity in Pakistan is still insufficient and unreliable. Survey of field conditions to examine the agroforestry status at local level helps us to know the future trends and to formulate the policies for sustainable wood supply. The objectives of this research were to examine the actual status and potential of agroforestry and to point out the barriers that are faced by farmers in the adoption of agroforestry. Research was carried out in Chiniot district, Pakistan because it is the famous city for furniture industry that is largely dependent on farm trees. A detailed survey of district Chiniot was carried out from 150 randomly selected farmer respondents using multi-objective oriented and pre-tested questionnaire. It was found that linear tree planting method was more adopted (45%) as compared to linear + interplanting (42%) and/or compact planting (12.6%). Chi-square values at P-value <0.5 showed that age (11.35) and education (17.09) were two more important factors in the quick adoption of agroforestry as compared to land holdings (P-value of 0.7). The major reason of agroforestry adoption was to obtain income, fodder and fuelwood. The most dominant species in farmlands was shisham (Dalbergia sissoo) but since last five years, mostly farmers were growing Sufeida (Eucalyptus camaldulensis), kikar (Acacia nilotica) and popular (Populus deltoides) on their fields due to “Shisham die-back” problem. It was found that agro-forestry can be increased by providing good quality planting material to farmers and improving wood markets.

Keywords: agroforestry, trees, services, agriculture, farmers

Procedia PDF Downloads 451
10658 Assessment of Work-Related Stress and Its Predictors in Ethiopian Federal Bureau of Investigation in Addis Ababa

Authors: Zelalem Markos Borko

Abstract:

Work-related stress is a reaction that occurs when the work weight progress toward becoming excessive. Therefore, unless properly managed, stress leads to high employee turnover, decreased performance, illness and absenteeism. Yet, little has been addressed regarding work-related stress and its predictors in the study area. Therefore, the objective of this study was to assess stress prevalence and its predictors in the study area. To that effect, a cross-sectional study design was conducted on 281 employees from the Ethiopian Federal Bureau of Investigation by using stratified random sampling techniques. Survey questionnaire scales were employed to collect data. Data were analyzed by percentage, Pearson correlation coefficients, simple linear regression, multiple linear regressions, independent t-test and one-way ANOVA statistical techniques. In the present study13.9% of participants faced high stress, whereas 13.5% of participants faced low stress and the rest 72.6% of officers experienced moderate stress. There is no significant group difference among workers due to age, gender, marital status, educational level, years of service and police rank. This study concludes that factors such as role conflict, performance over-utilization, role ambiguity, and qualitative and quantitative role overload together predict 39.6% of work-related stress. This indicates that 60.4% of the variation in stress is explained by other factors, so other additional research should be done to identify additional factors predicting stress. To prevent occupational stress among police, the Ethiopian Federal Bureau of Investigation should develop strategies based on factors that will help to develop stress reduction management.

Keywords: work-related stress, Ethiopian federal bureau of investigation, predictors, Addis Ababa

Procedia PDF Downloads 70
10657 Modeling Approach to Better Control Fouling in a Submerged Membrane Bioreactor for Wastewater Treatment: Development of Analytical Expressions in Steady-State Using ASM1

Authors: Benaliouche Hana, Abdessemed Djamal, Meniai Abdessalem, Lesage Geoffroy, Heran Marc

Abstract:

This paper presents a dynamic mathematical model of activated sludge which is able to predict the formation and degradation kinetics of SMP (Soluble microbial products) in membrane bioreactor systems. The model is based on a calibrated version of ASM1 with the theory of production and degradation of SMP. The model was calibrated on the experimental data from MBR (Mathematical modeling Membrane bioreactor) pilot plant. Analytical expressions have been developed, describing the concentrations of the main state variables present in the sludge matrix, with the inclusion of only six additional linear differential equations. The objective is to present a new dynamic mathematical model of activated sludge capable of predicting the formation and degradation kinetics of SMP (UAP and BAP) from the submerged membrane bioreactor (BRMI), operating at low organic load (C / N = 3.5), for two sludge retention times (SRT) fixed at 40 days and 60 days, to study their impact on membrane fouling, The modeling study was carried out under the steady-state condition. Analytical expressions were then validated by comparing their results with those obtained by simulations using GPS-X-Hydromantis software. These equations made it possible, by means of modeling approaches (ASM1), to identify the operating and kinetic parameters and help to predict membrane fouling.

Keywords: Activated Sludge Model No. 1 (ASM1), mathematical modeling membrane bioreactor, soluble microbial products, UAP, BAP, Modeling SMP, MBR, heterotrophic biomass

Procedia PDF Downloads 296
10656 Developing a Secure Iris Recognition System by Using Advance Convolutional Neural Network

Authors: Kamyar Fakhr, Roozbeh Salmani

Abstract:

Alphonse Bertillon developed the first biometric security system in the 1800s. Today, many governments and giant companies are considering or have procured biometrically enabled security schemes. Iris is a kaleidoscope of patterns and colors. Each individual holds a set of irises more unique than their thumbprint. Every single day, giant companies like Google and Apple are experimenting with reliable biometric systems. Now, after almost 200 years of improvements, face ID does not work with masks, it gives access to fake 3D images, and there is no global usage of biometric recognition systems as national identity (ID) card. The goal of this paper is to demonstrate the advantages of iris recognition overall biometric recognition systems. It make two extensions: first, we illustrate how a very large amount of internet fraud and cyber abuse is happening due to bugs in face recognition systems and in a very large dataset of 3.4M people; second, we discuss how establishing a secure global network of iris recognition devices connected to authoritative convolutional neural networks could be the safest solution to this dilemma. Another aim of this study is to provide a system that will prevent system infiltration caused by cyber-attacks and will block all wireframes to the data until the main user ceases the procedure.

Keywords: biometric system, convolutional neural network, cyber-attack, secure

Procedia PDF Downloads 219
10655 Comparing Test Equating by Item Response Theory and Raw Score Methods with Small Sample Sizes on a Study of the ARTé: Mecenas Learning Game

Authors: Steven W. Carruthers

Abstract:

The purpose of the present research is to equate two test forms as part of a study to evaluate the educational effectiveness of the ARTé: Mecenas art history learning game. The researcher applied Item Response Theory (IRT) procedures to calculate item, test, and mean-sigma equating parameters. With the sample size n=134, test parameters indicated “good” model fit but low Test Information Functions and more acute than expected equating parameters. Therefore, the researcher applied equipercentile equating and linear equating to raw scores and compared the equated form parameters and effect sizes from each method. Item scaling in IRT enables the researcher to select a subset of well-discriminating items. The mean-sigma step produces a mean-slope adjustment from the anchor items, which was used to scale the score on the new form (Form R) to the reference form (Form Q) scale. In equipercentile equating, scores are adjusted to align the proportion of scores in each quintile segment. Linear equating produces a mean-slope adjustment, which was applied to all core items on the new form. The study followed a quasi-experimental design with purposeful sampling of students enrolled in a college level art history course (n=134) and counterbalancing design to distribute both forms on the pre- and posttests. The Experimental Group (n=82) was asked to play ARTé: Mecenas online and complete Level 4 of the game within a two-week period; 37 participants completed Level 4. Over the same period, the Control Group (n=52) did not play the game. The researcher examined between group differences from post-test scores on test Form Q and Form R by full-factorial Two-Way ANOVA. The raw score analysis indicated a 1.29% direct effect of form, which was statistically non-significant but may be practically significant. The researcher repeated the between group differences analysis with all three equating methods. For the IRT mean-sigma adjusted scores, form had a direct effect of 8.39%. Mean-sigma equating with a small sample may have resulted in inaccurate equating parameters. Equipercentile equating aligned test means and standard deviations, but resultant skewness and kurtosis worsened compared to raw score parameters. Form had a 3.18% direct effect. Linear equating produced the lowest Form effect, approaching 0%. Using linearly equated scores, the researcher conducted an ANCOVA to examine the effect size in terms of prior knowledge. The between group effect size for the Control Group versus Experimental Group participants who completed the game was 14.39% with a 4.77% effect size attributed to pre-test score. Playing and completing the game increased art history knowledge, and individuals with low prior knowledge tended to gain more from pre- to post test. Ultimately, researchers should approach test equating based on their theoretical stance on Classical Test Theory and IRT and the respective  assumptions. Regardless of the approach or method, test equating requires a representative sample of sufficient size. With small sample sizes, the application of a range of equating approaches can expose item and test features for review, inform interpretation, and identify paths for improving instruments for future study.

Keywords: effectiveness, equipercentile equating, IRT, learning games, linear equating, mean-sigma equating

Procedia PDF Downloads 192
10654 Trajectory Optimization of Re-Entry Vehicle Using Evolutionary Algorithm

Authors: Muhammad Umar Kiani, Muhammad Shahbaz

Abstract:

Performance of any vehicle can be predicted by its design/modeling and optimization. Design optimization leads to efficient performance. Followed by horizontal launch, the air launch re-entry vehicle undergoes a launch maneuver by introducing a carefully selected angle of attack profile. This angle of attack profile is the basic element to complete a specified mission. Flight program of said vehicle is optimized under the constraints of the maximum allowed angle of attack, lateral and axial loads and with the objective of reaching maximum altitude. The main focus of this study is the endo-atmospheric phase of the ascent trajectory. A three degrees of freedom trajectory model is simulated in MATLAB. The optimization process uses evolutionary algorithm, because of its robustness and efficient capacity to explore the design space in search of the global optimum. Evolutionary Algorithm based trajectory optimization also offers the added benefit of being a generalized method that may work with continuous, discontinuous, linear, and non-linear performance matrix. It also eliminates the requirement of a starting solution. Optimization is particularly beneficial to achieve maximum advantage without increasing the computational cost and affecting the output of the system. For the case of launch vehicles we are immensely anxious to achieve maximum performance and efficiency under different constraints. In a launch vehicle, flight program means the prescribed variation of vehicle pitching angle during the flight which has substantial influence reachable altitude and accuracy of orbit insertion and aerodynamic loading. Results reveal that the angle of attack profile significantly affects the performance of the vehicle.

Keywords: endo-atmospheric, evolutionary algorithm, efficient performance, optimization process

Procedia PDF Downloads 405