Search results for: crack detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3871

Search results for: crack detection

2191 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 30
2190 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 273
2189 Analytical Solution of the Boundary Value Problem of Delaminated Doubly-Curved Composite Shells

Authors: András Szekrényes

Abstract:

Delamination is one of the major failure modes in laminated composite structures. Delamination tips are mostly captured by spatial numerical models in order to predict crack growth. This paper presents some mechanical models of delaminated composite shells based on shallow shell theories. The mechanical fields are based on a third-order displacement field in terms of the through-thickness coordinate of the laminated shell. The undelaminated and delaminated parts are captured by separate models and the continuity and boundary conditions are also formulated in a general way providing a large size boundary value problem. The system of differential equations is solved by the state space method for an elliptic delaminated shell having simply supported edges. The comparison of the proposed and a numerical model indicates that the primary indicator of the model is the deflection, the secondary is the widthwise distribution of the energy release rate. The model is promising and suitable to determine accurately the J-integral distribution along the delamination front. Based on the proposed model it is also possible to develop finite elements which are able to replace the computationally expensive spatial models of delaminated structures.

Keywords: J-integral, levy method, third-order shell theory, state space solution

Procedia PDF Downloads 131
2188 The Failure and Energy Mechanism of Rock-Like Material with Single Flaw

Authors: Yu Chen

Abstract:

This paper investigates the influence of flaw on failure process of rock-like material under uniaxial compression. In laboratory, the uniaxial compression tests of intact specimens and a series of specimens within single flaw were conducted. The inclination angle of flaws includes 0°, 15°, 30°, 45°, 60°, 75° and 90°. Based on the laboratory tests, the corresponding models of numerical simulation were built and loaded in PFC2D. After analysing the crack initiation and failure modes, deformation field, and energy mechanism for both laboratory tests and numerical simulation, it can be concluded that the influence of flaws on the failure process is determined by its inclination. The characteristic stresses increase as flaw angle rising basically. The tensile cracks develop from gentle flaws (α ≤ 30°) and the shear cracks develop from other flaws. The propagation of cracks changes during failure process and the failure mode of a specimen corresponds to the orientation of the flaw. A flaw has significant influence on the transverse deformation field at the middle of the specimen, except the 75° and 90° flaw sample. The input energy, strain energy and dissipation energy of specimens show approximate increase trends with flaw angle rising and it presents large difference on the energy distribution.

Keywords: failure pattern, particle deformation field, energy mechanism, PFC

Procedia PDF Downloads 213
2187 Structural Behavior of Laterally Loaded Precast Foamed Concrete Sandwich Panel

Authors: Y. H. Mugahed Amran, Raizal S. M. Rashid, Farzad Hejazi, Nor Azizi Safiee, A. A. Abang Ali

Abstract:

Experimental and analytical studies were carried out to investigate the structural behavior of precast foamed concrete sandwich panels (PFCSP) of total number (6) as one-way action slab tested under lateral load. The details of the test setup and procedures were illustrated. The results obtained from the experimental tests were discussed which include the observation of cracking patterns and influence of aspect ratio (L/b). Analytical study of finite element analysis was implemented and degree of composite action of the test panels was also examined in both experimental and analytical studies. Result shows that crack patterns appeared in only one-direction, similar to reports on solid slabs, particularly when both concrete wythes act in a composite manner. Foamed concrete was briefly reviewed and experimental results were compared with the finite element analyses data which gives a reasonable degree of accuracy. Therefore, based on the results obtained, PFCSP slab can be used as an alternative to conventional flooring system.

Keywords: aspect ratio (L/b), finite element analyses (FEA), foamed concrete (FC), precast foamed concrete sandwich panel (PFCSP), ultimate flexural strength capacity

Procedia PDF Downloads 314
2186 The Austenite Role in Duplex Stainless Steel Performance

Authors: Farej Ahmed Emhmmed Alhegagi

Abstract:

Duplex stainless steels are attractive material for apparatus working with sea water, petroleum, refineries, chemical plants,vessels, and pipes operating at high temperatures and/or pressures. The role of austenite phase in duplex stainless steels performance was investigated. Zeron 100, stainless steels with 50/50 ferrite / austenite %, specimens were tested for strength, toughness, embrittlement susceptibility, and assisted environmental cracking (AEC) resistance. Specimens were heat treated at 475°C for different times and loaded to well- selected values of load. The load values were chosen to be within the range of higher / lower than the expected toughness. Sodium chloride solution 3.5wt% environment with polarity of -900mV / SCE was used to investigate the material susceptibility to (AEC). Results showed important effect of austenite on specimens overall mechanical properties. Strength was affected by the ductile nature of austenite phase leading to plastic deformation accommodated by austenite slip system. Austenite embrittlement, either by decomposition or nucleation and growth process, was not observed to take place during specimens heat treatment. Cracking due to (AEC) took place in the ferrite grains and avoided the austenite phase. Specimens showed the austenite to act as a crack arrestor during (AEC) of duplex stainless steels.

Keywords: austenite phase, mechanical properties, embrittlement susceptibility, duplex stainless steels

Procedia PDF Downloads 358
2185 Use of Galileo Advanced Features in Maritime Domain

Authors: Olivier Chaigneau, Damianos Oikonomidis, Marie-Cecile Delmas

Abstract:

GAMBAS (Galileo Advanced features for the Maritime domain: Breakthrough Applications for Safety and security) is a project funded by the European Space Program Agency (EUSPA) aiming at identifying the search-and-rescue and ship security alert system needs for maritime users (including operators and fishing stakeholders) and developing operational concepts to answer these needs. The general objective of the GAMBAS project is to support the deployment of Galileo exclusive features in the maritime domain in order to improve safety and security at sea, detection of illegal activities and associated surveillance means, resilience to natural and human-induced emergency situations, and develop, integrate, demonstrate, standardize and disseminate these new associated capabilities. The project aims to demonstrate: improvement of the SAR (Search And Rescue) and SSAS (Ship Security Alert System) detection and response to maritime distress through the integration of new features into the beacon for SSAS in terms of cost optimization, user-friendly aspects, integration of Galileo and OS NMA (Open Service Navigation Message Authentication) reception for improved authenticated localization performance and reliability, and at sea triggering capabilities, optimization of the responsiveness of RCCs (Rescue Co-ordination Centre) towards the distress situations affecting vessels, the adaptation of the MCCs (Mission Control Center) and MEOLUT (Medium Earth Orbit Local User Terminal) to the data distribution of SSAS alerts.

Keywords: Galileo new advanced features, maritime, safety, security

Procedia PDF Downloads 92
2184 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 169
2183 A Comprehensive Characterization of Cell-free RNA in Spent Blastocyst Medium and Quality Prediction for Blastocyst

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 64
2182 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 130
2181 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 160
2180 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 133
2179 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.

Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection

Procedia PDF Downloads 294
2178 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 288
2177 Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors

Authors: Waleed K. Saib, Abdulsalam M. Alhawsawi, Essam Banoqitah

Abstract:

The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs.

Keywords: PMT, radiation, radiation detection, scintillation detectors, silicon photomultiplier, spectrometer

Procedia PDF Downloads 154
2176 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 195
2175 Repair and Strengthening of Plain and FRC Shear Deficient Beams Using Externally Bonded CFRP Sheets

Authors: H. S. S. Abou El-Mal, H. E. M. Sallam

Abstract:

This paper presents experimental and analytical study on the behavior of repaired and strengthened shear critical RC beams using externally bonded CFRP bi-directional fabrics. The use of CFRP sheets to repair or strengthen RC beams has been repetitively studied and proven feasible. However, the use of combined repair techniques and applying that method to both plain and FRC beams can maximize the shear capacity of RC shear deficient beams. A total of twelve slender beams were tested under four-point bending. The test parameters included CFRP layout, number of layers and fiber direction, injecting cracks before applying repairing sheets, enhancing the flexural capacity to differentiate between shear repair and strengthening techniques, and concrete matrix types. The findings revealed that applying CFRP sheets increased the overall shear capacity, the amount and orientation of wrapping is of prime importance in both repairing and strengthening, CFRP wrapping could change the failure mode from shear to flexural shear, the use of crack injection combined to CFRP wrapping further improved the shear capacity while, applying the previous method to FRC beams enhanced both shear capacity and failure ductility. Acceptable agreement was found between predicted shear capacities using the Canadian code and the experimental results of the current study.

Keywords: CFRP, FRC, repair, shear strengthening

Procedia PDF Downloads 349
2174 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma

Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan

Abstract:

Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.

Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma

Procedia PDF Downloads 567
2173 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 275
2172 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 88
2171 Study on Effect of Reverse Cyclic Loading on Fracture Resistance Curve of Equivalent Stress Gradient (ESG) Specimen

Authors: Jaegu Choi, Jae-Mean Koo, Chang-Sung Seok, Byungwoo Moon

Abstract:

Since massive earthquakes in the world have been reported recently, the safety of nuclear power plants for seismic loading has become a significant issue. Seismic loading is the reverse cyclic loading, consisting of repeated tensile and compression by longitudinal and transverse wave. Up to this time, the study on characteristics of fracture toughness under reverse cyclic loading has been unsatisfactory. Therefore, it is necessary to obtain the fracture toughness under reverse cyclic load for the integrity estimation of nuclear power plants under seismic load. Fracture resistance (J-R) curves, which are used for determination of fracture toughness or integrity estimation in terms of elastic-plastic fracture mechanics, can be derived by the fracture resistance test using single specimen technique. The objective of this paper is to study the effects of reverse cyclic loading on a fracture resistance curve of ESG specimen, having a similar stress gradient compared to the crack surface of the real pipe. For this, we carried out the fracture toughness test under the reverse cyclic loading, while changing incremental plastic displacement. Test results showed that the J-R curves were decreased with a decrease of the incremental plastic displacement.

Keywords: reverse cyclic loading, j-r curve, ESG specimen, incremental plastic displacement

Procedia PDF Downloads 388
2170 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media

Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga

Abstract:

Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.

Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives

Procedia PDF Downloads 94
2169 Development of High Quality Refractory Bricks from Fireclays for Industrial Applications

Authors: David E. Esezobor, Friday I. Apeh, Harrison O. Onovo, Ademola A. Agbeleye

Abstract:

Available indigenous refractory bricks in Nigeria can only be used in the lining of furnaces for melting of cast iron operating at less than 1,400°C or in preheating furnaces due to their low refractoriness less than 1,500°C. The bricks crack and shatter on heating at 1350 to 1450°C. In this paper, a simple and adaptable technology of manufacturing high-quality refractory bricks from selected Nigerian clays for furnace linings was developed. Fireclays from Onibode, Owode-Ketu in Ogun State and Kwoi in Kaduna State were crushed, ground, and sieved into various grain sizes using standard techniques. The pulverized clays were blended with alumina in various mix ratios and indurated in the furnace at 900 – 16000C. Their chemical, microstructure and mineralogical properties were characterized using atomic absorption spectrophotometry, scanning electron microscopy and x-ray diffraction spectrometry respectively. The mineralogical and spectrochemical analyses suggested that the clays are of siliceous alumino-silicate and acidic in nature. The appropriate blending of fireclays with alumina provided the tremendous improvement in the refractoriness of the bricks and other acceptable service properties comparable with imported refractory bricks. The change in microstructure from pseudo-hexagonal grains to equiaxed grains of well – ordered sequence of structural layers could be responsible for the improved properties.

Keywords: alumina, furnace, industry, manufacturing, refractoriness

Procedia PDF Downloads 256
2168 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 497
2167 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin

Procedia PDF Downloads 136
2166 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 273
2165 Investigation of Leakage, Cracking and Warpage Issues Observed on Composite Valve Cover in Development Phase through FEA Simulation

Authors: Ashwini Shripatwar, Mayur Biyani, Nikhil Rao, Rajendra Bodake, Sachin Sane

Abstract:

This paper documents the correlation of valve cover sealing, cracking, and warpage Finite Element Modelling with observations on engine test development. The valve cover is a component mounted on engine head with a gasket which provides sealing against oil which flows around camshaft, valves, rockers, and other overhead components. Material nonlinearity and contact nonlinearity characteristics are taken into consideration because the valve cover is made of a composite material having temperature dependent elastic-plastic properties and because the gasket load-deformation curve is also nonlinear. The leakage is observed between the valve cover and the engine head due to the insufficient contact pressure. The crack is observed on the valve cover due to force application at a region with insufficient stiffness and with elevated temperature. The valve cover shrinkage is observed during the disassembly process on hot exhaust side bolt holes after the engine has been running. In this paper, an analytical approach is developed to correlate a Finite Element Model with the observed failures and to address the design issues associated with the failure modes in question by making design changes in the model.

Keywords: cracking issue, gasket sealing analysis, nonlinearity of contact and material, valve cover

Procedia PDF Downloads 142
2164 Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients

Authors: Yagahira E. Castro-Sesquen, Robert H. Gilman, Carolina Mejia, Daniel E. Clark, Jeong Choi, Melissa J. Reimer-Mcatee, Rocio Castro, Jorge Flores, Edward Valencia-Ayala, Faustino Torrico, Ricardo Castillo-Neyra, Lance Liotta, Caryn Bern, Alessandra Luchini

Abstract:

Early diagnosis of reactivation of Chagas disease in HIV patients could be lifesaving; however, in Latin American the diagnosis is performed by detection of parasitemia by microscopy which lacks sensitivity. To evaluate if levels of T. cruzi antigens in urine determined by Chunap (Chagas urine nanoparticle test) are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. T. cruzi antigens in urine of HIV patients (N=55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. The percentage of Chagas positive patients determined by Chunap compared to blood microscopy, qPCR, and ELISA was 100% (6/6), 95% (18/19) and 74% (23/31), respectively. Chunap specificity was 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels (determined by qPCR) and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (6/6). Urine antigen concentration was significantly higher among patients with CD4+ lymphocyte counts below 200/mL (p=0.045). Chunap shows potential for early detection of reactivation and with appropriate adaptation can be used for monitoring Chagas disease status in T. cruzi/HIV co-infected patients.

Keywords: antigenuria, Chagas disease, Chunap, nanoparticles, parasitemia, poly N-isopropylacrylamide (NIPAm)/trypan blue particles (polyNIPAm/TB), reactivation of Chagas disease.

Procedia PDF Downloads 377
2163 Analysis of the Premature In-Service Failure of Engine Mounting Towers of an Industrial Generator

Authors: Stephen J Futter, Michael I Okereke

Abstract:

This paper presents an investigation of the premature in-service failure of the engine mounting towers that form part of the bedframe commonly used for industrial power generation applications. The client during a routine in-service assessment of the generator set observed that the engine mounting towers had cracked. Thus, this study has investigated in detail the origin of the crack and proffered solutions to prevent a re-occurrence. Seven step problem solving methodology was followed during this paper. The study used both experimental and numerical approaches to understand, monitor and evaluate the cause and evolution of the premature failure. Findings from this study indicated that the failure resulted from a combination of varied processes from procurement of material parts, material selection, welding processes and inaptly designed load-bearing mechanics of the generating set and its mounting arrangement. These in-field observations and experimental simulations provided insights to design and validate a numerical finite element sub-model of the cracked bedframe considering thermal cycling: designed as part of these investigations. Resulting findings led to a recommendation of several procedural changes that should be adopted by the manufacturer, in order to prevent the re-occurrence of such pre-mature failure in future industrial applications.

Keywords: Engine, Premature Failure, Failure Analysis, Finite Element Model

Procedia PDF Downloads 285
2162 Development of a Direct Immunoassay for Human Ferritin Using Diffraction-Based Sensing Method

Authors: Joel Ballesteros, Harriet Jane Caleja, Florian Del Mundo, Cherrie Pascual

Abstract:

Diffraction-based sensing was utilized in the quantification of human ferritin in blood serum to provide an alternative to label-based immunoassays currently used in clinical diagnostics and researches. The diffraction intensity was measured by the diffractive optics technology or dotLab™ system. Two methods were evaluated in this study: direct immunoassay and direct sandwich immunoassay. In the direct immunoassay, human ferritin was captured by human ferritin antibodies immobilized on an avidin-coated sensor while the direct sandwich immunoassay had an additional step for the binding of a detector human ferritin antibody on the analyte complex. Both methods were repeatable with coefficient of variation values below 15%. The direct sandwich immunoassay had a linear response from 10 to 500 ng/mL which is wider than the 100-500 ng/mL of the direct immunoassay. The direct sandwich immunoassay also has a higher calibration sensitivity with value 0.002 Diffractive Intensity (ng mL-1)-1) compared to the 0.004 Diffractive Intensity (ng mL-1)-1 of the direct immunoassay. The limit of detection and limit of quantification values of the direct immunoassay were found to be 29 ng/mL and 98 ng/mL, respectively, while the direct sandwich immunoassay has a limit of detection (LOD) of 2.5 ng/mL and a limit of quantification (LOQ) of 8.2 ng/mL. In terms of accuracy, the direct immunoassay had a percent recovery of 88.8-93.0% in PBS while the direct sandwich immunoassay had 94.1 to 97.2%. Based on the results, the direct sandwich immunoassay is a better diffraction-based immunoassay in terms of accuracy, LOD, LOQ, linear range, and sensitivity. The direct sandwich immunoassay was utilized in the determination of human ferritin in blood serum and the results are validated by Chemiluminescent Magnetic Immunoassay (CMIA). The calculated Pearson correlation coefficient was 0.995 and the p-values of the paired-sample t-test were less than 0.5 which show that the results of the direct sandwich immunoassay was comparable to that of CMIA and could be utilized as an alternative analytical method.

Keywords: biosensor, diffraction, ferritin, immunoassay

Procedia PDF Downloads 354