Search results for: socio-spatial transformation
13 The Ecuador Healthy Food Environment Policy Index (Food-EPI)
Authors: Samuel Escandón, María J. Peñaherrera-Vélez, Signe Vargas-Rosvik, Carlos Jerves Córdova, Ximena Vélez-Calvo, Angélica Ochoa-Avilés
Abstract:
Overweight and obesity are considered risk factors in childhood for developing nutrition-related non-communicable diseases (NCDs), such as diabetes, cardiovascular diseases, and cancer. In Ecuador, 35.4% of 5- to 11-year-olds and 29.6% of 12- to 19-year-olds are overweight or obese. Globally, unhealthy food environments characterized by high consumption of processed/ultra-processed food and rapid urbanization are highly related to the increasing nutrition-related non-communicable diseases. The evidence shows that in low- and middle-income countries (LMICs), fiscal policies and regulatory measures significantly reduce unhealthy food environments, achieving substantial advances in health. However, in some LMICs, little is known about the impact of governments' action to implement healthy food-environment policies. This study aimed to generate evidence on the state of implementation of public policy focused on food environments for the prevention of overweight and obesity in children and adolescents in Ecuador compared to global best practices and to target key recommendations for reinforcing the current strategies. After adapting the INFORMAS' Healthy Food Environment Policy Index (Food‐EPI) to the Ecuadorian context, the Policy and Infrastructure support components were assessed. Individual online interviews were performed using fifty-one indicators to analyze the level of implementation of policies directly or indirectly related to preventing overweight and obesity in children and adolescents compared to international best practices. Additionally, a participatory workshop was conducted to identify the critical indicators and generate recommendations to reinforce or improve the political action around them. In total, 17 government and non-government experts were consulted. From 51 assessed indicators, only the one corresponding to the nutritional information and ingredients labelling registered an implementation level higher than 60% (67%) compared to the best international practices. Among the 17 indicators determined as priorities by the participants, those corresponding to the provision of local products in school meals and the limitation of unhealthy-products promotion in traditional and digital media had the lowest level of implementation (34% and 11%, respectively) compared to global best practices. The participants identified more barriers (e.g., lack of continuity of effective policies across government administrations) than facilitators (e.g., growing interest from the Ministry of Environment because of the eating-behavior environmental impact) for Ecuador to move closer to the best international practices. Finally, within the participants' recommendations, we highlight the need for policy-evaluation systems, information transparency on the impact of the policies, transformation of successful strategies into laws or regulations to make them mandatory, and regulation of power and influence from the food industry (conflicts of interest). Actions focused on promoting a more active role of society in the stages of policy formation and achieving more articulated actions between the different government levels/institutions for implementing the policy are necessary to generate a noteworthy impact on preventing overweight and obesity in children and adolescents. Including systems for internal evaluation of existing strategies to strengthen successful actions, create policies to fill existing gaps and reform policies that do not generate significant impact should be a priority for the Ecuadorian government to improve the country's food environments.Keywords: children and adolescents, food-EPI, food policies, healthy food environment
Procedia PDF Downloads 6512 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture
Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy
Abstract:
Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin
Procedia PDF Downloads 23811 Transforming Mindsets and Driving Action through Environmental Sustainability Education: A Course in Case Studies and Project-Based Learning in Public Education
Authors: Sofia Horjales, Florencia Palma
Abstract:
Our society is currently experiencing a profound transformation, demanding a proactive response from governmental bodies and higher education institutions to empower the next generation as catalysts for change. Environmental sustainability is rooted in the critical need to maintain the equilibrium and integrity of natural ecosystems, ensuring the preservation of precious natural resources and biodiversity for the benefit of both present and future generations. It is an essential cornerstone of sustainable development, complementing social and economic sustainability. In this evolving landscape, active methodologies take a central role, aligning perfectly with the principles of the 2030 Agenda for Sustainable Development and emerging as a pivotal element of teacher education. The emphasis on active learning methods has been driven by the urgent need to nurture sustainability and instill social responsibility in our future leaders. The Universidad Tecnológica of Uruguay (UTEC) is a public, technologically-oriented institution established in 2012. UTEC is dedicated to decentralization, expanding access to higher education throughout Uruguay, and promoting inclusive social development. Operating through Regional Technological Institutes (ITRs) and associated centers spread across the country, UTEC faces the challenge of remote student populations. To address this, UTEC utilizes e-learning for equal opportunities, self-regulated learning, and digital skills development, enhancing communication among students, teachers, and peers through virtual classrooms. The Interdisciplinary Continuing Education Program is part of the Innovation and Entrepreneurship Department of UTEC. The main goal is to strengthen innovation skills through a transversal and multidisciplinary approach. Within this Program, we have developed a Case of Study and Project-Based Learning Virtual Course designed for university students and open to the broader UTEC community. The primary aim of this course is to establish a strong foundation for comprehending and addressing environmental sustainability issues from an interdisciplinary perspective. Upon completing the course, we expect students not only to understand the intricate interactions between social and ecosystem environments but also to utilize their knowledge and innovation skills to develop projects that offer enhancements or solutions to real-world challenges. Our course design centers on innovative learning experiences, rooted in active methodologies. We explore the intersection of these methods with sustainability and social responsibility in the education of university students. A paramount focus lies in gathering student feedback, empowering them to autonomously generate ideas with guidance from instructors, and even defining their own project topics. This approach underscores that when students are genuinely engaged in subjects of their choice, they not only acquire the necessary knowledge and skills but also develop essential attributes like effective communication, critical thinking, and problem-solving abilities. These qualities will benefit them throughout their lifelong learning journey. We are convinced that education serves as the conduit to merge knowledge and cultivate interdisciplinary collaboration, igniting awareness and instigating action for environmental sustainability. While systemic changes are undoubtedly essential for society and the economy, we are making significant progress by shaping perspectives and sparking small, everyday actions within the UTEC community. This approach empowers our students to become engaged global citizens, actively contributing to the creation of a more sustainable future.Keywords: active learning, environmental education, project-based learning, soft skills development
Procedia PDF Downloads 7110 Strategies for Implementing Climate-Resilient Urban Public Spaces: Key Principles of Public Space Design based on People-Centred and Climate-Responsive
Authors: Abimanyu S. Aji, Ima Yusmanita, R. A .Retno Hastijanti, Yudha Utama
Abstract:
The impacts of climate change are increasingly affecting major cities around the world. In April 2024, floods paralyzed Dubai, while in May of the same year, the city of Sao Leopoldo in southern Brazil, Rio Grande do Sul, experienced significant flooding that resulted in hundreds of casualties. In Europe, extreme weather along the Czech-Polish border caused rivers to overflow, carrying debris that destroyed historic cities and bridges and damaged homes. By the end of October 2024, further torrential flooding in Valencia, Spain, led to fatalities. Meanwhile, Southeast Asian cities, particularly Jakarta, are also highly vulnerable to the impacts of climate change and face the threat of being submerged due to rising sea levels. In response, the Indonesian government plans to relocate the capital to East Kalimantan, as Jakarta is no longer suitable as the capital city due to major urban problems and the impact of climate change. Given these circumstances, urgent action is needed to develop climate-resilient urban mitigation and adaptation strategies. One promising approach involves developing public space infrastructure that serves multiple functions, enhances resilience, and improves community welfare. Current urban design trends that adapt to climate change can create a new typology of spaces that respond to present or future climatic conditions. Small-scale interventions, such as designing and developing climate-resilient public spaces strategically located within spatial planning, can drive large-scale changes by transforming the urban context and enhancing the city's resilience to climate change. Public spaces represent the identity of a city, and functional public spaces that consider natural elements foster a harmonious interaction between the city and its environment. Additionally, the environmental design of these public spaces can help reduce hot temperatures in densely populated urban areas. The objective of this research is to identify suitable public spaces for transformation that can address climate adaptation challenges. Strategies for creating climate-resilient urban public spaces are categorized into two main aspects: tangible and intangible. Intangible strategies focus on community engagement and incorporate the ‘Penta Helix’ model, which includes five key elements: government, community, academia, business, and media. Tangible strategies encompass infrastructure design that adapts to climate change and adheres to several key principles: community co-creation, community health and welfare, learning through local themes, encouraging behavior change and new habits, fostering green entrepreneurship, enhancing environmental resilience, and promoting ecosystem integration. The outcome of these strategies is to create distinctive and inclusive public space architecture, including biophilic design elements. The methodologies employed in this study include both quantitative and qualitative approaches. The result of this study is a strategic concept that outlines key principles for designing community-centered and climate-responsive public spaces. By identifying the vital role of public spaces, this strategy can serve as a foundation for city-level climate adaptation efforts and raise awareness about the urgency of urban resilience, leveraging existing infrastructure opportunities. Furthermore, this research contributes to the global understanding of resilient urban design, offering valuable insights for other regions facing similar challenges.Keywords: climate adaptation, city resilience, urban public space, community engagement
Procedia PDF Downloads 79 From Linear to Circular Model: An Artificial Intelligence-Powered Approach in Fosso Imperatore
Authors: Carlotta D’Alessandro, Giuseppe Ioppolo, Katarzyna Szopik-Depczyńska
Abstract:
— The growing scarcity of resources and the mounting pressures of climate change, water pollution, and chemical contamination have prompted societies, governments, and businesses to seek ways to minimize their environmental impact. To combat climate change, and foster sustainability, Industrial Symbiosis (IS) offers a powerful approach, facilitating the shift toward a circular economic model. IS has gained prominence in the European Union's policy framework as crucial enabler of resource efficiency and circular economy practices. The essence of IS lies in the collaborative sharing of resources such as energy, material by-products, waste, and water, thanks to geographic proximity. It can be exemplified by eco-industrial parks (EIPs), which are natural environments for boosting cooperation and resource sharing between businesses. EIPs are characterized by group of businesses situated in proximity, connected by a network of both cooperative and competitive interactions. They represent a sustainable industrial model aimed at reducing resource use, waste, and environmental impact while fostering economic and social wellbeing. IS, combined with Artificial Intelligence (AI)-driven technologies, can further optimize resource sharing and efficiency within EIPs. This research, supported by the “CE_IPs” project, aims to analyze the potential for IS and AI, in advancing circularity and sustainability at Fosso Imperatore. The Fosso Imperatore Industrial Park in Nocera Inferiore, Italy, specializes in agriculture and the industrial transformation of agricultural products, particularly tomatoes, tobacco, and textile fibers. This unique industrial cluster, centered around tomato cultivation and processing, also includes mechanical engineering enterprises and agricultural packaging firms. To stimulate the shift from a traditional to a circular economic model, an AI-powered Local Development Plan (LDP) is developed for Fosso Imperatore. It can leverage data analytics, predictive modeling, and stakeholder engagement to optimize resource utilization, reduce waste, and promote sustainable industrial practices. A comprehensive SWOT analysis of the AI-powered LDP revealed several key factors influencing its potential success and challenges. Among the notable strengths and opportunities arising from AI implementation are reduced processing times, fewer human errors, and increased revenue generation. Furthermore, predictive analytics minimize downtime, bolster productivity, and elevate quality while mitigating workplace hazards. However, the integration of AI also presents potential weaknesses and threats, including significant financial investment, since implementing and maintaining AI systems can be costly. The widespread adoption of AI could lead to job losses in certain sectors. Lastly, AI systems are susceptible to cyberattacks, posing risks to data security and operational continuity. Moreover, an Analytic Hierarchy Process (AHP) analysis was employed to yield a prioritized ranking of the outlined AI-driven LDP practices based on the stakeholder input, ensuring a more comprehensive and representative understanding of their relative significance for achieving sustainability in Fosso Imperatore Industrial Park. While this study provides valuable insights into the potential of AIpowered LDP at the Fosso Imperatore, it is important to note that the findings may not be directly applicable to all industrial parks, particularly those with different sizes, geographic locations, or industry compositions. Additional study is necessary to scrutinize the generalizability of these results and to identify best practices for implementing AI-driven LDP in diverse contexts.Keywords: artificial intelligence, climate change, Fosso Imperatore, industrial park, industrial symbiosis
Procedia PDF Downloads 308 Microdiamond and Moissanite Inclusions in Garnets from Pohorje Mountains, Eastern Alps, Slovenia
Authors: Mirijam Vrabec, Marian Janak, Bojan Ambrozic, Angelja K. Surca, Nastja Rogan Smuc, Nina Zupancic, Saso Sturm
Abstract:
Natural microdiamonds and moissanite (SiC) can form during the orogenic events under ultrahigh-pressure metamorphic conditions (UHP), when parts of Earth’s crust are subducted to extreme depths. So far, such processes were identified only in few places on the Earth, and therefore, represent unique opportunity to study the evolution of the Earth’s deep interior. An important discovery of microdiamonds and moissanite was reported from Pohorje, (Slovenia), where they occurred as single or polyphase inclusions in garnets. Metasedimentary rocks from Pohorje are predominantly gneisses representing parts of the Austroalpine metamorphic units of the Eastern Alps. During Cretaceous orogeny, (ca. 95–92 Ma) continental crustal rocks were deeply subducted to the mantle depths (below 100 km) and metamorphosed at pressures exceeding 3.5 GPa and temperatures between 800–850 °C. Microstructural and phase analysis of the inclusions as well as detailed elemental analysis of host garnets were carried out combining several analytical techniques: optical microscope in plane polarized transmitted light, electron probe microanalysis (EPMA) with wavelength-dispersive x-ray spectrometry (WDS) and field-emission scanning microscope (FEG-SEM) with energy-dispersive x-ray spectroscopy (EDS). Micro-Raman analysis revealed sharp, first order diamond bands sometimes accompanied by graphite bands implying that transformation of diamond back to graphite occurred. To study the chemical and crystallographic relationship between microdiamonds and co-inclusions, advanced techniques of transmission electron microscopy (TEM) were applied, which included high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), combined with EDS and electron energy-loss spectroscopy (EELS). To prepare electron transparent TEM lamellae selectively a dual-beam Focused Ion Beam/SEM (FIB/SEM) was employed. Detailed study of TEM lamellae, which was cross-sectioned from the highly faceted inclusion body located within the host garnet crystal matrix, revealed rich and rather complex internal structure. Namely, the negative crystal facets of the main inclusion body were typically decorated with up to 1 μm thick amorphous layer, reflecting the general garnet composition with slight variations in Fe/Ca content. Within these layers, ELNES analysis revealed the presence of a 28–30 nm thick layer of amorphous carbon. The very last section of this layer corresponds to composition of SiO2. Within the inclusion, besides diamond and moissanite alumosilicate mineral with pronounced layered structure, iron sulfides and chlorine were identified under TEM and CO2 and CH4 using Raman. Moissanite is found as single crystal or composed from numerous highly textured nano-crystals with the average size of 10 nm. Moissanite inclusions were found embedded inside the amorphous crust implying that moissanite crystalized well before the deposition of the amorphous layer. From the microstructural, crystallographic and chemical observations so far we can deduce, that polyphase inclusions in diamond bearing garnets from Pohorje most probably crystallized from reduced supercritical fluids. Based on layered interface structure of the host mineral multiphase process of crystallization is possible. The presence of microdiamonds and moissanite in rocks from Pohorje demonstrates that these parts of the Eastern Alps were subducted to extreme depths, and were subsequently exhumed back to the Earth's surface without complete breakdown of UHP mineral phases, allowing a rear and exceptional opportunity to study them in-situ.Keywords: diamond, fluid inclusions, moissanite, TEM, UHP metamorphism.
Procedia PDF Downloads 3067 Settlement Prediction in Cape Flats Sands Using Shear Wave Velocity – Penetration Resistance Correlations
Authors: Nanine Fouche
Abstract:
The Cape Flats is a low-lying sand-covered expanse of approximately 460 square kilometres, situated to the southeast of the central business district of Cape Town in the Western Cape of South Africa. The aeolian sands masking this area are often loose and compressible in the upper 1m to 1.5m of the surface, and there is a general exceedance of the maximum allowable settlement in these sands. The settlement of shallow foundations on Cape Flats sands is commonly predicted using the results of in-situ tests such as the SPT or DPSH due to the difficulty of retrieving undisturbed samples for laboratory testing. Varying degrees of accuracy and reliability are associated with these methods. More recently, shear wave velocity (Vs) profiles obtained from seismic testing, such as continuous surface wave tests (CSW), are being used for settlement prediction. Such predictions have the advantage of considering non-linear stress-strain behaviour of soil and the degradation of stiffness with increasing strain. CSW tests are rarely executed in the Cape Flats, whereas SPT’s are commonly performed. For this reason, and to facilitate better settlement predictions in Cape Flats sand, equations representing shear wave velocity (Vs) as a function of SPT blow count (N60) and vertical effective stress (v’) were generated by statistical regression of site investigation data. To reveal the most appropriate method of overburden correction, analyses were performed with a separate overburden term (Pa/σ’v) as well as using stress corrected shear wave velocity and SPT blow counts (correcting Vs. and N60 to Vs1and (N1)60respectively). Shear wave velocity profiles and SPT blow count data from three sites masked by Cape Flats sands were utilised to generate 80 Vs-SPT N data pairs for analysis. Investigated terrains included sites in the suburbs of Athlone, Muizenburg, and Atlantis, all underlain by windblown deposits comprising fine and medium sand with varying fines contents. Elastic settlement analysis was also undertaken for the Cape Flats sands, using a non-linear stepwise method based on small-strain stiffness estimates, which was obtained from the best Vs-N60 model and compared to settlement estimates using the general elastic solution with stiffness profiles determined using Stroud’s (1989) and Webb’s (1969) SPT N60-E transformation models. Stroud’s method considers strain level indirectly whereasWebb’smethod does not take account of the variation in elastic modulus with strain. The expression of Vs. in terms of N60 and Pa/σv’ derived from the Atlantis data set revealed the best fit with R2 = 0.83 and a standard error of 83.5m/s. Less accurate Vs-SPT N relations associated with the combined data set is presumably the result of inversion routines used in the analysis of the CSW results showcasing significant variation in relative density and stiffness with depth. The regression analyses revealed that the inclusion of a separate overburden term in the regression of Vs and N60, produces improved fits, as opposed to the stress corrected equations in which the R2 of the regression is notably lower. It is the correction of Vs and N60 to Vs1 and (N1)60 with empirical constants ‘n’ and ‘m’ prior to regression, that introduces bias with respect to overburden pressure. When comparing settlement prediction methods, both Stroud’s method (considering strain level indirectly) and the small strain stiffness method predict higher stiffnesses for medium dense and dense profiles than Webb’s method, which takes no account of strain level in the determination of soil stiffness. Webb’s method appears to be suitable for loose sands only. The Versak software appears to underestimate differences in settlement between square and strip footings of similar width. In conclusion, settlement analysis using small-strain stiffness data from the proposed Vs-N60 model for Cape Flats sands provides a way to take account of the non-linear stress-strain behaviour of the sands when calculating settlement.Keywords: sands, settlement prediction, continuous surface wave test, small-strain stiffness, shear wave velocity, penetration resistance
Procedia PDF Downloads 1756 Unleashing Potential in Pedagogical Innovation for STEM Education: Applying Knowledge Transfer Technology to Guide a Co-Creation Learning Mechanism for the Lingering Effects Amid COVID-19
Authors: Lan Cheng, Harry Qin, Yang Wang
Abstract:
Background: COVID-19 has induced the largest digital learning experiment in history. There is also emerging research evidence that students have paid a high cost of learning loss from virtual learning. University-wide survey results demonstrate that digital learning remains difficult for students who struggle with learning challenges, isolation, or a lack of resources. Large-scale efforts are therefore increasingly utilized for digital education. To better prepare students in higher education for this grand scientific and technological transformation, STEM education has been prioritized and promoted as a strategic imperative in the ongoing curriculum reform essential for unfinished learning needs and whole-person development. Building upon five key elements identified in the STEM education literature: Problem-based Learning, Community and Belonging, Technology Skills, Personalization of Learning, Connection to the External Community, this case study explores the potential of pedagogical innovation that integrates computational and experimental methodologies to support, enrich, and navigate STEM education. Objectives: The goal of this case study is to create a high-fidelity prototype design for STEM education with knowledge transfer technology that contains a Cooperative Multi-Agent System (CMAS), which has the objectives of (1) conduct assessment to reveal a virtual learning mechanism and establish strategies to facilitate scientific learning engagement, accessibility, and connection within and beyond university setting, (2) explore and validate an interactional co-creation approach embedded in project-based learning activities under the STEM learning context, which is being transformed by both digital technology and student behavior change,(3) formulate and implement the STEM-oriented campaign to guide learning network mapping, mitigate the loss of learning, enhance the learning experience, scale-up inclusive participation. Methods: This study applied a case study strategy and a methodology informed by Social Network Analysis Theory within a cross-disciplinary communication paradigm (students, peers, educators). Knowledge transfer technology is introduced to address learning challenges and to increase the efficiency of Reinforcement Learning (RL) algorithms. A co-creation learning framework was identified and investigated in a context-specific way with a learning analytic tool designed in this study. Findings: The result shows that (1) CMAS-empowered learning support reduced students’ confusion, difficulties, and gaps during problem-solving scenarios while increasing learner capacity empowerment, (2) The co-creation learning phenomenon have examined through the lens of the campaign and reveals that an interactive virtual learning environment fosters students to navigate scientific challenge independently and collaboratively, (3) The deliverables brought from the STEM educational campaign provide a methodological framework both within the context of the curriculum design and external community engagement application. Conclusion: This study brings a holistic and coherent pedagogy to cultivates students’ interest in STEM and develop them a knowledge base to integrate and apply knowledge across different STEM disciplines. Through the co-designing and cross-disciplinary educational content and campaign promotion, findings suggest factors to empower evidence-based learning practice while also piloting and tracking the impact of the scholastic value of co-creation under the dynamic learning environment. The data nested under the knowledge transfer technology situates learners’ scientific journey and could pave the way for theoretical advancement and broader scientific enervators within larger datasets, projects, and communities.Keywords: co-creation, cross-disciplinary, knowledge transfer, STEM education, social network analysis
Procedia PDF Downloads 1155 Light Sensitive Plasmonic Nanostructures for Photonic Applications
Authors: Istvan Csarnovics, Attila Bonyar, Miklos Veres, Laszlo Himics, Attila Csik, Judit Kaman, Julia Burunkova, Geza Szanto, Laszlo Balazs, Sandor Kokenyesi
Abstract:
In this work, the performance of gold nanoparticles were investigated for stimulation of photosensitive materials for photonic applications. It was widely used for surface plasmon resonance experiments, not in the last place because of the manifestation of optical resonances in the visible spectral region. The localized surface plasmon resonance is rather easily observed in nanometer-sized metallic structures and widely used for measurements, sensing, in semiconductor devices and even in optical data storage. Firstly, gold nanoparticles on silica glass substrate satisfy the conditions for surface plasmon resonance in the green-red spectral range, where the chalcogenide glasses have the highest sensitivity. The gold nanostructures influence and enhance the optical, structural and volume changes and promote the exciton generation in gold nanoparticles/chalcogenide layer structure. The experimental results support the importance of localized electric fields in the photo-induced transformation of chalcogenide glasses as well as suggest new approaches to improve the performance of these optical recording media. Results may be utilized for direct, micrometre- or submicron size geometrical and optical pattern formation and used also for further development of the explanations of these effects in chalcogenide glasses. Besides of that, gold nanoparticles could be added to the organic light-sensitive material. The acrylate-based materials are frequently used for optical, holographic recording of optoelectronic elements due to photo-stimulated structural transformations. The holographic recording process and photo-polymerization effect could be enhanced by the localized plasmon field of the created gold nanostructures. Finally, gold nanoparticles widely used for electrochemical and optical sensor applications. Although these NPs can be synthesized in several ways, perhaps one of the simplest methods is the thermal annealing of pre-deposited thin films on glass or silicon surfaces. With this method, the parameters of the annealing process (time, temperature) and the pre-deposited thin film thickness influence and define the resulting size and distribution of the NPs on the surface. Localized surface plasmon resonance (LSPR) is a very sensitive optical phenomenon and can be utilized for a large variety of sensing purposes (chemical sensors, gas sensors, biosensors, etc.). Surface-enhanced Raman spectroscopy (SERS) is an analytical method which can significantly increase the yield of Raman scattering of target molecules adsorbed on the surface of metallic nanoparticles. The sensitivity of LSPR and SERS based devices is strongly depending on the used material and also on the size and geometry of the metallic nanoparticles. By controlling these parameters the plasmon absorption band can be tuned and the sensitivity can be optimized. The technological parameters of the generated gold nanoparticles were investigated and influence on the SERS and on the LSPR sensitivity was established. The LSPR sensitivity were simulated for gold nanocubes and nanospheres with MNPBEM Matlab toolbox. It was found that the enhancement factor (which characterize the increase in the peak shift for multi-particle arrangements compared to single-particle models) depends on the size of the nanoparticles and on the distance between the particles. This work was supported by GINOP- 2.3.2-15-2016-00041 project, which is co-financed by the European Union and European Social Fund. Istvan Csarnovics is grateful for the support through the New National Excellence Program of the Ministry of Human Capacities, supported by the ÚNKP-17-4 Attila Bonyár and Miklós Veres are grateful for the support of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.Keywords: light sensitive nanocomposites, metallic nanoparticles, photonic application, plasmonic nanostructures
Procedia PDF Downloads 3064 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion
Authors: Ali Kazemi
Abstract:
Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting
Procedia PDF Downloads 683 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 442 Women in Malaysia: Exploring the Democratic Space in Politics
Authors: Garima Sarkar
Abstract:
The main purpose of the present paper is to investigate the development and progress achieved by women in the decision-making sphere and to access the level of their political-participation in Parliamentary Elections of Malaysia and their status in overall Malaysian political domain. The paper also focuses on the role and status of women in the major political parties of the state both the parties in power as well as the parties in opposition. The primary objective of the study is to focus on the major hindrances and social malpractices faced by women and also Muslim women’s access to justice in Malaysia. It also demonstrates the linkages between national policy initiatives and the advancement of women in various areas, such as economics, health, employment, politics, power-sharing, social development and law and most importantly evaluating their status in the dominant religion of the nation. In Malaysia, women’s political participation is being challenged from every nook and corner of the society. A high percentage of women are getting educated, forming a significant labor force in present day Malaysia, who can be employed in the manufacturing sector, retail trade, hotels and restaurant, agriculture etc. Women today consist of almost half of the population and exceed boys in the tertiary sector by a ratio of 80:20. Despite these achievements, however, women’s labor force engagement remains confined to ‘ traditional women’s occupations’, such as those of primary school teachers, data entry clerks and organizing polls during elections and motivating other less enlightened women to cast their votes. In the political arena, the past few General Elections of Malaysia clearly exhibited a slight change in the number of women Members of Parliament from 10.6% (20 out of 193 Parliamentary seats in 1999) to 10.5% (23 out of 219 Parliamentary seats in 2004). Amidst the political posturing for the recent General Election in 2013 of Malaysia, women’s political participation remains a prime concern in Malaysia. It is evident that while much of the attention of women revolves around charitable assistance, they are much less likely to be portrayed as active participants in electoral politics and governance. According to the electoral roll for the third quarter of 2012, 6,578,916 women are registered as voters. They represent 50.2% of the total number of the registered voters. However, this parity in terms of voter registration is not reflected in the number of elected representatives at the Parliamentary level. Only 10.4% of sitting Members of Parliament are women. The women’s participation in the legislature and executive branches are important since their presence brings the spotlight squarely on issues that have been historically neglected and overlooked. In the recent 2013 General Elections in Malaysia out of 35 full ministerial position only two, or 5.7% have been filled by women. In each of the 2009, 2010, and in the present 2013 Cabinet members, there have only been two women ministers, with this number reduced to one briefly when the Prime Minister appointed himself placeholder in the Ministry of Women, Family and Community Development. In the recent past, in its Election Manifesto, Barisan Nasional made a pledge of ‘increasing the number of women participating in national decision-making processes’. Even after such pledges, the Malaysian leadership has failed to mirror the strong presence of women in leadership positions of public life which primarily includes politics, the judiciary and in business. There has been a strong urge to political parties by various gender-sensitive groups to nominate more women as candidates for contesting elections at the Parliamentary as well as at the State level. The democratization process will never be truly democratic without a proper gender agenda and representation. Although Malaysia signed the Beijing Platform for Action document in 1995, the state has a long way to go in enhancing the participation of women in every segment of Malaysian political, economic and cultural. There has been a small percentage of women representation in decision-making bodies compared to the 30% targeted by the Beijing Platform for Action. Thus, democratization in terms of representation of women in leadership positions and decision-making positions or bodies is essential since it’s a move towards a qualitative transformation of women in shaping national decision-making processes. The democratization process has to ensure women’s full participation and their goals of development and their full participation has to be included in the process of formulating and shaping the developmental goals.Keywords: women, gender equality, Islam, democratization, political representation, Parliament
Procedia PDF Downloads 2621 Impacts of Transformational Leadership: Petronas Stations in Sabah, Malaysia
Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Cyril Supain Christopher
Abstract:
The purpose of this paper is to improve the devotion to leadership through HR practices implementation at the PETRONAS stations. This emphasize the importance of personal grooming and Customer Care hospitality training for their front line working individuals and teams’ at PETRONAS stations in Sabah. Based on Thomas Edison, International Leadership Journal, theory, research, education and development practice and application to all organizational phenomena may affect or be affected by leadership. FINDINGS – PETRONAS in short called Petroliam Nasional Berhad is a Malaysian oil and gas company that was founded on August 17, 1974. Wholly owned by the Government of Malaysia, the corporation is vested with the entire oil and gas resources in Malaysia and is entrusted with the responsibility of developing and adding value to these resources. Fortune ranks PETRONAS as the 68th largest company in the world in 2012. It also ranks PETRONAS as the 12th most profitable company in the world and the most profitable in Asia. As of the end of March 2005, the PETRONAS Group comprised 103 wholly owned subsidiaries, 19 partly owned outfits and 57 associated companies. The group is engaged in a wide spectrum of petroleum activities, including upstream exploration and production of oil and gas to downstream oil refining, marketing and distribution of petroleum products, trading, gas processing and liquefaction, gas transmission pipeline network operations, marketing of liquefied natural gas; petrochemical manufacturing and marketing; shipping; automotive engineering and property investment. PETRONAS has growing their marketing channel in a competitive market. They have combined their resources to pursue common goals. PETRONAS provides opportunity to carry out Industrial Training Job Placement to the University students in Malaysia for 6-8 months. The effects of the Industrial Training have exposed them to the real working environment experience acting representing on behalf of General Manager for almost one year. Thus, the management education and reward incentives schemes have aspire the working teams transformed to gain their good leadership. Furthermore, knowledge and experiences are very important in the human capital development transformation. SPSS extends the accurate analysis PETRONAS achievement through 280 questionnaires and 81 questionnaires through excel calculation distributed to interview face to face with the customers, PETRONAS dealers and front desk staffs stations in the 17 stations in Kota Kinabalu, Sabah. Hence, this research study will improve its service quality innovation and business sustainability performance optimization. ORIGINALITY / VALUE – The impact of Transformational Leadership practices have influenced the working team’s behaviour as a Brand Ambassadors of PETRONAS. Finally, the findings correlation indicated that PETRONAS stations needs more HR resources practices to deploy more customer care retention resources in mitigating the business challenges in oil and gas industry. Therefore, as the business established at stiff competition globally (Cooper, 2006; Marques and Simon, 2006), it is crucial for the team management should be capable to minimize noises risk, financial risk and mitigating any other risks as a whole at the optimum level. CONCLUSION- As to conclude this research found that both transformational and transactional contingent reward leadership4 were positively correlated with ratings of platoon potency and ratings of leadership for the platoon leader and sergeant were moderately inter correlated. Due to this identification, we recommended that PETRONAS management should offers quality team management in PETRONAS stations in a broader variety of leadership training specialization in the operation efficiency at the front desk Customer Care hospitality. By having the reliability and validity of job experiences, it leverages diversity teamwork and cross collaboration. Other than leveraging factor, PETRONAS also will strengthen the interpersonal front liners effectiveness and enhance quality of interaction through effective communication. Finally, through numerous CSR correlation studies regression PETRONAS performance on Corporate Social Performance and several control variables.1 CSR model activities can be mis-specified if it is not controllable under R & D which evident in various feedbacks collected from the local communities and younger generation is inclined to higher financial expectation from PETRONAS. But, however, it created a huge impact on the nation building as part of its social adaptability overreaching their business stakeholders’ satisfaction in Sabah.Keywords: human resources practices implementation (hrpi), source of competitive advantage in people’s development (socaipd), corporate social responsibility (csr), service quality at front desk stations (sqafd), impacts of petronas leadership (iopl)
Procedia PDF Downloads 352