Search results for: back propagation neural network model
20167 Multi-Dimension Threat Situation Assessment Based on Network Security Attributes
Authors: Yang Yu, Jian Wang, Jiqiang Liu, Lei Han, Xudong He, Shaohua Lv
Abstract:
As the increasing network attacks become more and more complex, network situation assessment based on log analysis cannot meet the requirements to ensure network security because of the low quality of logs and alerts. This paper addresses the lack of consideration of security attributes of hosts and attacks in the network. Identity and effectiveness of Distributed Denial of Service (DDoS) are hard to be proved in risk assessment based on alerts and flow matching. This paper proposes a multi-dimension threat situation assessment method based on network security attributes. First, the paper offers an improved Common Vulnerability Scoring System (CVSS) calculation, which includes confident risk, integrity risk, availability risk and a weighted risk. Second, the paper introduces deterioration rate of properties collected by sensors in hosts and network, which aimed at assessing the time and level of DDoS attacks. Third, the paper introduces distribution of asset value in security attributes considering features of attacks and network, which aimed at assessing and show the whole situation. Experiments demonstrate that the approach reflects effectiveness and level of DDoS attacks, and the result can show the primary threat in network and security requirement of network. Through comparison and analysis, the method reflects more in security requirement and security risk situation than traditional methods based on alert and flow analyzing.Keywords: DDoS evaluation, improved CVSS, network security attribute, threat situation assessment
Procedia PDF Downloads 20920166 Designing Back-Stepping Sliding Mode Controller for a Class of 4Y Octorotor
Authors: I. Khabbazi, R. Ghasemi
Abstract:
This paper presents a combination of both robust nonlinear controller and nonlinear controller for a class of nonlinear 4Y Octorotor UAV using Back-stepping and sliding mode controller. The robustness against internal and external disturbance and decoupling control are the merits of the proposed paper. The proposed controller decouples the Octorotor dynamical system. The controller is then applied to a 4Y Octorotor UAV and its feature will be shown.Keywords: sliding mode, backstepping, decoupling, octorotor UAV
Procedia PDF Downloads 44020165 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison
Authors: Xiangtuo Chen, Paul-Henry Cournéde
Abstract:
Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.Keywords: crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest
Procedia PDF Downloads 23120164 Social Network Analysis in Water Governance
Authors: Faribaebrahimi, Mehdi Ghorbani, Mohsen Mohsenisaravi
Abstract:
Ecosystem management is complex because of natural and human issues. To cope with this complexity water governance is recommended since it involves all stakeholders including people, governmental and non-governmental organization who related to environmental systems. Water governance emphasizes on water co-management through consideration of all the stakeholders in the form of social and organizational network. In this research, to illustrate indicators of water governance in Dorood watershed, in Shemiranat region of Iran, social network analysis had been applied. The results revealed that social cohesion among pastoralists in Dorood is medium because of trust links, while link sustainability is weak to medium. According to the results, some pastoralists have high social power and therefore are key actors in the utilization network, regarding to centrality index and trust links. The results also demonstrated that Agricultural Development Office and (Shemshak-Darbandsar Islamic) Council are key actors in rangeland co-management, based on centrality index in rangeland institutional network at regional scale in Shemiranat district.Keywords: social network analysis, water governance, organizational network, water co-management
Procedia PDF Downloads 35120163 Analysis of the Omnichannel Delivery Network with Application to Last Mile Delivery
Authors: Colette Malyack, Pius Egbelu
Abstract:
Business-to-Customer (B2C) delivery options have improved to meet increased demand in recent years. The change in end users has forced logistics networks to focus on customer service and sentiment that would have previously been the priority of the company or organization of origin. This has led to increased pressure on logistics companies to extend traditional B2B networks into a B2C solution while accommodating additional costs, roadblocks, and customer sentiment; the result has been the creation of the omnichannel delivery network encompassing a number of traditional and modern methods of package delivery. In this paper the many solutions within the omnichannel delivery network are defined and discussed. It can be seen through this analysis that the omnichannel delivery network can be applied to reduce the complexity of package delivery and provide customers with more options. Applied correctly the result is a reduction in cost to the logistics company over time, even with an initial increase in cost to obtain the technology.Keywords: network planning, last mile delivery, omnichannel delivery network, omnichannel logistics
Procedia PDF Downloads 15020162 A Model Based Metaheuristic for Hybrid Hierarchical Community Structure in Social Networks
Authors: Radhia Toujani, Jalel Akaichi
Abstract:
In recent years, the study of community detection in social networks has received great attention. The hierarchical structure of the network leads to the emergence of the convergence to a locally optimal community structure. In this paper, we aim to avoid this local optimum in the introduced hybrid hierarchical method. To achieve this purpose, we present an objective function where we incorporate the value of structural and semantic similarity based modularity and a metaheuristic namely bees colonies algorithm to optimize our objective function on both hierarchical level divisive and agglomerative. In order to assess the efficiency and the accuracy of the introduced hybrid bee colony model, we perform an extensive experimental evaluation on both synthetic and real networks.Keywords: social network, community detection, agglomerative hierarchical clustering, divisive hierarchical clustering, similarity, modularity, metaheuristic, bee colony
Procedia PDF Downloads 37920161 Optimization of Interface Radio of Universal Mobile Telecommunication System Network
Authors: O. Mohamed Amine, A. Khireddine
Abstract:
Telecoms operators are always looking to meet their share of the other customers, they try to gain optimum utilization of the deployed equipment and network optimization has become essential. This project consists of optimizing UMTS network, and the study area is an urban area situated in the center of Algiers. It was initially questions to become familiar with the different communication systems (3G) and the optimization technique, its main components, and its fundamental characteristics radios were introduced.Keywords: UMTS, UTRAN, WCDMA, optimization
Procedia PDF Downloads 38320160 Optimization of Traffic Agent Allocation for Minimizing Bus Rapid Transit Cost on Simplified Jakarta Network
Authors: Gloria Patricia Manurung
Abstract:
Jakarta Bus Rapid Transit (BRT) system which was established in 2009 to reduce private vehicle usage and ease the rush hour gridlock throughout the Jakarta Greater area, has failed to achieve its purpose. With gradually increasing the number of private vehicles ownership and reduced road space by the BRT lane construction, private vehicle users intuitively invade the exclusive lane of BRT, creating local traffic along the BRT network. Invaded BRT lanes costs become the same with the road network, making BRT which is supposed to be the main public transportation in the city becoming unreliable. Efforts to guard critical lanes with preventing the invasion by allocating traffic agents at several intersections have been expended, lead to the improving congestion level along the lane. Given a set of number of traffic agents, this study uses an analytical approach to finding the best deployment strategy of traffic agent on a simplified Jakarta road network in minimizing the BRT link cost which is expected to lead to the improvement of BRT system time reliability. User-equilibrium model of traffic assignment is used to reproduce the origin-destination demand flow on the network and the optimum solution conventionally can be obtained with brute force algorithm. This method’s main constraint is that traffic assignment simulation time escalates exponentially with the increase of set of agent’s number and network size. Our proposed metaheuristic and heuristic algorithms perform linear simulation time increase and result in minimized BRT cost approaching to brute force algorithm optimization. Further analysis of the overall network link cost should be performed to see the impact of traffic agent deployment to the network system.Keywords: traffic assignment, user equilibrium, greedy algorithm, optimization
Procedia PDF Downloads 22920159 Enhancements to the Coupled Hydro-Mechanical Hypoplastic Model for Unsaturated Soils
Authors: Shanujah Mathuranayagam, William Fuentes, Samanthika Liyanapathirana
Abstract:
This paper introduces an enhanced version of the coupled hydro-mechanical hypoplastic model. The model is able to simulate volumetric collapse upon wetting and incorporates suction effects on stiffness and strength. Its mechanical constitutive equation links Bishop’s effective stress with strain and suction, featuring a normal consolidation line (NCL) with a compression index (λ) presenting a non-linear dependency with the degree of saturation. The Bulk modulus has been modified to ensure that under rapid volumetric collapse, the stress state remains at the NCL. The coupled model comprises eighteen parameters, with nine for the hydraulic component and nine for the mechanical component. Hydraulic parameters are calibrated with the use of water retention curves (IWRC) across varied soil densities, while mechanical parameters undergo calibration using isotropic and triaxial tests on both unsaturated and saturated samples. The model's performance is analyzed through the back-calculation of two experimental studies: (i) wetting under different vertical stresses for Lower Cromer Till and (ii) isotropic loading and triaxial loading for undisturbed loess. The results confirm that the proposed model is able to predict the hydro-mechanical behavior of unsaturated soils.Keywords: hypoplastic model, volumetric collapse, normal consolidation line, compression index (λ), degree of saturation, soil suction
Procedia PDF Downloads 6420158 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery
Authors: Forouzan Salehi Fergeni
Abstract:
Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine
Procedia PDF Downloads 5020157 Ferroelectricity in Fused Potassium Nitrate-Polymer Composite Films
Authors: Navneet Dabra, Baljinder Kaur, Lakhbir Singh, V. Annapu Reddy, R. Nath, Dae-Yong Jeong, Jasbir S. Hundal
Abstract:
The ferroelectric properties of fused potassium nitrate (KNO3)- polyvinyl alcohol (PVA) composite films have been investigated. The composite films of KNO3-PVA have been prepared by solvant cast technique and then fused over the brass substrate. The ferroelectric hysteresis loops (P-E) have been obtained at room temperature using modified Sawyer-Tower circuit. Percentage of back switching and differential dielectric constant has been derived from P-V loops. The x-ray diffraction (XRD) studies confirm the formation of ferroelectric phase (phase III) in these composite films. The AFM and FE-SEM studies have been used to study the surface morphology of these composite films. The values of remanemt polarization, coercive field, back switching, crystallite size, lattice parameters, and surface roughness have been estimated and correlated.Keywords: ferroelectric polymer composite, remanemt polarization, back switching, crystallite size, lattice parameters and surface roughness
Procedia PDF Downloads 39820156 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Differenced Normalized Burnt Ratio and Neural Network Approach
Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman
Abstract:
Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differenced normalized burnt ratio (dNBR) index approach that uses the burnt ratio values generated using the Short-Wave Infrared (SWIR) band and Near Infrared (NIR) bands of the Sentinel-2 image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel-2 bands. The training and testing data are generated from the Sentinel-2 data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire-affected regions and their severity can be better estimated using spectral unmixing methods, which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.Keywords: categorical data, log linear modeling, neural network, shifting cultivation
Procedia PDF Downloads 5420155 The Computational Psycholinguistic Situational-Fuzzy Self-Controlled Brain and Mind System Under Uncertainty
Authors: Ben Khayut, Lina Fabri, Maya Avikhana
Abstract:
The models of the modern Artificial Narrow Intelligence (ANI) cannot: a) independently and continuously function without of human intelligence, used for retraining and reprogramming the ANI’s models, and b) think, understand, be conscious, cognize, infer, and more in state of Uncertainty, and changes in situations, and environmental objects. To eliminate these shortcomings and build a new generation of Artificial Intelligence systems, the paper proposes a Conception, Model, and Method of Computational Psycholinguistic Cognitive Situational-Fuzzy Self-Controlled Brain and Mind System (CPCSFSCBMSUU) using a neural network as its computational memory, operating under uncertainty, and activating its functions by perception, identification of real objects, fuzzy situational control, forming images of these objects, modeling their psychological, linguistic, cognitive, and neural values of properties and features, the meanings of which are identified, interpreted, generated, and formed taking into account the identified subject area, using the data, information, knowledge, and images, accumulated in the Memory. The functioning of the CPCSFSCBMSUU is carried out by its subsystems of the: fuzzy situational control of all processes, computational perception, identifying of reactions and actions, Psycholinguistic Cognitive Fuzzy Logical Inference, Decision making, Reasoning, Systems Thinking, Planning, Awareness, Consciousness, Cognition, Intuition, Wisdom, analysis and processing of the psycholinguistic, subject, visual, signal, sound and other objects, accumulation and using the data, information and knowledge in the Memory, communication, and interaction with other computing systems, robots and humans in order of solving the joint tasks. To investigate the functional processes of the proposed system, the principles of Situational Control, Fuzzy Logic, Psycholinguistics, Informatics, and modern possibilities of Data Science were applied. The proposed self-controlled System of Brain and Mind is oriented on use as a plug-in in multilingual subject Applications.Keywords: computational brain, mind, psycholinguistic, system, under uncertainty
Procedia PDF Downloads 17720154 Urban Networks as Model of Sustainable Design
Authors: Agryzkov Taras, Oliver Jose L., Tortosa Leandro, Vicent Jose
Abstract:
This paper aims to demonstrate how the consideration of cities as a special kind of complex network, called urban network, may lead to the use of design tools coming from network theories which, in fact, results in a quite sustainable approach. There is no doubt that the irruption in contemporary thought of Gaia as an essential political agent proposes a narrative that has been extended to the field of creative processes in which, of course, the activity of Urban Design is found. The rationalist paradigm is put in crisis, and from the so-called sciences of complexity, its way of describing reality and of intervening in it is questioned. Thus, a new way of understanding reality surges, which has to do with a redefinition of the human being's own place in what is now understood as a delicate and complex network. In this sense, we know that in these systems of connected and interdependent elements, the influences generated by them originate emergent properties and behaviors for the whole that, individually studied, would not make sense. We believe that the design of cities cannot remain oblivious to these principles, and therefore this research aims to demonstrate the potential that they have for decision-making in the urban environment. Thus, we will see an example of action in the field of public mobility, another example in the design of commercial areas, and a third example in the field of redensification of sprawl areas, in which different aspects of network theory have been applied to change the urban design. We think that even though these actions have been developed in European cities, and more specifically in the Mediterranean area in Spain, the reflections and tools could have a broader scope of action.Keywords: graphs, complexity sciences, urban networks, urban design
Procedia PDF Downloads 15420153 A Recognition Method of Ancient Yi Script Based on Deep Learning
Authors: Shanxiong Chen, Xu Han, Xiaolong Wang, Hui Ma
Abstract:
Yi is an ethnic group mainly living in mainland China, with its own spoken and written language systems, after development of thousands of years. Ancient Yi is one of the six ancient languages in the world, which keeps a record of the history of the Yi people and offers documents valuable for research into human civilization. Recognition of the characters in ancient Yi helps to transform the documents into an electronic form, making their storage and spreading convenient. Due to historical and regional limitations, research on recognition of ancient characters is still inadequate. Thus, deep learning technology was applied to the recognition of such characters. Five models were developed on the basis of the four-layer convolutional neural network (CNN). Alpha-Beta divergence was taken as a penalty term to re-encode output neurons of the five models. Two fully connected layers fulfilled the compression of the features. Finally, at the softmax layer, the orthographic features of ancient Yi characters were re-evaluated, their probability distributions were obtained, and characters with features of the highest probability were recognized. Tests conducted show that the method has achieved higher precision compared with the traditional CNN model for handwriting recognition of the ancient Yi.Keywords: recognition, CNN, Yi character, divergence
Procedia PDF Downloads 16420152 Assessment of Transverse Abdominis Activation during Three Different Exercises in Low Back Pain Patients: Measurement with Real-Time Ultrasonography
Authors: Venus Pagare, Amit Kharat, Dhaval K. Thakkar, Tushar J. Palekar
Abstract:
Introduction: Chronic low back pain (CLBP) is a major public health problem and is the leading musculoskeletal cause of disability. Altered neuromuscular control of core muscles, particulary transverses abdominis (TrA) is thought to be a contributing factor for the development of CLBP. Therefore, various exercises targeting the TrA are commonly incorporated into the rehabilitation. Objectives: To investigate the effects of 3 different core exercises on activation capacity of TrA muscle in individuals with CLBP as compared with healthy controls. Methodology: Thickness of TrA muscle was measured by ultrasound imaging in 30 patients with CLBP and 30 healthy controls. Measurements were taken during 3 different TrA activation exercises i.e Abdominal drawing in maneuver (ADIM), Abdominal drawing in with straight leg raise (ADSLR) and breathe hold at maximum expiration (ME). Thickness of the muscle at rest (at the end of normal tidal expiration) was taken as a baseline measure. Results: There was a significant difference between the healthy subjects and patients with low back pain with regard to the thickness of TrA at rest and thickness during contraction. ADIM produced a significant increase in the thickness of TrA compared to ADSLR and ME (p<0.001). Also, increase in thickness of TrA was more in the control group than patients with low back pain. Conclusion: CLBP patients exhibited atrophy of TrA muscle with delayed activation. Also, of the various core exercises, ADIM can be an effective method for activation of TrA.Keywords: LBP, CLBP, ADSLR, ADIM
Procedia PDF Downloads 31320151 A Lifetime-Enhancing Monitoring Node Distribution Using Minimum Spanning Tree in Mobile Ad Hoc Networks
Authors: Sungchul Ha, Hyunwoo Kim
Abstract:
In mobile ad hoc networks, all nodes in a network only have limited resources and calculation ability. Therefore communication topology which have long lifetime is good for all nodes in mobile ad hoc networks. There are a variety of researches on security problems in wireless ad hoc networks. The existing many researches try to make efficient security schemes to reduce network power consumption and enhance network lifetime. Because a new node can join the network at any time, the wireless ad hoc networks are exposed to various threats and can be destroyed by attacks. Resource consumption is absolutely necessary to secure networks, but more resource consumption can be a critical problem to network lifetime. This paper focuses on efficient monitoring node distribution to enhance network lifetime in wireless ad hoc networks. Since the wireless ad hoc networks cannot use centralized infrastructure and security systems of wired networks, a new special IDS scheme is necessary. The scheme should not only cover all nodes in a network but also enhance the network lifetime. In this paper, we propose an efficient IDS node distribution scheme using minimum spanning tree (MST) method. The simulation results show that the proposed algorithm has superior performance in comparison with existing algorithms.Keywords: MANETs, IDS, power control, minimum spanning tree
Procedia PDF Downloads 37220150 Multiple Query Optimization in Wireless Sensor Networks Using Data Correlation
Authors: Elaheh Vaezpour
Abstract:
Data sensing in wireless sensor networks is done by query deceleration the network by the users. In many applications of the wireless sensor networks, many users send queries to the network simultaneously. If the queries are processed separately, the network’s energy consumption will increase significantly. Therefore, it is very important to aggregate the queries before sending them to the network. In this paper, we propose a multiple query optimization framework based on sensors physical and temporal correlation. In the proposed method, queries are merged and sent to network by considering correlation among the sensors in order to reduce the communication cost between the sensors and the base station.Keywords: wireless sensor networks, multiple query optimization, data correlation, reducing energy consumption
Procedia PDF Downloads 33420149 Research on the Spatial Organization and Collaborative Innovation of Innovation Corridors from the Perspective of Ecological Niche: A Case Study of Seven Municipal Districts in Jiangsu Province, China
Authors: Weikang Peng
Abstract:
The innovation corridor is an important spatial carrier to promote regional collaborative innovation, and its development process is the spatial re-organization process of regional innovation resources. This paper takes the Nanjing-Zhenjiang G312 Industrial Innovation Corridor, which involves seven municipal districts in Jiangsu Province, as empirical evidence. Based on multi-source spatial big data in 2010, 2016, and 2022, this paper applies triangulated irregular network (TIN), head/tail breaks, regional innovation ecosystem (RIE) niche fitness evaluation model, and social network analysis to carry out empirical research on the spatial organization and functional structural evolution characteristics of innovation corridors and their correlation with the structural evolution of collaborative innovation network. The results show, first, the development of innovation patches in the corridor has fractal characteristics in time and space and tends to be multi-center and cluster layout along the Nanjing Bypass Highway and National Highway G312. Second, there are large differences in the spatial distribution pattern of niche fitness in the corridor in various dimensions, and the niche fitness of innovation patches along the highway has increased significantly. Third, the scale of the collaborative innovation network in the corridor is expanding fast. The core of the network is shifting from the main urban area to the periphery of the city along the highway, with small-world and hierarchical levels, and the core-edge network structure is highlighted. With the development of the Innovation Corridor, the main collaborative mode in the corridor is changing from collaboration within innovation patches to collaboration between innovation patches, and innovation patches with high ecological suitability tend to be the active areas of collaborative innovation. Overall, polycentric spatial layout, graded functional structure, diversified innovation clusters, and differentiated environmental support play an important role in effectively constructing collaborative innovation linkages and the stable expansion of the scale of collaborative innovation within the innovation corridor.Keywords: innovation corridor development, spatial structure, niche fitness evaluation model, head/tail breaks, innovation network
Procedia PDF Downloads 2020148 Presenting Internals of Networks Using Bare Machine Technology
Authors: Joel Weymouth, Ramesh K. Karne, Alexander L. Wijesinha
Abstract:
Bare Machine Internet is part of the Bare Machine Computing (BMC) paradigm. It is used in programming application ns to run directly on a device. It is software that runs directly against the hardware using CPU, Memory, and I/O. The software application runs without an Operating System and resident mass storage. An important part of the BMC paradigm is the Bare Machine Internet. It utilizes an Application Development model software that interfaces directly with the hardware on a network server and file server. Because it is “bare,” it is a powerful teaching and research tool that can readily display the internals of the network protocols, software, and hardware of the applications running on the Bare Server. It was also demonstrated that the bare server was accessible by laptop and by smartphone/android. The purpose was to show the further practicality of Bare Internet in Computer Engineering and Computer Science Education and Research. It was also to show that an undergraduate student could take advantage of a bare server with any device and any browser at any release version connected to the internet. This paper presents the Bare Web Server as an educational tool. We will discuss possible applications of this paradigm.Keywords: bare machine computing, online research, network technology, visualizing network internals
Procedia PDF Downloads 17220147 Prediction of Structural Response of Reinforced Concrete Buildings Using Artificial Intelligence
Authors: Juan Bojórquez, Henry E. Reyes, Edén Bojórquez, Alfredo Reyes-Salazar
Abstract:
This paper addressed the use of Artificial Intelligence to obtain the structural reliability of reinforced concrete buildings. For this purpose, artificial neuronal networks (ANN) are developed to predict seismic demand hazard curves. In order to have enough input-output data to train the ANN, a set of reinforced concrete buildings (low, mid, and high rise) are designed, then a probabilistic seismic hazard analysis is made to obtain the seismic demand hazard curves. The results are then used as input-output data to train the ANN in a feedforward backpropagation model. The predicted values of the seismic demand hazard curves found by the ANN are then compared. Finally, it is concluded that the computer time analysis is significantly lower and the predictions obtained from the ANN were accurate in comparison to the values obtained from the conventional methods.Keywords: structural reliability, seismic design, machine learning, artificial neural network, probabilistic seismic hazard analysis, seismic demand hazard curves
Procedia PDF Downloads 19620146 Manufacturing Anomaly Detection Using a Combination of Gated Recurrent Unit Network and Random Forest Algorithm
Authors: Atinkut Atinafu Yilma, Eyob Messele Sefene
Abstract:
Anomaly detection is one of the essential mechanisms to control and reduce production loss, especially in today's smart manufacturing. Quick anomaly detection aids in reducing the cost of production by minimizing the possibility of producing defective products. However, developing an anomaly detection model that can rapidly detect a production change is challenging. This paper proposes Gated Recurrent Unit (GRU) combined with Random Forest (RF) to detect anomalies in the production process in real-time quickly. The GRU is used as a feature detector, and RF as a classifier using the input features from GRU. The model was tested using various synthesis and real-world datasets against benchmark methods. The results show that the proposed GRU-RF outperforms the benchmark methods with the shortest time taken to detect anomalies in the production process. Based on the investigation from the study, this proposed model can eliminate or reduce unnecessary production costs and bring a competitive advantage to manufacturing industries.Keywords: anomaly detection, multivariate time series data, smart manufacturing, gated recurrent unit network, random forest
Procedia PDF Downloads 11820145 Taguchi Method for Analyzing a Flexible Integrated Logistics Network
Authors: E. Behmanesh, J. Pannek
Abstract:
Logistics network design is known as one of the strategic decision problems. As these kinds of problems belong to the category of NP-hard problems, traditional ways are failed to find an optimal solution in short time. In this study, we attempt to involve reverse flow through an integrated design of forward/reverse supply chain network that formulated into a mixed integer linear programming. This Integrated, multi-stages model is enriched by three different delivery path which makes the problem more complex. To tackle with such an NP-hard problem a revised random path direct encoding method based memetic algorithm is considered as the solution methodology. Each algorithm has some parameters that need to be investigate to reveal the best performance. In this regard, Taguchi method is adapted to identify the optimum operating condition of the proposed memetic algorithm to improve the results. In this study, four factors namely, population size, crossover rate, local search iteration and a number of iteration are considered. Analyzing the parameters and improvement in results are the outlook of this research.Keywords: integrated logistics network, flexible path, memetic algorithm, Taguchi method
Procedia PDF Downloads 18720144 Parkinson's Disease and Musculoskeletal Problems
Authors: Ozge Yilmaz Kusbeci, Ipek Inci
Abstract:
Aim: Musculoskeletal problems are very common in Parkinson’s disease (PD). They affect quality of life and cause disabilities. However they are under-evaluated, and under-treated. The aim of this study is to evaluate the prevalence and clinical features of musculoskeletal problems in patients with Parkinson disease (PD) compared to controls. Methods: 50 PD patients and 50 age and sex matched controls were interviewed by physicians about their musculoskeletal problems. Results: The prevalence of musculoskeletal problems was significantly higher in the PD group than in the control group (p < 0.05). Commonly involved body sites were the shoulder, low back, and knee. The shoulder and low back was more frequently involved in the PD group than in the control group. However, the knee was similarly involved in both groups. Among the past diagnoses associated with musculoskeletal problems, frozen shoulder, low back pain and osteoporosis more common in the PD group than in the control group (p < 0.05). Furthermore, musculoskeletal problems in the PD group tended to receive less treatment than that of the control group. Conclusion: Musculoskeletal problems were more common in the PD group than in the controls. Therefore assessment and treatment of musculoskeletal problems could improve quality of life in PD patients.Keywords: parkinson disease, musculoskeletal problems, quality of life, PD disease
Procedia PDF Downloads 39420143 Modification of Fick’s First Law by Introducing the Time Delay
Authors: H. Namazi, H. T. N. Kuan
Abstract:
Fick's first law relates the diffusive flux to the concentration field, by postulating that the flux goes from regions of high concentration to regions of low concentration, with a magnitude that is proportional to the concentration gradient (spatial derivative). It is clear that the diffusion of flux cannot be instantaneous and should be some time delay in this propagation. But Fick’s first law doesn’t consider this delay which results in some errors especially when there is a considerable time delay in the process. In this paper, we introduce a time delay to Fick’s first law. By this modification, we consider that the diffusion of flux cannot be instantaneous. In order to verify this claim an application sample in fluid diffusion is discussed and the results of modified Fick’s first law, Fick’s first law and the experimental results are compared. The results of this comparison stand for the accuracy of the modified model. The modified model can be used in any application where the time delay has considerable value and neglecting its effect reflects in undesirable results.Keywords: Fick's first law, flux, diffusion, time delay, modified Fick’s first law
Procedia PDF Downloads 40820142 Failure Analysis and Verification Using an Integrated Method for Automotive Electric/Electronic Systems
Authors: Lei Chen, Jian Jiao, Tingdi Zhao
Abstract:
Failures of automotive electric/electronic systems, which are universally considered to be safety-critical and software-intensive, may cause catastrophic accidents. Analysis and verification of failures in these kinds of systems is a big challenge with increasing system complexity. Model-checking is often employed to allow formal verification by ensuring that the system model conforms to specified safety properties. The system-level effects of failures are established, and the effects on system behavior are observed through the formal verification. A hazard analysis technique, called Systems-Theoretic Process Analysis, is capable of identifying design flaws which may cause potential failure hazardous, including software and system design errors and unsafe interactions among multiple system components. This paper provides a concept on how to use model-checking integrated with Systems-Theoretic Process Analysis to perform failure analysis and verification of automotive electric/electronic systems. As a result, safety requirements are optimized, and failure propagation paths are found. Finally, an automotive electric/electronic system case study is used to verify the effectiveness and practicability of the method.Keywords: failure analysis and verification, model checking, system-theoretic process analysis, automotive electric/electronic system
Procedia PDF Downloads 12020141 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending
Authors: Aamir Mubashar, Ibrahim Fiaz
Abstract:
This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model
Procedia PDF Downloads 13820140 DMBR-Net: Deep Multiple-Resolution Bilateral Networks for Real-Time and Accurate Semantic Segmentation
Authors: Pengfei Meng, Shuangcheng Jia, Qian Li
Abstract:
We proposed a real-time high-precision semantic segmentation network based on a multi-resolution feature fusion module, the auxiliary feature extracting module, upsampling module, and atrous spatial pyramid pooling (ASPP) module. We designed a feature fusion structure, which is integrated with sufficient features of different resolutions. We also studied the effect of side-branch structure on the network and made discoveries. Based on the discoveries about the side-branch of the network structure, we used a side-branch auxiliary feature extraction layer in the network to improve the effectiveness of the network. We also designed upsampling module, which has better results than the original upsampling module. In addition, we also re-considered the locations and number of atrous spatial pyramid pooling (ASPP) modules and modified the network structure according to the experimental results to further improve the effectiveness of the network. The network presented in this paper takes the backbone network of Bisenetv2 as a basic network, based on which we constructed a network structure on which we made improvements. We named this network deep multiple-resolution bilateral networks for real-time, referred to as DMBR-Net. After experimental testing, our proposed DMBR-Net network achieved 81.2% mIoU at 119FPS on the Cityscapes validation dataset, 80.7% mIoU at 109FPS on the CamVid test dataset, 29.9% mIoU at 78FPS on the COCOStuff test dataset. Compared with all lightweight real-time semantic segmentation networks, our network achieves the highest accuracy at an appropriate speed.Keywords: multi-resolution feature fusion, atrous convolutional, bilateral networks, pyramid pooling
Procedia PDF Downloads 14920139 Artificial Neural Networks Controller for Active Power Filter Connected to a Photovoltaic Array
Authors: Rachid Dehini, Brahim Berbaoui
Abstract:
The main objectives of shunt active power filter (SAPF) is to preserve the power system from unwanted harmonic currents produced by nonlinear loads, as well as to compensate the reactive power. The aim of this paper is to present a (PAPF) supplied by the Photovoltaic cells ,in such a way that the (PAPF) feeds the linear and nonlinear loads by harmonics currents and the excess of the energy is injected into the power system. In order to improve the performances of conventional (PAPF) This paper also proposes artificial neural networks (ANN) for harmonics identification and DC link voltage control. The simulation study results of the new (SAPF) identification technique are found quite satisfactory by assuring good filtering characteristics and high system stability.Keywords: SAPF, harmonics current, photovoltaic cells, MPPT, artificial neural networks (ANN)
Procedia PDF Downloads 33120138 Research on Dynamic Practical Byzantine Fault Tolerance Consensus Algorithm
Authors: Cao Xiaopeng, Shi Linkai
Abstract:
The practical Byzantine fault-tolerant algorithm does not add nodes dynamically. It is limited in practical application. In order to add nodes dynamically, Dynamic Practical Byzantine Fault Tolerance Algorithm (DPBFT) was proposed. Firstly, a new node sends request information to other nodes in the network. The nodes in the network decide their identities and requests. Then the nodes in the network reverse connect to the new node and send block information of the current network. The new node updates information. Finally, the new node participates in the next round of consensus, changes the view and selects the master node. This paper abstracts the decision of nodes into the undirected connected graph. The final consistency of the graph is used to prove that the proposed algorithm can adapt to the network dynamically. Compared with the PBFT algorithm, DPBFT has better fault tolerance and lower network bandwidth.Keywords: practical byzantine, fault tolerance, blockchain, consensus algorithm, consistency analysis
Procedia PDF Downloads 130