Search results for: Two-Higgs Doublet Model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16870

Search results for: Two-Higgs Doublet Model

280 Climate Change Impact on Mortality from Cardiovascular Diseases: Case Study of Bucharest, Romania

Authors: Zenaida Chitu, Roxana Bojariu, Liliana Velea, Roxana Burcea

Abstract:

A number of studies show that extreme air temperature affects mortality related to cardiovascular diseases, particularly among elderly people. In Romania, the summer thermal discomfort expressed by Universal Thermal Climate Index (UTCI) is highest in the Southern part of the country, where Bucharest, the largest Romanian urban agglomeration, is also located. The urban characteristics such as high building density and reduced green areas enhance the increase of the air temperature during summer. In Bucharest, as in many other large cities, the effect of heat urban island is present and determines an increase of air temperature compared to surrounding areas. This increase is particularly important during heat wave periods in summer. In this context, the researchers performed a temperature-mortality analysis based on daily deaths related to cardiovascular diseases, recorded between 2010 and 2019 in Bucharest. The temperature-mortality relationship was modeled by applying distributed lag non-linear model (DLNM) that includes a bi-dimensional cross-basis function and flexible natural cubic spline functions with three internal knots in the 10th, 75th and 90th percentiles of the temperature distribution, for modelling both exposure-response and lagged-response dimensions. Firstly, this study applied this analysis for the present climate. Extrapolation of the exposure-response associations beyond the observed data allowed us to estimate future effects on mortality due to temperature changes under climate change scenarios and specific assumptions. We used future projections of air temperature from five numerical experiments with regional climate models included in the EURO-CORDEX initiative under the relatively moderate (RCP 4.5) and pessimistic (RCP 8.5) concentration scenarios. The results of this analysis show for RCP 8.5 an ensemble-averaged increase with 6.1% of heat-attributable mortality fraction in future in comparison with present climate (2090-2100 vs. 2010-219), corresponding to an increase of 640 deaths/year, while mortality fraction due to the cold conditions will be reduced by 2.76%, corresponding to a decrease by 288 deaths/year. When mortality data is stratified according to the age, the ensemble-averaged increase of heat-attributable mortality fraction for elderly people (> 75 years) in the future is even higher (6.5 %). These findings reveal the necessity to carefully plan urban development in Bucharest to face the public health challenges raised by the climate change. Paper Details: This work is financed by the project URCLIM which is part of ERA4CS, an ERA-NET initiated by JPI Climate, and funded by Ministry of Environment, Romania with co-funding by the European Union (Grant 690462). A part of this work performed by one of the authors has received funding from the European Union’s Horizon 2020 research and innovation programme from the project EXHAUSTION under grant agreement No 820655.

Keywords: cardiovascular diseases, climate change, extreme air temperature, mortality

Procedia PDF Downloads 130
279 Production of Medicinal Bio-active Amino Acid Gamma-Aminobutyric Acid In Dairy Sludge Medium

Authors: Farideh Tabatabaee Yazdi, Fereshteh Falah, Alireza Vasiee

Abstract:

Introduction: Gamma-aminobutyric acid (GABA) is a non-protein amino acid that is widely present in organisms. GABA is a kind of pharmacological and biological component and its application is wide and useful. Several important physiological functions of GABA have been characterized, such as neurotransmission and induction of hypotension. GABA is also a strong secretagogue of insulin from the pancreas and effectively inhibits small airway-derived lung adenocarcinoma and tranquilizer. Many microorganisms can produce GABA, and lactic acid bacteria have been a focus of research in recent years because lactic acid bacteria possess special physiological activities and are generally regarded as safe. Among them, the Lb. Brevis produced the highest amount of GABA. The major factors affecting GABA production have been characterized, including carbon sources and glutamate concentration. The use of food industry waste to produce valuable products such as amino acids seems to be a good way to reduce production costs and prevent the waste of food resources. In a dairy factory, a high volume of sludge is produced from a separator that contains useful compounds such as growth factors, carbon, nitrogen, and organic matter that can be used by different microorganisms such as Lb.brevis as carbon and nitrogen sources. Therefore, it is a good source of GABA production. GABA is primarily formed by the irreversible α-decarboxylation reaction of L-glutamic acid or its salts, catalysed by the GAD enzyme. In the present study, this aim was achieved for the fast-growing of Lb.brevis and producing GABA, using the dairy industry sludge as a suitable growth medium. Lactobacillus Brevis strains obtained from Microbial Type Culture Collection (MTCC) were used as model strains. In order to prepare dairy sludge as a medium, sterilization should be done at 121 ° C for 15 minutes. Lb. Brevis was inoculated to the sludge media at pH=6 and incubated for 120 hours at 30 ° C. After fermentation, the supernatant solution is centrifuged and then, the GABA produced was analyzed by the Thin Layer chromatography (TLC) method qualitatively and by the high-performance liquid chromatography (HPLC) method quantitatively. By increasing the percentage of dairy sludge in the culture medium, the amount of GABA increased. Also, evaluated the growth of bacteria in this medium showed the positive effect of dairy sludge on the growth of Lb.brevis, which resulted in the production of more GABA. GABA-producing LAB offers the opportunity of developing naturally fermented health-oriented products. Although some GABA-producing LAB has been isolated to find strains suitable for different fermentations, further screening of various GABA-producing strains from LAB, especially high-yielding strains, is necessary. The production of lactic acid, bacterial gamma-aminobutyric acid, is safe and eco-friendly. The use of dairy industry waste causes enhanced environmental safety. Also provides the possibility of producing valuable compounds such as GABA. In general, dairy sludge is a suitable medium for the growth of Lactic Acid Bacteria and produce this amino acid that can reduce the final cost of it by providing carbon and nitrogen source.

Keywords: GABA, Lactobacillus, HPLC, dairy sludge

Procedia PDF Downloads 149
278 Hegemonic Salaryman Masculinity: Case Study of Transitional Male Gender Roles in Today's Japan

Authors: D. Norton

Abstract:

This qualitative study focuses on the lived experience and displacement of young white-collar masculinities in Japan. In recent years, the salaryman lifestyle has undergone significant disruption - increased competition for regular employment, rise in non-regular structurings of labour across public/private sectors, and shifting role expectations within the home. Despite this, related scholarship hints at a continued reinforcement of the traditional male gender role - that the salaryman remains a key benchmark of Japanese masculine identity. For those in structural proximity to these more ‘normative’ performativities, interest lies their engagement with such narratives - how they make sense of their masculinity in response to stated changes. In light of the historical emphasis on labour and breadwinning logics, notions of respective security or precarity generated as a result remain unclear. Similarly, concern extends to developments within the private sphere - by what means young white-collar men construct ideas of singlehood and companionship according to traditional gender ideologies or more contemporary, flexible readings. The influence of these still-emergent status distinctions on the logics of the social group in question is yet to be explored in depth by gender scholars. This project, therefore, focuses on a salaryman archetype as hegemonic - its transformation amidst these changes and socialising mechanisms that continue to legitimate unequal gender hierarchies. For data collection, a series of ethnographic interviews were held over a period of 12 months with university-educated, white-collar male employees from both Osaka and the Greater Tokyo Area. Findings suggest a modern salaryman ideal reflecting both continuities and shifts within white-collar employment. Whilst receptive to more contemporary workplace practices, the narratives of those interviewed remain imbued with logics supporting patterns of internal hegemony. Regular/non-regular distinction emerged as the foremost variable for both material and discursive patterns of white-collar stratification, with variants of displacement for each social group. Despite the heightened valorisation of stable employment, regular workers articulated various concerns over a model of corporate masculinity seen to be incompatible with recent socioeconomic developments. Likewise, non-regular employees face detachment owing to a still-inflexible perception of their working masculinity as marginalized amidst economic precarity. In seeking to negotiate respective challenges, those interviewed demonstrated an engagement with various concurrent social changes that would often either accommodate, reinforce, or expand upon traditional role behaviours. Few of these narratives offered any notable transgression of said ideal, however, suggesting that within the spectre of white-collar employment in Japan for the near future, any substantive transformation of corporate masculinity remains dependant upon economic developments, less so the agency of those involved.

Keywords: gender ideologies, hegemonic masculinity, Japan, white-collar employment

Procedia PDF Downloads 128
277 The Impact of Trade on Stock Market Integration of Emerging Markets

Authors: Anna M. Pretorius

Abstract:

The emerging markets category for portfolio investment was introduced in 1986 in an attempt to promote capital market development in less developed countries. Investors traditionally diversified their portfolios by investing in different developed markets. However, high growth opportunities forced investors to consider emerging markets as well. Examples include the rapid growth of the “Asian Tigers” during the 1980s, growth in Latin America during the 1990s and the increased interest in emerging markets during the global financial crisis. As such, portfolio flows to emerging markets have increased substantially. In 2002 7% of all equity allocations from advanced economies went to emerging markets; this increased to 20% in 2012. The stronger links between advanced and emerging markets led to increased synchronization of asset price movements. This increased level of stock market integration for emerging markets is confirmed by various empirical studies. Against the background of increased interest in emerging market assets and the increasing level of integration of emerging markets, this paper focuses on the determinants of stock market integration of emerging market countries. Various studies have linked the level of financial market integration with specific economic variables. These variables include: economic growth, local inflation, trade openness, local investment, budget surplus/ deficit, market capitalization, domestic bank credit, domestic institutional and legal environment and world interest rates. The aim of this study is to empirically investigate to what extent trade-related determinants have an impact on stock market integration. The panel data sample include data of 16 emerging market countries: Brazil, Chile, China, Colombia, Czech Republic, Hungary, India, Malaysia, Pakistan, Peru, Philippines, Poland, Russian Federation, South Africa, Thailand and Turkey for the period 1998-2011. The integration variable for each emerging stock market is calculated as the explanatory power of a multi-factor model. These factors are extracted from a large panel of global stock market returns. Trade related explanatory variables include: exports as percentage of GDP, imports as percentage of GDP and total trade as percentage of GDP. Other macroeconomic indicators – such as market capitalisation, the size of the budget deficit and the effectiveness of the regulation of the securities exchange – are included in the regressions as control variables. An initial analysis on a sample of developed stock markets could not identify any significant determinants of stock market integration. Thus the macroeconomic variables identified in the literature are much more significant in explaining stock market integration of emerging markets than stock market integration of developed markets. The three trade variables are all statistically significant at a 5% level. The market capitalisation variable is also significant while the regulation variable is only marginally significant. The global financial crisis has highlighted the urgency to better understand the link between the financial and real sectors of the economy. This paper comes to the important finding that, apart from the level of market capitalisation (as financial indicator), trade (representative of the real economy) is a significant determinant of stock market integration of countries not yet classified as developed economies.

Keywords: emerging markets, financial market integration, panel data, trade

Procedia PDF Downloads 308
276 Deep Learning in Chest Computed Tomography to Differentiate COVID-19 from Influenza

Authors: Hongmei Wang, Ziyun Xiang, Ying liu, Li Yu, Dongsheng Yue

Abstract:

Intro: The COVID-19 (Corona Virus Disease 2019) has greatly changed the global economic, political and financial ecology. The mutation of the coronavirus in the UK in December 2020 has brought new panic to the world. Deep learning was performed on Chest Computed tomography (CT) of COVID-19 and Influenza and describes their characteristics. The predominant features of COVID-19 pneumonia was ground-glass opacification, followed by consolidation. Lesion density: most lesions appear as ground-glass shadows, and some lesions coexist with solid lesions. Lesion distribution: the focus is mainly on the dorsal side of the periphery of the lung, with the lower lobe of the lungs as the focus, and it is often close to the pleura. Other features it has are grid-like shadows in ground glass lesions, thickening signs of diseased vessels, air bronchi signs and halo signs. The severe disease involves whole bilateral lungs, showing white lung signs, air bronchograms can be seen, and there can be a small amount of pleural effusion in the bilateral chest cavity. At the same time, this year's flu season could be near its peak after surging throughout the United States for months. Chest CT for Influenza infection is characterized by focal ground glass shadows in the lungs, with or without patchy consolidation, and bronchiole air bronchograms are visible in the concentration. There are patchy ground-glass shadows, consolidation, air bronchus signs, mosaic lung perfusion, etc. The lesions are mostly fused, which is prominent near the hilar and two lungs. Grid-like shadows and small patchy ground-glass shadows are visible. Deep neural networks have great potential in image analysis and diagnosis that traditional machine learning algorithms do not. Method: Aiming at the two major infectious diseases COVID-19 and influenza, which are currently circulating in the world, the chest CT of patients with two infectious diseases is classified and diagnosed using deep learning algorithms. The residual network is proposed to solve the problem of network degradation when there are too many hidden layers in a deep neural network (DNN). The proposed deep residual system (ResNet) is a milestone in the history of the Convolutional neural network (CNN) images, which solves the problem of difficult training of deep CNN models. Many visual tasks can get excellent results through fine-tuning ResNet. The pre-trained convolutional neural network ResNet is introduced as a feature extractor, eliminating the need to design complex models and time-consuming training. Fastai is based on Pytorch, packaging best practices for in-depth learning strategies, and finding the best way to handle diagnoses issues. Based on the one-cycle approach of the Fastai algorithm, the classification diagnosis of lung CT for two infectious diseases is realized, and a higher recognition rate is obtained. Results: A deep learning model was developed to efficiently identify the differences between COVID-19 and influenza using chest CT.

Keywords: COVID-19, Fastai, influenza, transfer network

Procedia PDF Downloads 145
275 A Novel Concept of Optical Immunosensor Based on High-Affinity Recombinant Protein Binders for Tailored Target-Specific Detection

Authors: Alena Semeradtova, Marcel Stofik, Lucie Mareckova, Petr Maly, Ondrej Stanek, Jan Maly

Abstract:

Recently, novel strategies based on so-called molecular evolution were shown to be effective for the production of various peptide ligand libraries with high affinities to molecular targets of interest comparable or even better than monoclonal antibodies. The major advantage of these peptide scaffolds is mainly their prevailing low molecular weight and simple structure. This study describes a new high-affinity binding molecules based immunesensor using a simple optical system for human serum albumin (HSA) detection as a model molecule. We present a comparison of two variants of recombinant binders based on albumin binding domain of the protein G (ABD) performed on micropatterned glass chip. Binding domains may be tailored to any specific target of interest by molecular evolution. Micropatterened glass chips were prepared using UV-photolithography on chromium sputtered glasses. Glass surface was modified by (3-aminopropyl)trietoxysilane and biotin-PEG-acid using EDC/NHS chemistry. Two variants of high-affinity binding molecules were used to detect target molecule. Firstly, a variant is based on ABD domain fused with TolA chain. This molecule is in vivo biotinylated and each molecule contains one molecule of biotin and one ABD domain. Secondly, the variant is ABD domain based on streptavidin molecule and contains four gaps for biotin and four ABD domains. These high-affinity molecules were immobilized to the chip surface via biotin-streptavidin chemistry. To eliminate nonspecific binding 1% bovine serum albumin (BSA) or 6% fetal bovine serum (FBS) were used in every step. For both variants range of measured concentrations of fluorescently labelled HSA was 0 – 30 µg/ml. As a control, we performed a simultaneous assay without high-affinity binding molecules. Fluorescent signal was measured using inverse fluorescent microscope Olympus IX 70 with COOL LED pE 4000 as a light source, related filters, and camera Retiga 2000R as a detector. The fluorescent signal from non-modified areas was substracted from the signal of the fluorescent areas. Results were presented in graphs showing the dependence of measured grayscale value on the log-scale of HSA concentration. For the TolA variant the limit of detection (LOD) of the optical immunosensor proposed in this study is calculated to be 0,20 µg/ml for HSA detection in 1% BSA and 0,24 µg/ml in 6% FBS. In the case of streptavidin-based molecule, it was 0,04 µg/ml and 0,07 µg/ml respectively. The dynamical range of the immunosensor was possible to estimate just in the case of TolA variant and it was calculated to be 0,49 – 3,75 µg/ml and 0,73-1,88 µg/ml respectively. In the case of the streptavidin-based the variant we didn´t reach the surface saturation even with the 480 ug/ml concentration and the upper value of dynamical range was not estimated. Lower value was calculated to be 0,14 µg/ml and 0,17 µg/ml respectively. Based on the obtained results, it´s clear that both variants are useful for creating the bio-recognizing layer on immunosensors. For this particular system, it is obvious that the variant based on streptavidin molecule is more useful for biosensing on glass planar surfaces. Immunosensors based on this variant would exhibit better limit of detection and wide dynamical range.

Keywords: high affinity binding molecules, human serum albumin, optical immunosensor, protein G, UV-photolitography

Procedia PDF Downloads 369
274 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 68
273 “laws Drifting Off While Artificial Intelligence Thriving” – A Comparative Study with Special Reference to Computer Science and Information Technology

Authors: Amarendar Reddy Addula

Abstract:

Definition of Artificial Intelligence: Artificial intelligence is the simulation of mortal intelligence processes by machines, especially computer systems. Explicit operations of AI comprise expert systems, natural language processing, and speech recognition, and machine vision. Artificial Intelligence (AI) is an original medium for digital business, according to a new report by Gartner. The last 10 times represent an advance period in AI’s development, prodded by the confluence of factors, including the rise of big data, advancements in cipher structure, new machine literacy ways, the materialization of pall computing, and the vibrant open- source ecosystem. Influence of AI to a broader set of use cases and druggies and its gaining fashionability because it improves AI’s versatility, effectiveness, and rigidity. Edge AI will enable digital moments by employing AI for real- time analytics closer to data sources. Gartner predicts that by 2025, further than 50 of all data analysis by deep neural networks will do at the edge, over from lower than 10 in 2021. Responsible AI is a marquee term for making suitable business and ethical choices when espousing AI. It requires considering business and societal value, threat, trust, translucency, fairness, bias mitigation, explainability, responsibility, safety, sequestration, and nonsupervisory compliance. Responsible AI is ever more significant amidst growing nonsupervisory oversight, consumer prospects, and rising sustainability pretensions. Generative AI is the use of AI to induce new vestiges and produce innovative products. To date, generative AI sweats have concentrated on creating media content similar as photorealistic images of people and effects, but it can also be used for law generation, creating synthetic irregular data, and designing medicinals and accoutrements with specific parcels. AI is the subject of a wide- ranging debate in which there's a growing concern about its ethical and legal aspects. Constantly, the two are varied and nonplussed despite being different issues and areas of knowledge. The ethical debate raises two main problems the first, abstract, relates to the idea and content of ethics; the alternate, functional, and concerns its relationship with the law. Both set up models of social geste, but they're different in compass and nature. The juridical analysis is grounded on anon-formalistic scientific methodology. This means that it's essential to consider the nature and characteristics of the AI as a primary step to the description of its legal paradigm. In this regard, there are two main issues the relationship between artificial and mortal intelligence and the question of the unitary or different nature of the AI. From that theoretical and practical base, the study of the legal system is carried out by examining its foundations, the governance model, and the nonsupervisory bases. According to this analysis, throughout the work and in the conclusions, International Law is linked as the top legal frame for the regulation of AI.

Keywords: artificial intelligence, ethics & human rights issues, laws, international laws

Procedia PDF Downloads 97
272 To Examine Perceptions and Associations of Shock Food Labelling and to Assess the Impact on Consumer Behaviour: A Quasi-Experimental Approach

Authors: Amy Heaps, Amy Burns, Una McMahon-Beattie

Abstract:

Shock and fear tactics have been used to encourage consumer behaviour change within the UK regarding lifestyle choices such as smoking and alcohol abuse, yet such measures have not been applied to food labels to encourage healthier purchasing decisions. Obesity levels are continuing to rise within the UK, despite efforts made by government and charitable bodies to encourage consumer behavioural changes, which will have a positive influence on their fat, salt, and sugar intake. We know that taking extreme measures to shock consumers into behavioural changes has worked previously; for example, the anti-smoking television adverts and new standardised cigarette and tobacco packaging have reduced the numbers of the UK adult population who smoke or encouraged those who are currently trying to quit. The USA has also introduced new front-of-pack labelling, which is clear, easy to read, and includes concise health warnings on products high in fat, salt, or sugar. This model has been successful, with consumers reducing purchases of products with these warning labels present. Therefore, investigating if shock labels would have an impact on UK consumer behaviour and purchasing decisions would help to fill the gap within this research field. This study aims to develop an understanding of consumer’s initial responses to shock advertising with an interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes and will achieve this through a mixed methodological approach taken with a sample size of 25 participants ages ranging from 22 and 60. Within this research, shock mock labels were developed, including a graphic image, health warning, and get-help information. These labels were made for products (available within the UK) with large market shares which were high in either fat, salt, or sugar. The use of online focus groups and mouse-tracking experiments results helped to develop an understanding of consumer’s initial responses to shock advertising with interest in the perceived impact of long-term effect shock advertising on consumer food purchasing decisions, behaviour, and attitudes. Preliminary results have shown that consumers believe that the use of graphic images, combined with a health warning, would encourage consumer behaviour change and influence their purchasing decisions regarding those products which are high in fat, salt and sugar. Preliminary main findings show that graphic mock shock labels may have an impact on consumer behaviour and purchasing decisions, which will, in turn, encourage healthier lifestyles. Focus group results show that 72% of participants indicated that these shock labels would have an impact on their purchasing decisions. During the mouse tracking trials, this increased to 80% of participants, showing that more exposure to shock labels may have a bigger impact on potential consumer behaviour and purchasing decision change. In conclusion, preliminary results indicate that graphic shock labels will impact consumer purchasing decisions. Findings allow for a deeper understanding of initial emotional responses to these graphic labels. However, more research is needed to test the longevity of these labels on consumer purchasing decisions, but this research exercise is demonstrably the foundation for future detailed work.

Keywords: consumer behavior, decision making, labelling legislation, purchasing decisions, shock advertising, shock labelling

Procedia PDF Downloads 70
271 Co-Culture with Murine Stromal Cells Enhances the In-vitro Expansion of Hematopoietic Stem Cells in Response to Low Concentrations of Trans-Resveratrol

Authors: Mariyah Poonawala, Selvan Ravindran, Anuradha Vaidya

Abstract:

Despite much progress in understanding the regulatory factors and cytokines that support the maturation of the various cell lineages of the hematopoietic system, factors that govern the self-renewal and proliferation of hematopoietic stem cells (HSCs) is still a grey area of research. Hematopoietic stem cell transplantation (HSCT) has evolved over the years and gained tremendous importance in the treatment of both malignant and non-malignant diseases. However, factors such as graft rejection and multiple organ failure have challenged HSCT from time to time, underscoring the urgent need for development of milder processes for successful hematopoietic transplantation. An emerging concept in the field of stem cell biology states that the interactions between the bone-marrow micro-environment and the hematopoietic stem and progenitor cells is essential for regulation, maintenance, commitment and proliferation of stem cells. Understanding the role of mesenchymal stromal cells in modulating the functionality of HSCs is, therefore, an important area of research. Trans-resveratrol has been extensively studied for its various properties to combat and prevent cancer, diabetes and cardiovascular diseases etc. The aim of the present study was to understand the effect of trans-resveratrol on HSCs using single and co-culture systems. We have used KG1a cells since it is a well accepted hematopoietic stem cell model system. Our preliminary experiments showed that low concentrations of trans-resveratrol stimulated the HSCs to undergo proliferation whereas high concentrations of trans-resveratrol did not stimulate the cells to proliferate. We used a murine fibroblast cell line, M210B4, as a stromal feeder layer. On culturing the KG1a cells with M210B4 cells, we observed that the stimulatory as well as inhibitory effects of trans-resveratrol at low and high concentrations respectively, were enhanced. Our further experiments showed that low concentration of trans-resveratrol reduced the generation of reactive oxygen species (ROS) and nitric oxide (NO) whereas high concentrations increased the oxidative stress in KG1a cells. We speculated that perhaps the oxidative stress was imposing inhibitory effects at high concentration and the same was confirmed by performing an apoptotic assay. Furthermore, cell cycle analysis and growth kinetic experiments provided evidence that low concentration of trans-resveratrol reduced the doubling time of the cells. Our hypothesis is that perhaps at low concentration of trans-resveratrol the cells get pushed into the G0/G1 phase and re-enter the cell cycle resulting in their proliferation, whereas at high concentration the cells are perhaps arrested at G2/M phase or at cytokinesis and therefore undergo apoptosis. Liquid Chromatography-Quantitative-Time of Flight–Mass Spectroscopy (LC-Q-TOF MS) analyses indicated the presence of trans-resveratrol and its metabolite(s) in the supernatant of the co-cultured cells incubated with high concentration of trans-resveratrol. We conjecture that perhaps the metabolites of trans-resveratrol are responsible for the apoptosis observed at the high concentration. Our findings may shed light on the unsolved problems in the in vitro expansion of stem cells and may have implications in the ex vivo manipulation of HSCs for therapeutic purposes.

Keywords: co-culture system, hematopoietic micro-environment, KG1a cell line, M210B4 cell line, trans-resveratrol

Procedia PDF Downloads 261
270 Effect of Non-Thermal Plasma, Chitosan and Polymyxin B on Quorum Sensing Activity and Biofilm of Pseudomonas aeruginosa

Authors: Alena Cejkova, Martina Paldrychova, Jana Michailidu, Olga Matatkova, Jan Masak

Abstract:

Increasing the resistance of pathogenic microorganisms to many antibiotics is a serious threat to the treatment of infectious diseases and cleaning medical instruments. It should be added that the resistance of microbial populations growing in biofilms is often up to 1000 times higher compared to planktonic cells. Biofilm formation in a number of microorganisms is largely influenced by the quorum sensing regulatory mechanism. Finding external factors such as natural substances or physical processes that can interfere effectively with quorum sensing signal molecules should reduce the ability of the cell population to form biofilm and increase the effectiveness of antibiotics. The present work is devoted to the effect of chitosan as a representative of natural substances with anti-biofilm activity and non- thermal plasma (NTP) alone or in combination with polymyxin B on biofilm formation of Pseudomonas aeruginosa. Particular attention was paid to the influence of these agents on the level of quorum sensing signal molecules (acyl-homoserine lactones) during planktonic and biofilm cultivations. Opportunistic pathogenic strains of Pseudomonas aeruginosa (DBM 3081, DBM 3777, ATCC 10145, ATCC 15442) were used as model microorganisms. Cultivations of planktonic and biofilm populations in 96-well microtiter plates on horizontal shaker were used for determination of antibiotic and anti-biofilm activity of chitosan and polymyxin B. Biofilm-growing cells on titanium alloy, which is used for preparation of joint replacement, were exposed to non-thermal plasma generated by cometary corona with a metallic grid for 15 and 30 minutes. Cultivation followed in fresh LB medium with or without chitosan or polymyxin B for next 24 h. Biofilms were quantified by crystal violet assay. Metabolic activity of the cells in biofilm was measured using MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) colorimetric test based on the reduction of MTT into formazan by the dehydrogenase system of living cells. Activity of N-acyl homoserine lactones (AHLs) compounds involved in the regulation of biofilm formation was determined using Agrobacterium tumefaciens strain harboring a traG::lacZ/traR reporter gene responsive to AHLs. The experiments showed that both chitosan and non-thermal plasma reduce the AHLs level and thus the biofilm formation and stability. The effectiveness of both agents was somewhat strain dependent. During the eradication of P. aeruginosa DBM 3081 biofilm on titanium alloy induced by chitosan (45 mg / l) there was an 80% decrease in AHLs. Applying chitosan or NTP on the P. aeruginosa DBM 3777 biofilm did not cause a significant decrease in AHLs, however, in combination with both (chitosan 55 mg / l and NTP 30 min), resulted in a 70% decrease in AHLs. Combined application of NTP and polymyxin B allowed reduce antibiotic concentration to achieve the same level of AHLs inhibition in P. aeruginosa ATCC 15442. The results shown that non-thermal plasma and chitosan have considerable potential for the eradication of highly resistant P. aeruginosa biofilms, for example on medical instruments or joint implants.

Keywords: anti-biofilm activity, chitosan, non-thermal plasma, opportunistic pathogens

Procedia PDF Downloads 203
269 Community Engagement: Experience from the SIREN Study in Sub-Saharan Africa

Authors: Arti Singh, Carolyn Jenkins, Oyedunni S. Arulogun, Mayowa O. Owolabi, Fred S. Sarfo, Bruce Ovbiagele, Enzinne Sylvia

Abstract:

Background: Stroke, the leading cause of adult-onset disability and the second leading cause of death, is a major public health concern particularly pertinent in Sub-Saharan Africa (SSA), where nearly 80% of all global stroke mortalities occur. The Stroke Investigative Research and Education Network (SIREN) seeks to comprehensively characterize the genomic, sociocultural, economic, and behavioral risk factors for stroke and to build effective teams for research to address and decrease the burden of stroke and other non communicable diseases in SSA. One of the first steps to address this goal was to effectively engage the communities that suffer the high burden of disease in SSA. This study describes how the SIREN project engaged six sites in Ghana and Nigeria over the past three years, describing the community engagement activities that have arisen since inception. Aim: The aim of community engagement (CE) within SIREN is to elucidate information about knowledge, attitudes, beliefs, and practices (KABP) about stroke and its risk factors from individuals of African ancestry in SSA, and to educate the community about stroke and ways to decrease disabilities and deaths from stroke using socioculturally appropriate messaging and messengers. Methods: Community Advisory Board (CABs), Focus Group Discussions (FGDs) and community outreach programs. Results: 27 FGDs with 168 participants including community heads, religious leaders, health professionals and individuals with stroke among others, were conducted, and over 60 CE outreaches have been conducted within the SIREN performance sites. Over 5,900 individuals have received education on cardiovascular risk factors and about 5,000 have been screened for cardiovascular risk factors during the outreaches. FGDs and outreach programs indicate that knowledge of stroke, as well as risk factors and follow-up evidence-based care is limited and often late. Other findings include: 1) Most recognize hypertension as a major risk factor for stroke. 2) About 50% report that stroke is hereditary and about 20% do not know organs affected by stroke. 3) More than 95% willing to participate in genetic testing research and about 85% willing to pay for testing and recommend the test to others. 4) Almost all indicated that genetic testing could help health providers better treat stroke and help scientists better understand the causes of stroke. The CABs provided stakeholder input into SIREN activities and facilitated collaborations among investigators, community members and stakeholders. Conclusion: The CE core within SIREN is a first-of-its kind public outreach engagement initiative to evaluate and address perceptions about stroke and genomics by patients, caregivers, and local leaders in SSA and has implications as a model for assessment in other high-stroke risk populations. SIREN’s CE program uses best practices to build capacity for community-engaged research, accelerate integration of research findings into practice and strengthen dynamic community-academic partnerships within our communities. CE has had several major successes over the past three years including our multi-site collaboration examining the KABP about stroke (symptoms, risk factors, burden) and genetic testing across SSA.

Keywords: community advisory board, community engagement, focus groups, outreach, SSA, stroke

Procedia PDF Downloads 432
268 Investigating the Thermal Comfort Properties of Mohair Fabrics

Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman

Abstract:

Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.

Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance

Procedia PDF Downloads 148
267 Poly(Methyl Methacrylate) Degradation Products and Its in vitro Cytotoxicity Evaluation in NIH3T3 Cells

Authors: Lesly Y Carmona-Sarabia, Luisa Barraza-Vergara, Vilmalí López-Mejías, Wandaliz Torres-García, Maribella Domenech-Garcia, Madeline Torres-Lugo

Abstract:

Biosensors are used in many applications providing real-time monitoring to treat long-term conditions. Thus, understanding the physicochemical properties and biological side effects on the skin of polymers (e. g., poly(methyl methacrylate), PMMA) employed in the fabrication of wearable biosensors is crucial for the selection of manufacturing materials within this field. The PMMA (hydrophobic and thermoplastic polymer) is commonly employed as a coating material or substrate in the fabrication of wearable devices. The cytotoxicityof PMMA (including residual monomers or degradation products) on the skin, in terms of cells and tissue, is required to prevent possible adverse effects (cell death, skin reactions, sensitization) on human health. Within this work, accelerated aging of PMMA (Mw ~ 15000) through thermal and photochemical degradation was under-taken. The accelerated aging of PMMA was carried out by thermal (200°C, 1h) and photochemical degradation (UV-Vis, 8-15d) adapted employing ISO protocols (ISO-10993-12, ISO-4892-1:2016, ISO-877-1:2009, ISO-188: 2011). In addition, in vitro cytotoxicity evaluation of PMMA degradation products was performed using NIH3T3 fibroblast cells to assess the response of skin tissues (in terms of cell viability) exposed with polymers utilized to manufacture wearable biosensors, such as PMMA. The PMMA (Mw ~ 15000) before and after accelerated aging experiments was characterized by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), powder X-ray diffractogram (PXRD), and scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) to determine and verify the successful degradation of this polymer under the specific conditions previously mention. The degradation products were characterized through nuclear magnetic resonance (NMR) to identify possible byproducts generated after the accelerated aging. Results demonstrated a percentage (%) weight loss between 1.5-2.2% (TGA thermographs) for PMMA after accelerated aging. The EDS elemental analysis reveals a 1.32 wt.% loss of carbon for PMMA after thermal degradation. These results might be associated with the amount (%) of PMMA degrade after the accelerated aging experiments. Furthermore, from the thermal degradation products was detected the presence of the monomer and methyl formate (low concentrations) and a low molecular weight radical (·COOCH3) in higher concentrations by NMR. In the photodegradation products, methyl formate was detected in higher concentrations. These results agree with the proposed thermal or photochemical degradation mechanisms found in the literature.1,2 Finally, significant cytotoxicity on the NIH3T3 cells was obtained for the thermal and photochemical degradation products. A decrease in cell viability by > 90% (stock solutions) was observed. It is proposed that the presence of byproducts (e.g. methyl formate or radicals such as ·COOCH₃) from the PMMA degradation might be responsible for the cytotoxicity observed in the NIH3T3 fibroblast cells. Additionally, experiments using skin models will be employed to compare with the NIH3T3 fibroblast cells model.

Keywords: biosensors, polymer, skin irritation, degradation products, cell viability

Procedia PDF Downloads 142
266 Systematic Review of Quantitative Risk Assessment Tools and Their Effect on Racial Disproportionality in Child Welfare Systems

Authors: Bronwen Wade

Abstract:

Over the last half-century, child welfare systems have increasingly relied on quantitative risk assessment tools, such as actuarial or predictive risk tools. These tools are developed by performing statistical analysis of how attributes captured in administrative data are related to future child maltreatment. Some scholars argue that attributes in administrative data can serve as proxies for race and that quantitative risk assessment tools reify racial bias in decision-making. Others argue that these tools provide more “objective” and “scientific” guides for decision-making instead of subjective social worker judgment. This study performs a systematic review of the literature on the impact of quantitative risk assessment tools on racial disproportionality; it examines methodological biases in work on this topic, summarizes key findings, and provides suggestions for further work. A search of CINAHL, PsychInfo, Proquest Social Science Premium Collection, and the ProQuest Dissertations and Theses Collection was performed. Academic and grey literature were included. The review includes studies that use quasi-experimental methods and development, validation, or re-validation studies of quantitative risk assessment tools. PROBAST (Prediction model Risk of Bias Assessment Tool) and CHARMS (CHecklist for critical Appraisal and data extraction for systematic Reviews of prediction Modelling Studies) were used to assess the risk of bias and guide data extraction for risk development, validation, or re-validation studies. ROBINS-I (Risk of Bias in Non-Randomized Studies of Interventions) was used to assess for bias and guide data extraction for the quasi-experimental studies identified. Due to heterogeneity among papers, a meta-analysis was not feasible, and a narrative synthesis was conducted. 11 papers met the eligibility criteria, and each has an overall high risk of bias based on the PROBAST and ROBINS-I assessments. This is deeply concerning, as major policy decisions have been made based on a limited number of studies with a high risk of bias. The findings on racial disproportionality have been mixed and depend on the tool and approach used. Authors use various definitions for racial equity, fairness, or disproportionality. These concepts of statistical fairness are connected to theories about the reason for racial disproportionality in child welfare or social definitions of fairness that are usually not stated explicitly. Most findings from these studies are unreliable, given the high degree of bias. However, some of the less biased measures within studies suggest that quantitative risk assessment tools may worsen racial disproportionality, depending on how disproportionality is mathematically defined. Authors vary widely in their approach to defining and addressing racial disproportionality within studies, making it difficult to generalize findings or approaches across studies. This review demonstrates the power of authors to shape policy or discourse around racial justice based on their choice of statistical methods; it also demonstrates the need for improved rigor and transparency in studies of quantitative risk assessment tools. Finally, this review raises concerns about the impact that these tools have on child welfare systems and racial disproportionality.

Keywords: actuarial risk, child welfare, predictive risk, racial disproportionality

Procedia PDF Downloads 56
265 Analysing the Influence of COVID-19 on Major Agricultural Commodity Prices in South Africa

Authors: D. Mokatsanyane, J. Jansen Van Rensburg

Abstract:

This paper analyses the influence and impact of COVID-19 on major agricultural commodity prices in South Africa. According to a World Bank report, the agricultural sector in South Africa has been unable to reduce the domestic food crisis that has been occurring over the past years, hence the increased rate of poverty, which is currently at 55.5 percent as of April 2020. Despite the significance of this sector, empirical findings concluded that the agricultural sector now accounts for 1.88 percent of South Africa's gross domestic product (GDP). Suggesting that the agricultural sector's contribution to the economy has diminished. Despite the low contribution to GDP, this primary sector continues to play an essential role in the economy. Over the past years, multiple factors have contributed to the soaring commodities prices, namely, climate shocks, biofuel demand, demand and supply shocks, the exchange rate, speculation in commodity derivative markets, trade restrictions, and economic growth. The COVID-19 outbursts have currently disturbed the supply and demand of staple crops. To address the disruption, the government has exempted the agricultural sector from closure and restrictions on movement. The spread of COVID-19 has caused turmoil all around the world, but mostly in developing countries. According to Statistic South Africa, South Africa's economy decreased by seven percent in 2020. Consequently, this has arguably made the agricultural sector the most affected sector since slumped economic growth negatively impacts food security, trade, farm livelihood, and greenhouse gas emissions. South Africa is sensitive to the fruitfulness of global food chains. Restrictions in trade, reinforced sanitary control systems, and border controls have influenced food availability and prices internationally. The main objective of this study is to evaluate the behavior of agricultural commodity prices pre-and during-COVID to determine the impact of volatility drivers on these crops. Historical secondary data of spot prices for the top five major commodities, namely white maize, yellow maize, wheat, soybeans, and sunflower seeds, are analysed from 01 January 2017 to 1 September 2021. The timeframe was chosen to capture price fluctuations between pre-COVID-19 (01 January 2017 to 23 March 2020) and during-COVID-19 (24 March 2020 to 01 September 2021). The Generalised Autoregressive Conditional Heteroscedasticity (GARCH) statistical model will be used to measure the influence of price fluctuations. The results reveal that the commodity market has been experiencing volatility at different points. Extremely high volatility is represented during the first quarter of 2020. During this period, there was high uncertainty, and grain prices were very volatile. Despite the influence of COVID-19 on agricultural prices, the demand for these commodities is still existing and decent. During COVID-19, analysis indicates that prices were low and less volatile during the pandemic. The prices and returns of these commodities were low during COVID-19 because of the government's actions to respond to the virus's spread, which collapsed the market demand for food commodities.

Keywords: commodities market, commodity prices, generalised autoregressive conditional heteroscedasticity (GARCH), Price volatility, SAFEX

Procedia PDF Downloads 176
264 Momentum Profits and Investor Behavior

Authors: Aditya Sharma

Abstract:

Profits earned from relative strength strategy of zero-cost portfolio i.e. taking long position in winner stocks and short position in loser stocks from recent past are termed as momentum profits. In recent times, there has been lot of controversy and concern about sources of momentum profits, since the existence of these profits acts as an evidence of earning non-normal returns from publicly available information directly contradicting Efficient Market Hypothesis. Literature review reveals conflicting theories and differing evidences on sources of momentum profits. This paper aims at re-examining the sources of momentum profits in Indian capital markets. The study focuses on assessing the effect of fundamental as well as behavioral sources in order to understand the role of investor behavior in stock returns and suggest (if any) improvements to existing behavioral asset pricing models. This Paper adopts calendar time methodology to calculate momentum profits for 6 different strategies with and without skipping a month between ranking and holding period. For each J/K strategy, under this methodology, at the beginning of each month t stocks are ranked on past j month’s average returns and sorted in descending order. Stocks in upper decile are termed winners and bottom decile as losers. After ranking long and short positions are taken in winner and loser stocks respectively and both portfolios are held for next k months, in such manner that at any given point of time we have K overlapping long and short portfolios each, ranked from t-1 month to t-K month. At the end of period, returns of both long and short portfolios are calculated by taking equally weighted average across all months. Long minus short returns (LMS) are momentum profits for each strategy. Post testing for momentum profits, to study the role market risk plays in momentum profits, CAPM and Fama French three factor model adjusted LMS returns are calculated. In the final phase of studying sources, decomposing methodology has been used for breaking up the profits into unconditional means, serial correlations, and cross-serial correlations. This methodology is unbiased, can be used with the decile-based methodology and helps to test the effect of behavioral and fundamental sources altogether. From all the analysis, it was found that momentum profits do exist in Indian capital markets with market risk playing little role in defining them. Also, it was observed that though momentum profits have multiple sources (risk, serial correlations, and cross-serial correlations), cross-serial correlations plays a major role in defining these profits. The study revealed that momentum profits do have multiple sources however, cross-serial correlations i.e. the effect of returns of other stocks play a major role. This means that in addition to studying the investors` reactions to the information of the same firm it is also important to study how they react to the information of other firms. The analysis confirms that investor behavior does play an important role in stock returns and incorporating both the aspects of investors’ reactions in behavioral asset pricing models help make then better.

Keywords: investor behavior, momentum effect, sources of momentum, stock returns

Procedia PDF Downloads 308
263 Catalytic Dehydrogenation of Formic Acid into H2/CO2 Gas: A Novel Approach

Authors: Ayman Hijazi, Witold Kwapinski, J. J. Leahy

Abstract:

Finding a sustainable alternative energy to fossil fuel is an urgent need as various environmental challenges in the world arise. Therefore, formic acid (FA) decomposition has been an attractive field that lies at the center of biomass platform, comprising a potential pool of hydrogen energy that stands as a new energy vector. Liquid FA features considerable volumetric energy density of 6.4 MJ/L and a specific energy density of 5.3 MJ/Kg that qualifies it in the prime seat as an energy source for transportation infrastructure. Additionally, the increasing research interest in FA decomposition is driven by the need of in-situ H2 production, which plays a key role in the hydrogenation reactions of biomass into higher value components. It is reported elsewhere in literature that catalytic decomposition of FA is usually performed in poorly designed setup using simple glassware under magnetic stirring, thus demanding further energy investment to retain the used catalyst. it work suggests an approach that integrates designing a novel catalyst featuring magnetic property with a robust setup that minimizes experimental & measurement discrepancies. One of the most prominent active species for dehydrogenation/hydrogenation of biomass compounds is palladium. Accordingly, we investigate the potential of engrafting palladium metal onto functionalized magnetic nanoparticles as a heterogeneous catalyst to favor the production of CO-free H2 gas from FA. Using ordinary magnet to collect the spent catalyst renders core-shell magnetic nanoparticles as the backbone of the process. Catalytic experiments were performed in a jacketed batch reactor equipped with an overhead stirrer under inert medium. Through a novel approach, FA is charged into the reactor via high-pressure positive displacement pump at steady state conditions. The produced gas (H2+CO2) was measured by connecting the gas outlet to a measuring system based on the amount of the displaced water. The novelty of this work lies in designing a very responsive catalyst, pumping consistent amount of FA into a sealed reactor running at steady state mild temperatures, and continuous gas measurement, along with collecting the used catalyst without the need for centrifugation. Catalyst characterization using TEM, XRD, SEM, and CHN elemental analyzer provided us with details of catalyst preparation and facilitated new venues to alter the nanostructure of the catalyst framework. Consequently, the introduction of amine groups has led to appreciable improvements in terms of dispersion of the doped metals and eventually attaining nearly complete conversion (100%) of FA after 7 hours. The relative importance of the process parameters such as temperature (35-85°C), stirring speed (150-450rpm), catalyst loading (50-200mgr.), and Pd doping ratio (0.75-1.80wt.%) on gas yield was assessed by a Taguchi design-of-experiment based model. Experimental results showed that operating at lower temperature range (35-50°C) yielded more gas while the catalyst loading and Pd doping wt.% were found to be the most significant factors with a P-values 0.026 & 0.031, respectively.

Keywords: formic acid decomposition, green catalysis, hydrogen, mesoporous silica, process optimization, nanoparticles

Procedia PDF Downloads 57
262 Automation of Finite Element Simulations for the Design Space Exploration and Optimization of Type IV Pressure Vessel

Authors: Weili Jiang, Simon Cadavid Lopera, Klaus Drechsler

Abstract:

Fuel cell vehicle has become the most competitive solution for the transportation sector in the hydrogen economy. Type IV pressure vessel is currently the most popular and widely developed technology for the on-board storage, based on their high reliability and relatively low cost. Due to the stringent requirement on mechanical performance, the pressure vessel is subject to great amount of composite material, a major cost driver for the hydrogen tanks. Evidently, the optimization of composite layup design shows great potential in reducing the overall material usage, yet requires comprehensive understanding on underlying mechanisms as well as the influence of different design parameters on mechanical performance. Given the type of materials and manufacturing processes by which the type IV pressure vessels are manufactured, the design and optimization are a nuanced subject. The manifold of stacking sequence and fiber orientation variation possibilities have an out-standing effect on vessel strength due to the anisotropic property of carbon fiber composites, which make the design space high dimensional. Each variation of design parameters requires computational resources. Using finite element analysis to evaluate different designs is the most common method, however, the model-ing, setup and simulation process can be very time consuming and result in high computational cost. For this reason, it is necessary to build a reliable automation scheme to set up and analyze the di-verse composite layups. In this research, the simulation process of different tank designs regarding various parameters is conducted and automatized in a commercial finite element analysis framework Abaqus. Worth mentioning, the modeling of the composite overwrap is automatically generated using an Abaqus-Python scripting interface. The prediction of the winding angle of each layer and corresponding thickness variation on dome region is the most crucial step of the modeling, which is calculated and implemented using analytical methods. Subsequently, these different composites layups are simulated as axisymmetric models to facilitate the computational complexity and reduce the calculation time. Finally, the results are evaluated and compared regarding the ultimate tank strength. By automatically modeling, evaluating and comparing various composites layups, this system is applicable for the optimization of the tanks structures. As mentioned above, the mechanical property of the pressure vessel is highly dependent on composites layup, which requires big amount of simulations. Consequently, to automatize the simulation process gains a rapid way to compare the various designs and provide an indication of the optimum one. Moreover, this automation process can also be operated for creating a data bank of layups and corresponding mechanical properties with few preliminary configuration steps for the further case analysis. Subsequently, using e.g. machine learning to gather the optimum by the data pool directly without the simulation process.

Keywords: type IV pressure vessels, carbon composites, finite element analy-sis, automation of simulation process

Procedia PDF Downloads 137
261 Measuring Digital Literacy in the Chilean Workforce

Authors: Carolina Busco, Daniela Osses

Abstract:

The development of digital literacy has become a fundamental element that allows for citizen inclusion, access to quality jobs, and a labor market capable of responding to the digital economy. There are no methodological instruments available in Chile to measure the workforce’s digital literacy and improve national policies on this matter. Thus, the objective of this research is to develop a survey to measure digital literacy in a sample of 200 Chilean workers. Dimensions considered in the instrument are sociodemographics, access to infrastructure, digital education, digital skills, and the ability to use e-government services. To achieve the research objective of developing a digital literacy model of indicators and a research instrument for this purpose, along with an exploratory analysis of data using factor analysis, we used an empirical, quantitative-qualitative, exploratory, non-probabilistic, and cross-sectional research design. The research instrument is a survey created to measure variables that make up the conceptual map prepared from the bibliographic review. Before applying the survey, a pilot test was implemented, resulting in several adjustments to the phrasing of some items. A validation test was also applied using six experts, including their observations on the final instrument. The survey contained 49 items that were further divided into three sets of questions: sociodemographic data; a Likert scale of four values ranked according to the level of agreement; iii) multiple choice questions complementing the dimensions. Data collection occurred between January and March 2022. For the factor analysis, we used the answers to 12 items with the Likert scale. KMO showed a value of 0.626, indicating a medium level of correlation, whereas Bartlett’s test yielded a significance value of less than 0.05 and a Cronbach’s Alpha of 0.618. Taking all factor selection criteria into account, we decided to include and analyze four factors that together explain 53.48% of the accumulated variance. We identified the following factors: i) access to infrastructure and opportunities to develop digital skills at the workplace or educational establishment (15.57%), ii) ability to solve everyday problems using digital tools (14.89%), iii) online tools used to stay connected with others (11.94%), and iv) residential Internet access and speed (11%). Quantitative results were discussed within six focus groups using heterogenic selection criteria related to the most relevant variables identified in the statistical analysis: upper-class school students; middle-class university students; Ph.D. professors; low-income working women, elderly individuals, and a group of rural workers. The digital divide and its social and economic correlations are evident in the results of this research. In Chile, the items that explain the acquisition of digital tools focus on access to infrastructure, which ultimately puts the first filter on the development of digital skills. Therefore, as expressed in the literature review, the advance of these skills is radically different when sociodemographic variables are considered. This increases socioeconomic distances and exclusion criteria, putting those who do not have these skills at a disadvantage and forcing them to seek the assistance of others.

Keywords: digital literacy, digital society, workforce digitalization, digital skills

Procedia PDF Downloads 68
260 Creation of a Trust-Wide, Cross-Speciality, Virtual Teaching Programme for Doctors, Nurses and Allied Healthcare Professionals

Authors: Nelomi Anandagoda, Leanne J. Eveson

Abstract:

During the COVID-19 pandemic, the surge in in-patient admissions across the medical directorate of a district general hospital necessitated the implementation of an incident rota. Conscious of the impact on training and professional development, the idea of developing a virtual teaching programme was conceived. The programme initially aimed to provide junior doctors, specialist nurses, pharmacists, and allied healthcare professionals from medical specialties and those re-deployed from other specialties (e.g., ophthalmology, GP, surgery, psychiatry) the knowledge and skills to manage the deteriorating patient with COVID-19. The programme was later developed to incorporate the general internal medicine curriculum. To facilitate continuing medical education whilst maintaining social distancing during this period, a virtual platform was used to deliver teaching to junior doctors across two large district general hospitals and two community hospitals. Teaching sessions were recorded and uploaded to a common platform, providing a resource for participants to catch up on and re-watch teaching sessions, making strides towards reducing discrimination against the professional development of less than full-time trainees. Thus, creating a learning environment, which is inclusive and accessible to adult learners in a self-directed manner. The negative impact of the pandemic on the well-being of healthcare professionals is well documented. To support the multi-disciplinary team, the virtual teaching programme evolved to included sessions on well-being, resilience, and work-life balance. Providing teaching for learners across the multi-disciplinary team (MDT) has been an eye-opening experience. By challenging the concept that learners should only be taught within their own peer groups, the authors have fostered a greater appreciation of the strengths of the MDT and showcased the immense wealth of expertise available within the trust. The inclusive nature of the teaching and the ease of joining a virtual teaching session has facilitated the dissemination of knowledge across the MDT, thus improving patient care on the frontline. The weekly teaching programme has been running for over eight months, with ongoing engagement, interest, and participation. As described above, the teaching programme has evolved to accommodate the needs of its learners. It has received excellent feedback with an appreciation of its inclusive, multi-disciplinary, and holistic nature. The COVID-19 pandemic provided a catalyst to rapidly develop novel methods of working and training and widened access/exposure to the virtual technologies available to large organisations. By merging pedagogical expertise and technology, the authors have created an effective online learning environment. Although the authors do not propose to replace face-to-face teaching altogether, this model of virtual multidisciplinary team, cross-site teaching has proven to be a great leveler. It has made high-quality teaching accessible to learners of different confidence levels, grades, specialties, and working patterns.

Keywords: cross-site, cross-speciality, inter-disciplinary, multidisciplinary, virtual teaching

Procedia PDF Downloads 172
259 The Role of Oral and Intestinal Microbiota in European Badgers

Authors: Emma J. Dale, Christina D. Buesching, Kevin R. Theis, David W. Macdonald

Abstract:

This study investigates the oral and intestinal microbiomes of wild-living European badgers (Meles meles) and will relate inter-individual differences to social contact networks, somatic and reproductive fitness, varying susceptibility to bovine tuberculous (bTB) and to the olfactory advertisement. Badgers are an interesting model for this research, as they have great variation in body condition, despite living in complex social networks and having access to the same resources. This variation in somatic fitness, in turn, affects breeding success, particularly in females. We postulate that microbiota have a central role to play in determining the successfulness of an individual. Our preliminary results, characterising the microbiota of individual badgers, indicate unique compositions of microbiota communities within social groups of badgers. This basal information will inform further questions related to the extent microbiota influence fitness. Hitherto, the potential role of microbiota has not been considered in determining host condition, but also other key fitness variables, namely; communication and resistance to disease. Badgers deposit their faeces in communal latrines, which play an important role in olfactory communication. Odour profiles of anal and subcaudal gland secretions are highly individual-specific and encode information about group-membership and fitness-relevant parameters, and their chemical composition is strongly dependent on symbiotic microbiota. As badgers sniff/ lick (using their Vomeronasal organ) and over-mark faecal deposits of conspecifics, these microbial communities can be expected to vary with social contact networks. However, this is particularly important in the context of bTB, where badgers are assumed to transmit bTB to cattle as well as conspecifics. Interestingly, we have found that some individuals are more susceptible to bTB than are others. As acquired immunity and thus potential susceptibility to infectious diseases are known to depend also on symbiotic microbiota in other members of the mustelids, a role of particularly oral microbiota can currently not be ruled out as a potential explanation for inter-individual differences in infection susceptibility of bTB in badgers. Tri annually badgers are caught in the context of a long-term population study that began in 1987. As all badgers receive an individual tattoo upon first capture, age, natal as well as previous and current social group-membership and other life history parameters are known for all animals. Swabs (subcaudal ‘scent gland’, anal, genital, nose, mouth and ear) and fecal samples will be taken from all individuals, stored at -80oC until processing. Microbial samples will be processed and identified at Wayne State University’s Theis (Host-Microbe Interactions) Lab, using High Throughput Sequencing (16S rRNA-encoding gene amplification and sequencing). Acknowledgments: Gas-Chromatography/ Mass-spectrometry (in the context of olfactory communication) analyses will be performed through an established collaboration with Dr. Veronica Tinnesand at Telemark University, Norway.

Keywords: communication, energetics, fitness, free-ranging animals, immunology

Procedia PDF Downloads 191
258 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 91
257 Cross-Sectional Associations between Deprivation Status and Physical Activity, Dietary Behaviours, Health-Related Variables, and Health-Related Quality of Life among Children Aged 9-11 Years

Authors: Maria Cardova

Abstract:

Aim and objectives: The purpose of this studywas to explore to what extent the deprivation statusinfluenced children’s physical activity, dietary behaviour, and health outcomes such as weight status. Background: The United Kingdom’s childhood obesity rates are currently ranked among the highest in Europe. North West England deals with highest rates of childhood obesity. Data from the UK Millennium Cohort Study suggested a deprivation gradient to childhood obesity in England, with obesity rates being the highest in the most deprived areas. Traditionally, it has been individual conception of health, but the contemporary stance is that health behaviours affecting obesity are influenced by a broad range of factors operating at multiple levels. According to socio-ecological model of health behaviour, differences in obesity rates and health outcomes are likely explained by differences in lifestyle behaviours including physical activity and diet behaviours. However, higher rates of obesity among deprived children are not due to physical inactivity, in fact, most socially disadvantaged children are the most physically active. Poor diet including high consumption of fast food and sugar-sweetened beverages and low consumption of fruit and vegetables was found to be the most prevalent among adolescents living in poverty. Methods: This study adopted quantitative approach. It consisted of combination of basic demographic data, anthropometry, and questionnaires. Children (N = 165, mean age = 10.04 years; 53.33% female; 46.66% male) completed survey packs during school day including KIDSCREEN, Youth Activity Profile, Beverage and Snack Questionnaire, and Child Body Image Scale questionnaires as well as had anthropometric measurements taken including Body mass index, waist circumference, weight, and height. Children’s deprivation status was based on the English Indices of Multiple Deprivation scores of the school they attended. Results: Children from more deprived areas had higher weight status, waist circumference. Deprivation status had also effect on some dimensions of the KIDSCREEN questionnaire, such as that those from more deprived areas felt less socially accepted and bullied by their peers, had worse feelings about themselves such as body image, and more difficulty with school and learning. Children from more deprived areas reported higher rates of physical activity and also differences in snack and fruit and vegetable intake than their more affluent peers. Conclusion: Results demonstrated that, children living in the most-deprived areas appear to be at greater risk of unfavourable health-related variables and behaviours and are exposed to home and neighbourhood environments that are less conducive to health-promoting behaviours compared to their peers from less deprived areas. These findings indicate that children living in highly deprived areas represent an important group for future interventions designed to promote health-behaviours that would impact on the quality of life of the child and other health variables such as weight status.

Keywords: children, dietary behaviour, health, obesity, physical Activity, weight Status

Procedia PDF Downloads 139
256 Identification of the Target Genes to Increase the Immunotherapy Response in Bladder Cancer Patients using Computational and Experimental Approach

Authors: Sahar Nasr, Lin Li, Edwin Wang

Abstract:

Bladder cancer (BLCA) is known as the 13th cause of death among cancer patients worldwide, and ~575,000 new BLCA cases are diagnosed each year. Urothelial carcinoma (UC) is the most prevalent subtype among BLCA patients, which can be categorized into muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC). Currently, various therapeutic options are available for UC patients, including (1) transurethral resection followed by intravesical instillation of chemotherapeutics or Bacillus Calmette-Guérin for NMIBC patients, (2) neoadjuvant platinum-based chemotherapy (NAC) plus radical cystectomy is the standard of care for localized MIBC patients, and (3) systematic chemotherapy for metastatic UC. However, conventional treatments may lead to several challenges for treating patients. As an illustration, some patients may suffer from recurrence of the disease after the first line of treatment. Recently, immune checkpoint therapy (ICT) has been introduced as an alternative treatment strategy for the first or second line of treatment in advanced or metastatic BLCA patients. Although ICT showed lucrative results for a fraction of BLCA patients, ~80% of patients were not responsive to it. Therefore, novel treatment methods are required to augment the ICI response rate within BLCA patients. It has been shown that the infiltration of T-cells into the tumor microenvironment (TME) is positively correlated with the response to ICT within cancerous patients. Therefore, the goal of this study is to enhance the infiltration of cytotoxic T-cells into TME through the identification of target genes within the tumor that are responsible for the non-T-cell inflamed TME and their inhibition. BLCA bulk RNA-sequencing data from The Cancer Genome Atlas (TCGA) and immune score for TCGA samples were used to determine the Pearson correlation score between the expression of different genes and immune score for each sample. The genes with strong negative correlations were selected (r < -0.2). Thereafter, the correlation between the expression of each gene and survival in BLCA patients was calculated using the TCGA data and Cox regression method. The genes that are common in both selected gene lists were chosen for further analysis. Afterward, BLCA bulk and single-cell RNA-sequencing data were ranked based on the expression of each selected gene and the top and bottom 25% samples were used for pathway enrichment analysis. If the pathways related to the T-cell infiltration (e.g., antigen presentation, interferon, or chemokine pathways) were enriched within the low-expression group, the gene was included for downstream analysis. Finally, the selected genes will be used to calculate the correlation between their expression and the infiltration rate of the activated CD+8 T-cells, natural killer cells and the activated dendric cells. A list of potential target genes has been identified and ranked based on the above-mentioned analysis and criteria. SUN-1 got the highest score within the gene list and other identified genes in the literature as benchmarks. In conclusion, inhibition of SUN1 may increase the tumor-infiltrating lymphocytes and the efficacy of ICI in BLCA patients. BLCA tumor cells with and without SUN-1 CRISPR/Cas9 knockout will be injected into the syngeneic mouse model to validate the predicted SUN-1 effect on increasing tumor-infiltrating lymphocytes.

Keywords: data analysis, gene expression analysis, gene identification, immunoinformatic, functional genomics, transcriptomics

Procedia PDF Downloads 159
255 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts

Authors: Maria Ledinskaya

Abstract:

This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.

Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management

Procedia PDF Downloads 72
254 Optimization of Metal Pile Foundations for Solar Power Stations Using Cone Penetration Test Data

Authors: Adrian Priceputu, Elena Mihaela Stan

Abstract:

Our research addresses a critical challenge in renewable energy: improving efficiency and reducing the costs associated with the installation of ground-mounted photovoltaic (PV) panels. The most commonly used foundation solution is metal piles - with various sections adapted to soil conditions and the structural model of the panels. However, direct foundation systems are also sometimes used, especially in brownfield sites. Although metal micropiles are generally the first design option, understanding and predicting their bearing capacity, particularly under varied soil conditions, remains an open research topic. CPT Method and Current Challenges: Metal piles are favored for PV panel foundations due to their adaptability, but existing design methods rely heavily on costly and time-consuming in situ tests. The Cone Penetration Test (CPT) offers a more efficient alternative by providing valuable data on soil strength, stratification, and other key characteristics with reduced resources. During the test, a cone-shaped probe is pushed into the ground at a constant rate. Sensors within the probe measure the resistance of the soil to penetration, divided into cone penetration resistance and shaft friction resistance. Despite some existing CPT-based design approaches for metal piles, these methods are often cumbersome and difficult to apply. They vary significantly due to soil type and foundation method, and traditional approaches like the LCPC method involve complex calculations and extensive empirical data. The method was developed by testing 197 piles on a wide range of ground conditions, but the tested piles were very different from the ones used for PV pile foundations, making the method less accurate and practical for steel micropiles. Project Objectives and Methodology: Our research aims to develop a calculation method for metal micropile foundations using CPT data, simplifying the complex relationships involved. The goal is to estimate the pullout bearing capacity of piles without additional laboratory tests, streamlining the design process. To achieve this, a case study was selected which will serve for the development of an 80ha solar power station. Four testing locations were chosen spread throughout the site. At each location, two types of steel profiles (H160 and C100) were embedded into the ground at various depths (1.5m and 2.0m). The piles were tested for pullout capacity under natural and inundated soil conditions. CPT tests conducted nearby served as calibration points. The results served for the development of a preliminary equation for estimating pullout capacity. Future Work: The next phase involves validating and refining the proposed equation on additional sites by comparing CPT-based forecasts with in situ pullout tests. This validation will enhance the accuracy and reliability of the method, potentially transforming the foundation design process for PV panels.

Keywords: cone penetration test, foundation optimization, solar power stations, steel pile foundations

Procedia PDF Downloads 58
253 Sustainability in Higher Education: A Case of Transition Management from a Private University in Turkey (Ongoing Study)

Authors: Ayse Collins

Abstract:

The Agenda 2030 puts Higher Education Institutions (HEIs) in the situation where they should emphasize ways to promote sustainability accordingly. However, it is still unclear: a) how sustainability is understood, and b) which actions have been taken in both discourse and practice by HEIs regarding the three pillars of sustainability, society, environment, and economy. There are models of sustainable universities developed by different authors from different countries; For Example, The Global Reporting Initiative (GRI) methodology which offers a variety of indicators to diagnose performance. However, these models have never been developed for universities in particular. Any model, in this sense, cannot be completed adequately without defining the appropriate tools to measure, analyze and control the performance of initiatives. There is a need to conduct researches in different universities from different countries to understand where we stand in terms of sustainable higher education. Therefore, this study aims at exploring the actions taken by a university in Ankara, Turkey, since Agenda 2030 should consider localizing its objectives and targets according to a certain geography. This university just announced 2021-2022 as “Sustainability Year.” Therefore, this research is a multi-methodology longitudinal study and uses the theoretical framework of the organization and transition management (TM). It is designed to examine the activities as being strategic, tactical, operational, and reflexive in nature and covers the six main aspects: academic community, administrative staff, operations and services, teaching, research, and extension. The preliminary research will answer the role of the top university governance, perception of the stakeholders (students, instructors, administrative and support staff) regarding sustainability, and the level of achievement at the mid-evaluation and final, end of year evaluation. TM Theory is a multi-scale, multi-actor, process-oriented approach with the analytical framework to explore and promote change in social systems. Therefore, the stages and respective methodology for collecting data in this research is: Pre-development Stage: a) semi-structured interviews with university governance, c) open-ended survey with faculty, students, and administrative staff d) Semi-structured interviews with support staff, and e) analysis of current secondary data for sustainability. Take-off Stage: a) semi-structured interviews with university governance, faculty, students, administrative and support staff, b) analysis of secondary data. Breakthrough stabilization a) survey with all stakeholders at the university, b) secondary data analysis by using selected indicators for the first sustainability report for universities The findings from the predevelopment stage highlight how stakeholders, coming from different faculties, different disciplines with different identities and characteristics, face the sustainability challenge differently. Though similar sustainable development goals ((social, environmental, and economic) are set in the institution, there are differences across disciplines and among different stakeholders, which need to be considered to reach the optimum goal. It is believed that the results will help changes in HEIs organizational culture to embed sustainability values in their strategic planning, academic and managerial work by putting enough time and resources to be successful in coping with sustainability.

Keywords: higher education, sustainability, sustainability auditing, transition management

Procedia PDF Downloads 109
252 Ionian Sea Aquarium-Museum in Kefallinia Island, Greece: A Hub Developing the Underwater Natural and Cultural Resources in the Ionian Sea and Advancing the Ocean Literacy to the Public

Authors: Ferentinos George, Papatheodorou George, Belmonte Genuario, Geraga Maria, Christodoulou Dimitris, Fakiris Elias, Iatrou Margarita, Kordella Stravroula, Prevenios Michail, Mentogianis Vassilis, Sotiropoulos Makis

Abstract:

The Ionian Sea Aquarium-Museum in Kefallinia Island, Greece and its twinning with that of Santa Maria al Bagno in the Salento peninsula, Italy, are recently established Hubs in the Ionian Sea funded by the European Territorial Cooperation Programme, Greece-Italy 2007-2013. The objectives of the Ionian Sea Aquarium-Museum are: (i) exhibiting to the public the underwater natural and cultural treasures of the seas surrounding the island, (ii) the functioning of a recreational/vocational hub for all educational levels but also for sea users and stakeholders, to raise their awareness of the seas and engage them in the European notion of the Blue Growth of the Seas and (iii) setting up diving parks in sites of natural and cultural importance. The natural heritage in the Aquarium-Museum is exhibited in five tanks displaying the two most important benthic habitats in the Mediterranean Sea, that is, the Posidonia oceanica and the Coralligene assemblages with the associated rich fauna. The cultural heritage is exhibited in: (i) Dioramas displaying scale model replicas of the three best preserved ancient and historic wrecks. -The Fiscardo Roman wreck dating between 1st cent B.C. and 2nd cent. A.D., which is one of the largest and best preserved in the Mediterranean Sea. -The HMS PERSEUS British submarine, which is known for the second deepest submarine escape from all sunken submarines in WW II, and -A wooden wreck, the Italian ship Alma probably, which was requisitioned by the German army and used for transporting supplies and ammunition. (ii) Documentaries: The first two present the complete story from launching to sinking of: the HMS PERSEUS British submarine, the SS Ardena which is associated with the Italian Aqui Division killed by the German forces in Kefallinia and made known from the book and film “Captain Corelli’s Mandolin” and the third documentary deals with the birth place of seafaring in the world, which took place in the Greek. Archipelago by Neanderthals and modern humans between 115 and 35 thousand years ago. The Aquarium-Museum starts from next year (a) educational programmes for schools and tourists to discover the natural and cultural treasures around Kefallinia island, (b) recreational/vocational holiday activities centered on eco-diving and get involved in mapping and monitoring NATURA 2000 sites around the island and thus actively engaged in the Blue Growth of the seas and (c) summer schools aimed at under/post-graduate students, who are interested in marine archaeology and geo-habitat mapping and are looking for a job in the sustainable management of the seas. The exhibition themes in the Aquarium-Museum as well as the recreational /vocational and educational activities are prepared by the Oceanus Net laboratories of Patras University and were selected after surveying the seafloor using the latest state of art sonar and camera technologies.

Keywords: aquarium-museum, cultural and natural treasures, ionian sea, Kefallinia Island

Procedia PDF Downloads 592
251 Integration of an Evidence-Based Medicine Curriculum into Physician Assistant Education: Teaching for Today and the Future

Authors: Martina I. Reinhold, Theresa Bacon-Baguley

Abstract:

Background: Medical knowledge continuously evolves and to help health care providers to stay up-to-date, evidence-based medicine (EBM) has emerged as a model. The practice of EBM requires new skills of the health care provider, including directed literature searches, the critical evaluation of research studies, and the direct application of the findings to patient care. This paper describes the integration and evaluation of an evidence-based medicine course sequence into a Physician Assistant curriculum. This course sequence teaches students to manage and use the best clinical research evidence to competently practice medicine. A survey was developed to assess the outcomes of the EBM course sequence. Methodology: The cornerstone of the three-semester sequence of EBM are interactive small group discussions that are designed to introduce students to the most clinically applicable skills to identify, manage and use the best clinical research evidence to improve the health of their patients. During the three-semester sequence, the students are assigned each semester to participate in small group discussions that are facilitated by faculty with varying background and expertise. Prior to the start of the first EBM course in the winter semester, PA students complete a knowledge-based survey that was developed by the authors to assess the effectiveness of the course series. The survey consists of 53 Likert scale questions that address the nine objectives for the course series. At the end of the three semester course series, the same survey was given to all students in the program and the results from before, and after the sequence of EBM courses are compared. Specific attention is paid to overall performance of students in the nine course objectives. Results: We find that students from the Class of 2016 and 2017 consistently improve (as measured by percent correct responses on the survey tool) after the EBM course series (Class of 2016: Pre- 62% Post- 75%; Class of 2017: Pre- 61 % Post-70%). The biggest increase in knowledge was observed in the areas of finding and evaluating the evidence, with asking concise clinical questions (Class of 2016: Pre- 61% Post- 81%; Class of 2017: Pre- 61 % Post-75%) and searching the medical database (Class of 2016: Pre- 24% Post- 65%; Class of 2017: Pre- 35 % Post-66 %). Questions requiring students to analyze, evaluate and report on the available clinical evidence regarding diagnosis showed improvement, but to a lesser extend (Class of 2016: Pre- 56% Post- 77%; Class of 2017: Pre- 56 % Post-61%). Conclusions: Outcomes identified that students did gain skills which will allow them to apply EBM principles. In addition, the outcomes of the knowledge-based survey allowed the faculty to focus on areas needing improvement, specifically the translation of best evidence into patient care. To address this area, the clinical faculty developed case scenarios that were incorporated into the lecture and discussion sessions, allowing students to better connect the research studies with patient care. Students commented that ‘class discussion and case examples’ contributed most to their learning and that ‘it was helpful to learn how to develop research questions and how to analyze studies and their significance to a potential client’. As evident by the outcomes, the EBM courses achieved the goals of the course and were well received by the students. 

Keywords: evidence-based medicine, clinical education, assessment tool, physician assistant

Procedia PDF Downloads 127