Search results for: discrete wavelet transform algorithm
3944 Three-Dimensional Off-Line Path Planning for Unmanned Aerial Vehicle Using Modified Particle Swarm Optimization
Authors: Lana Dalawr Jalal
Abstract:
This paper addresses the problem of offline path planning for Unmanned Aerial Vehicles (UAVs) in complex three-dimensional environment with obstacles, which is modelled by 3D Cartesian grid system. Path planning for UAVs require the computational intelligence methods to move aerial vehicles along the flight path effectively to target while avoiding obstacles. In this paper Modified Particle Swarm Optimization (MPSO) algorithm is applied to generate the optimal collision free 3D flight path for UAV. The simulations results clearly demonstrate effectiveness of the proposed algorithm in guiding UAV to the final destination by providing optimal feasible path quickly and effectively.Keywords: obstacle avoidance, particle swarm optimization, three-dimensional path planning unmanned aerial vehicles
Procedia PDF Downloads 4103943 A Second Order Genetic Algorithm for Traveling Salesman Problem
Authors: T. Toathom, M. Munlin, P. Sugunnasil
Abstract:
The traveling salesman problem (TSP) is one of the best-known problems in optimization problem. There are many research regarding the TSP. One of the most usage tool for this problem is the genetic algorithm (GA). The chromosome of the GA for TSP is normally encoded by the order of the visited city. However, the traditional chromosome encoding scheme has some limitations which are twofold: the large solution space and the inability to encapsulate some information. The number of solution for a certain problem is exponentially grow by the number of city. Moreover, the traditional chromosome encoding scheme fails to recognize the misplaced correct relation. It implies that the tradition method focuses only on exact solution. In this work, we relax some of the concept in the GA for TSP which is the exactness of the solution. The proposed work exploits the relation between cities in order to reduce the solution space in the chromosome encoding. In this paper, a second order GA is proposed to solve the TSP. The term second order refers to how the solution is encoded into chromosome. The chromosome is divided into 2 types: the high order chromosome and the low order chromosome. The high order chromosome is the chromosome that focus on the relation between cities such as the city A should be visited before city B. On the other hand, the low order chromosome is a type of chromosome that is derived from a high order chromosome. In other word, low order chromosome is encoded by the traditional chromosome encoding scheme. The genetic operation, mutation and crossover, will be performed on the high order chromosome. Then, the high order chromosome will be mapped to a group of low order chromosomes whose characteristics are satisfied with the high order chromosome. From the mapped set of chromosomes, the champion chromosome will be selected based on the fitness value which will be later used as a representative for the high order chromosome. The experiment is performed on the city data from TSPLIB.Keywords: genetic algorithm, traveling salesman problem, initial population, chromosomes encoding
Procedia PDF Downloads 2723942 An Algorithm to Depreciate the Energy Utilization Using a Bio-Inspired Method in Wireless Sensor Network
Authors: Navdeep Singh Randhawa, Shally Sharma
Abstract:
Wireless Sensor Network is an autonomous technology emanating in the current scenario at a fast pace. This technology faces a number of defiance’s and energy management is one of them, which has a huge impact on the network lifetime. To sustain energy the different types of routing protocols have been flourished. The classical routing protocols are no more compatible to perform in complicated environments. Hence, in the field of routing the intelligent algorithms based on nature systems is a turning point in Wireless Sensor Network. These nature-based algorithms are quite efficient to handle the challenges of the WSN as they are capable of achieving local and global best optimization solutions for the complex environments. So, the main attention of this paper is to develop a routing algorithm based on some swarm intelligent technique to enhance the performance of Wireless Sensor Network.Keywords: wireless sensor network, routing, swarm intelligence, MPRSO
Procedia PDF Downloads 3523941 Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise and Multipoint Optimal Minimum Entropy Deconvolution in Railway Bearings Fault Diagnosis
Authors: Yao Cheng, Weihua Zhang
Abstract:
Although the measured vibration signal contains rich information on machine health conditions, the white noise interferences and the discrete harmonic coming from blade, shaft and mash make the fault diagnosis of rolling element bearings difficult. In order to overcome the interferences of useless signals, a new fault diagnosis method combining Complete Ensemble Empirical Mode Decomposition with adaptive noise (CEEMDAN) and Multipoint Optimal Minimum Entropy Deconvolution (MOMED) is proposed for the fault diagnosis of high-speed train bearings. Firstly, the CEEMDAN technique is applied to adaptively decompose the raw vibration signal into a series of finite intrinsic mode functions (IMFs) and a residue. Compared with Ensemble Empirical Mode Decomposition (EEMD), the CEEMDAN can provide an exact reconstruction of the original signal and a better spectral separation of the modes, which improves the accuracy of fault diagnosis. An effective sensitivity index based on the Pearson's correlation coefficients between IMFs and raw signal is adopted to select sensitive IMFs that contain bearing fault information. The composite signal of the sensitive IMFs is applied to further analysis of fault identification. Next, for propose of identifying the fault information precisely, the MOMED is utilized to enhance the periodic impulses in composite signal. As a non-iterative method, the MOMED has better deconvolution performance than the classical deconvolution methods such Minimum Entropy Deconvolution (MED) and Maximum Correlated Kurtosis Deconvolution (MCKD). Third, the envelope spectrum analysis is applied to detect the existence of bearing fault. The simulated bearing fault signals with white noise and discrete harmonic interferences are used to validate the effectiveness of the proposed method. Finally, the superiorities of the proposed method are further demonstrated by high-speed train bearing fault datasets measured from test rig. The analysis results indicate that the proposed method has strong practicability.Keywords: bearing, complete ensemble empirical mode decomposition with adaptive noise, fault diagnosis, multipoint optimal minimum entropy deconvolution
Procedia PDF Downloads 3743940 Algorithm for Recognizing Trees along Power Grid Using Multispectral Imagery
Authors: C. Hamamura, V. Gialluca
Abstract:
Much of the Eclectricity Distributors has about 70% of its electricity interruptions arising from cause "trees", alone or associated with wind and rain and with or without falling branch and / or trees. This contributes inexorably and significantly to outages, resulting in high costs as compensation in addition to the operation and maintenance costs. On the other hand, there is little data structure and solutions to better organize the trees pruning plan effectively, minimizing costs and environmentally friendly. This work describes the development of an algorithm to provide data of trees associated to power grid. The method is accomplished on several steps using satellite imagery and geographically vectorized grid. A sliding window like approach is performed to seek the area around the grid. The proposed method counted 764 trees on a patch of the grid, which was very close to the 738 trees counted manually. The trees data was used as a part of a larger project that implements a system to optimize tree pruning plan.Keywords: image pattern recognition, trees pruning, trees recognition, neural network
Procedia PDF Downloads 4993939 Transfer Knowledge From Multiple Source Problems to a Target Problem in Genetic Algorithm
Authors: Terence Soule, Tami Al Ghamdi
Abstract:
To study how to transfer knowledge from multiple source problems to the target problem, we modeled the Transfer Learning (TL) process using Genetic Algorithms as the model solver. TL is the process that aims to transfer learned data from one problem to another problem. The TL process aims to help Machine Learning (ML) algorithms find a solution to the problems. The Genetic Algorithms (GA) give researchers access to information that we have about how the old problem is solved. In this paper, we have five different source problems, and we transfer the knowledge to the target problem. We studied different scenarios of the target problem. The results showed combined knowledge from multiple source problems improves the GA performance. Also, the process of combining knowledge from several problems results in promoting diversity of the transferred population.Keywords: transfer learning, genetic algorithm, evolutionary computation, source and target
Procedia PDF Downloads 1403938 On Fourier Type Integral Transform for a Class of Generalized Quotients
Authors: A. S. Issa, S. K. Q. AL-Omari
Abstract:
In this paper, we investigate certain spaces of generalized functions for the Fourier and Fourier type integral transforms. We discuss convolution theorems and establish certain spaces of distributions for the considered integrals. The new Fourier type integral is well-defined, linear, one-to-one and continuous with respect to certain types of convergences. Many properties and an inverse problem are also discussed in some details.Keywords: Boehmian, Fourier integral, Fourier type integral, generalized quotient
Procedia PDF Downloads 3653937 Disease Level Assessment in Wheat Plots Using a Residual Deep Learning Algorithm
Authors: Felipe A. Guth, Shane Ward, Kevin McDonnell
Abstract:
The assessment of disease levels in crop fields is an important and time-consuming task that generally relies on expert knowledge of trained individuals. Image classification in agriculture problems historically has been based on classical machine learning strategies that make use of hand-engineered features in the top of a classification algorithm. This approach tends to not produce results with high accuracy and generalization to the classes classified by the system when the nature of the elements has a significant variability. The advent of deep convolutional neural networks has revolutionized the field of machine learning, especially in computer vision tasks. These networks have great resourcefulness of learning and have been applied successfully to image classification and object detection tasks in the last years. The objective of this work was to propose a new method based on deep learning convolutional neural networks towards the task of disease level monitoring. Common RGB images of winter wheat were obtained during a growing season. Five categories of disease levels presence were produced, in collaboration with agronomists, for the algorithm classification. Disease level tasks performed by experts provided ground truth data for the disease score of the same winter wheat plots were RGB images were acquired. The system had an overall accuracy of 84% on the discrimination of the disease level classes.Keywords: crop disease assessment, deep learning, precision agriculture, residual neural networks
Procedia PDF Downloads 3323936 Seismic Assessment of a Pre-Cast Recycled Concrete Block Arch System
Authors: Amaia Martinez Martinez, Martin Turek, Carlos Ventura, Jay Drew
Abstract:
This study aims to assess the seismic performance of arch and dome structural systems made from easy to assemble precast blocks of recycled concrete. These systems have been developed by Lock Block Ltd. Company from Vancouver, Canada, as an extension of their currently used retaining wall system. The characterization of the seismic behavior of these structures is performed by a combination of experimental static and dynamic testing, and analytical modeling. For the experimental testing, several tilt tests, as well as a program of shake table testing were undertaken using small scale arch models. A suite of earthquakes with different characteristics from important past events are chosen and scaled properly for the dynamic testing. Shake table testing applying the ground motions in just one direction (in the weak direction of the arch) and in the three directions were conducted and compared. The models were tested with increasing intensity until collapse occurred; which determines the failure level for each earthquake. Since the failure intensity varied with type of earthquake, a sensitivity analysis of the different parameters was performed, being impulses the dominant factor. For all cases, the arches exhibited the typical four-hinge failure mechanism, which was also shown in the analytical model. Experimental testing was also performed reinforcing the arches using a steel band over the structures anchored at both ends of the arch. The models were tested with different pretension levels. The bands were instrumented with strain gauges to measure the force produced by the shaking. These forces were used to develop engineering guidelines for the design of the reinforcement needed for these systems. In addition, an analytical discrete element model was created using 3DEC software. The blocks were designed as rigid blocks, assigning all the properties to the joints including also the contribution of the interlocking shear key between blocks. The model is calibrated to the experimental static tests and validated with the obtained results from the dynamic tests. Then the model can be used to scale up the results to the full scale structure and expanding it to different configurations and boundary conditions.Keywords: arch, discrete element model, seismic assessment, shake-table testing
Procedia PDF Downloads 2063935 Application of Smplify-X Algorithm with Enhanced Gender Classifier in 3D Human Pose Estimation
Authors: Jiahe Liu, Hongyang Yu, Miao Luo, Feng Qian
Abstract:
The widespread application of 3D human body reconstruction spans various fields. Smplify-X, an algorithm reliant on single-image input, employs three distinct body parameter templates, necessitating gender classification of individuals within the input image. Researchers employed a ResNet18 network to train a gender classifier within the Smplify-X framework, setting the threshold at 0.9, designating images falling below this threshold as having neutral gender. This model achieved 62.38% accurate predictions and 7.54% incorrect predictions. Our improvement involved refining the MobileNet network, resulting in a raised threshold of 0.97. Consequently, we attained 78.89% accurate predictions and a mere 0.2% incorrect predictions, markedly enhancing prediction precision and enabling more precise 3D human body reconstruction.Keywords: SMPLX, mobileNet, gender classification, 3D human reconstruction
Procedia PDF Downloads 1003934 Health of Riveted Joints with Active and Passive Structural Health Monitoring Techniques
Authors: Javad Yarmahmoudi, Alireza Mirzaee
Abstract:
Many active and passive structural health monitoring (SHM) techniques have been developed for detection of the defects of plates. Generally, riveted joints hold the plates together and their failure may create accidents. In this study, well known active and passive methods were modified for the evaluation of the health of the riveted joints between the plates. The active method generated Lamb waves and monitored their propagation by using lead zirconate titanate (PZT) disks. The signal was analyzed by using the wavelet transformations. The passive method used the Fiber Bragg Grating (FBG) sensors and evaluated the spectral characteristics of the signals by using Fast Fourier Transformation (FFT). The results indicated that the existing methods designed for the evaluation of the health of individual plates may be used for inspection of riveted joints with software modifications.Keywords: structural health monitoring, SHM, active SHM, passive SHM, fiber bragg grating sensor, lead zirconate titanate, PZT
Procedia PDF Downloads 3273933 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 853932 Iterative Segmentation and Application of Hausdorff Dilation Distance in Defect Detection
Authors: S. Shankar Bharathi
Abstract:
Inspection of surface defects on metallic components has always been challenging due to its specular property. Occurrences of defects such as scratches, rust, pitting are very common in metallic surfaces during the manufacturing process. These defects if unchecked can hamper the performance and reduce the life time of such component. Many of the conventional image processing algorithms in detecting the surface defects generally involve segmentation techniques, based on thresholding, edge detection, watershed segmentation and textural segmentation. They later employ other suitable algorithms based on morphology, region growing, shape analysis, neural networks for classification purpose. In this paper the work has been focused only towards detecting scratches. Global and other thresholding techniques were used to extract the defects, but it proved to be inaccurate in extracting the defects alone. However, this paper does not focus on comparison of different segmentation techniques, but rather describes a novel approach towards segmentation combined with hausdorff dilation distance. The proposed algorithm is based on the distribution of the intensity levels, that is, whether a certain gray level is concentrated or evenly distributed. The algorithm is based on extraction of such concentrated pixels. Defective images showed higher level of concentration of some gray level, whereas in non-defective image, there seemed to be no concentration, but were evenly distributed. This formed the basis in detecting the defects in the proposed algorithm. Hausdorff dilation distance based on mathematical morphology was used to strengthen the segmentation of the defects.Keywords: metallic surface, scratches, segmentation, hausdorff dilation distance, machine vision
Procedia PDF Downloads 4283931 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing
Procedia PDF Downloads 1163930 Human Posture Estimation Based on Multiple Viewpoints
Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo
Abstract:
This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.Keywords: multi-view, pose estimation, ST-GCN, joint fusion
Procedia PDF Downloads 703929 The Use Support Vector Machine and Back Propagation Neural Network for Prediction of Daily Tidal Levels Along The Jeddah Coast, Saudi Arabia
Authors: E. A. Mlybari, M. S. Elbisy, A. H. Alshahri, O. M. Albarakati
Abstract:
Sea level rise threatens to increase the impact of future storms and hurricanes on coastal communities. Accurate sea level change prediction and supplement is an important task in determining constructions and human activities in coastal and oceanic areas. In this study, support vector machines (SVM) is proposed to predict daily tidal levels along the Jeddah Coast, Saudi Arabia. The optimal parameter values of kernel function are determined using a genetic algorithm. The SVM results are compared with the field data and with back propagation (BP). Among the models, the SVM is superior to BPNN and has better generalization performance.Keywords: tides, prediction, support vector machines, genetic algorithm, back-propagation neural network, risk, hazards
Procedia PDF Downloads 4683928 Variable Tree Structure QR Decomposition-M Algorithm (QRD-M) in Multiple Input Multiple Output-Orthogonal Frequency Division Multiplexing (MIMO-OFDM) Systems
Authors: Jae-Hyun Ro, Jong-Kwang Kim, Chang-Hee Kang, Hyoung-Kyu Song
Abstract:
In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, QR decomposition-M algorithm (QRD-M) has suboptimal error performance. However, the QRD-M has still high complexity due to many calculations at each layer in tree structure. To reduce the complexity of the QRD-M, proposed QRD-M modifies existing tree structure by eliminating unnecessary candidates at almost whole layers. The method of the elimination is discarding the candidates which have accumulated squared Euclidean distances larger than calculated threshold. The simulation results show that the proposed QRD-M has same bit error rate (BER) performance with lower complexity than the conventional QRD-M.Keywords: complexity, MIMO-OFDM, QRD-M, squared Euclidean distance
Procedia PDF Downloads 3333927 Parameters Tuning of a PID Controller on a DC Motor Using Honey Bee and Genetic Algorithms
Authors: Saeid Jalilzadeh
Abstract:
PID controllers are widely used to control the industrial plants because of their robustness and simple structures. Tuning of the controller's parameters to get a desired response is difficult and time consuming. With the development of computer technology and artificial intelligence in automatic control field, all kinds of parameters tuning methods of PID controller have emerged in endlessly, which bring much energy for the study of PID controller, but many advanced tuning methods behave not so perfect as to be expected. Honey Bee algorithm (HBA) and genetic algorithm (GA) are extensively used for real parameter optimization in diverse fields of study. This paper describes an application of HBA and GA to the problem of designing a PID controller whose parameters comprise proportionality constant, integral constant and derivative constant. Presence of three parameters to optimize makes the task of designing a PID controller more challenging than conventional P, PI, and PD controllers design. The suitability of the proposed approach has been demonstrated through computer simulation using MATLAB/SIMULINK.Keywords: controller, GA, optimization, PID, PSO
Procedia PDF Downloads 5443926 Data Clustering Algorithm Based on Multi-Objective Periodic Bacterial Foraging Optimization with Two Learning Archives
Authors: Chen Guo, Heng Tang, Ben Niu
Abstract:
Clustering splits objects into different groups based on similarity, making the objects have higher similarity in the same group and lower similarity in different groups. Thus, clustering can be treated as an optimization problem to maximize the intra-cluster similarity or inter-cluster dissimilarity. In real-world applications, the datasets often have some complex characteristics: sparse, overlap, high dimensionality, etc. When facing these datasets, simultaneously optimizing two or more objectives can obtain better clustering results than optimizing one objective. However, except for the objectives weighting methods, traditional clustering approaches have difficulty in solving multi-objective data clustering problems. Due to this, evolutionary multi-objective optimization algorithms are investigated by researchers to optimize multiple clustering objectives. In this paper, the Data Clustering algorithm based on Multi-objective Periodic Bacterial Foraging Optimization with two Learning Archives (DC-MPBFOLA) is proposed. Specifically, first, to reduce the high computing complexity of the original BFO, periodic BFO is employed as the basic algorithmic framework. Then transfer the periodic BFO into a multi-objective type. Second, two learning strategies are proposed based on the two learning archives to guide the bacterial swarm to move in a better direction. On the one hand, the global best is selected from the global learning archive according to the convergence index and diversity index. On the other hand, the personal best is selected from the personal learning archive according to the sum of weighted objectives. According to the aforementioned learning strategies, a chemotaxis operation is designed. Third, an elite learning strategy is designed to provide fresh power to the objects in two learning archives. When the objects in these two archives do not change for two consecutive times, randomly initializing one dimension of objects can prevent the proposed algorithm from falling into local optima. Fourth, to validate the performance of the proposed algorithm, DC-MPBFOLA is compared with four state-of-art evolutionary multi-objective optimization algorithms and one classical clustering algorithm on evaluation indexes of datasets. To further verify the effectiveness and feasibility of designed strategies in DC-MPBFOLA, variants of DC-MPBFOLA are also proposed. Experimental results demonstrate that DC-MPBFOLA outperforms its competitors regarding all evaluation indexes and clustering partitions. These results also indicate that the designed strategies positively influence the performance improvement of the original BFO.Keywords: data clustering, multi-objective optimization, bacterial foraging optimization, learning archives
Procedia PDF Downloads 1393925 Parallel Evaluation of Sommerfeld Integrals for Multilayer Dyadic Green's Function
Authors: Duygu Kan, Mehmet Cayoren
Abstract:
Sommerfeld-integrals (SIs) are commonly encountered in electromagnetics problems involving analysis of antennas and scatterers embedded in planar multilayered media. Generally speaking, the analytical solution of SIs is unavailable, and it is well known that numerical evaluation of SIs is very time consuming and computationally expensive due to the highly oscillating and slowly decaying nature of the integrands. Therefore, fast computation of SIs has a paramount importance. In this paper, a parallel code has been developed to speed up the computation of SI in the framework of calculation of dyadic Green’s function in multilayered media. OpenMP shared memory approach is used to parallelize the SI algorithm and resulted in significant time savings. Moreover accelerating the computation of dyadic Green’s function is discussed based on the parallel SI algorithm developed.Keywords: Sommerfeld-integrals, multilayer dyadic Green’s function, OpenMP, shared memory parallel programming
Procedia PDF Downloads 2473924 A Comparative Study on a Tilt-Integral-Derivative Controller with Proportional-Integral-Derivative Controller for a Pacemaker
Authors: Aysan Esgandanian, Sabalan Daneshvar
Abstract:
The study is done to determine the comparison between proportional-integral-derivative controller (PID controller) and tilt-integral-derivative (TID controller) for cardiac pacemaker systems, which can automatically control the heart rate to accurately track a desired preset profile. The controller offers good adaption of heart to the physiological needs of the patient. The parameters of the both controllers are tuned by particle swarm optimization (PSO) algorithm which uses the integral of time square error as a fitness function to be minimized. Simulation results are performed on the developed cardiovascular system of humans and results demonstrate that the TID controller produces superior control performance than PID controllers. In this paper, all simulations were performed in Matlab.Keywords: integral of time square error, pacemaker systems, proportional-integral-derivative controller, PSO algorithm, tilt-integral-derivative controller
Procedia PDF Downloads 4633923 VeriFy: A Solution to Implement Autonomy Safely and According to the Rules
Authors: Michael Naderhirn, Marco Pavone
Abstract:
Problem statement, motivation, and aim of work: So far, the development of control algorithms was done by control engineers in a way that the controller would fit a specification by testing. When it comes to the certification of an autonomous car in highly complex scenarios, the challenge is much higher since such a controller must mathematically guarantee to implement the rules of the road while on the other side guarantee aspects like safety and real time executability. What if it becomes reality to solve this demanding problem by combining Formal Verification and System Theory? The aim of this work is to present a workflow to solve the above mentioned problem. Summary of the presented results / main outcomes: We show the usage of an English like language to transform the rules of the road into system specification for an autonomous car. The language based specifications are used to define system functions and interfaces. Based on that a formal model is developed which formally correctly models the specifications. On the other side, a mathematical model describing the systems dynamics is used to calculate the systems reachability set which is further used to determine the system input boundaries. Then a motion planning algorithm is applied inside the system boundaries to find an optimized trajectory in combination with the formal specification model while satisfying the specifications. The result is a control strategy which can be applied in real time independent of the scenario with a mathematical guarantee to satisfy a predefined specification. We demonstrate the applicability of the method in simulation driving scenarios and a potential certification. Originality, significance, and benefit: To the authors’ best knowledge, it is the first time that it is possible to show an automated workflow which combines a specification in an English like language and a mathematical model in a mathematical formal verified way to synthesizes a controller for potential real time applications like autonomous driving.Keywords: formal system verification, reachability, real time controller, hybrid system
Procedia PDF Downloads 2413922 Comparison between Continuous Genetic Algorithms and Particle Swarm Optimization for Distribution Network Reconfiguration
Authors: Linh Nguyen Tung, Anh Truong Viet, Nghien Nguyen Ba, Chuong Trinh Trong
Abstract:
This paper proposes a reconfiguration methodology based on a continuous genetic algorithm (CGA) and particle swarm optimization (PSO) for minimizing active power loss and minimizing voltage deviation. Both algorithms are adapted using graph theory to generate feasible individuals, and the modified crossover is used for continuous variable of CGA. To demonstrate the performance and effectiveness of the proposed methods, a comparative analysis of CGA with PSO for network reconfiguration, on 33-node and 119-bus radial distribution system is presented. The simulation results have shown that both CGA and PSO can be used in the distribution network reconfiguration and CGA outperformed PSO with significant success rate in finding optimal distribution network configuration.Keywords: distribution network reconfiguration, particle swarm optimization, continuous genetic algorithm, power loss reduction, voltage deviation
Procedia PDF Downloads 1883921 Improving Cell Type Identification of Single Cell Data by Iterative Graph-Based Noise Filtering
Authors: Annika Stechemesser, Rachel Pounds, Emma Lucas, Chris Dawson, Julia Lipecki, Pavle Vrljicak, Jan Brosens, Sean Kehoe, Jason Yap, Lawrence Young, Sascha Ott
Abstract:
Advances in technology make it now possible to retrieve the genetic information of thousands of single cancerous cells. One of the key challenges in single cell analysis of cancerous tissue is to determine the number of different cell types and their characteristic genes within the sample to better understand the tumors and their reaction to different treatments. For this analysis to be possible, it is crucial to filter out background noise as it can severely blur the downstream analysis and give misleading results. In-depth analysis of the state-of-the-art filtering methods for single cell data showed that they do, in some cases, not separate noisy and normal cells sufficiently. We introduced an algorithm that filters and clusters single cell data simultaneously without relying on certain genes or thresholds chosen by eye. It detects communities in a Shared Nearest Neighbor similarity network, which captures the similarities and dissimilarities of the cells by optimizing the modularity and then identifies and removes vertices with a weak clustering belonging. This strategy is based on the fact that noisy data instances are very likely to be similar to true cell types but do not match any of these wells. Once the clustering is complete, we apply a set of evaluation metrics on the cluster level and accept or reject clusters based on the outcome. The performance of our algorithm was tested on three datasets and led to convincing results. We were able to replicate the results on a Peripheral Blood Mononuclear Cells dataset. Furthermore, we applied the algorithm to two samples of ovarian cancer from the same patient before and after chemotherapy. Comparing the standard approach to our algorithm, we found a hidden cell type in the ovarian postchemotherapy data with interesting marker genes that are potentially relevant for medical research.Keywords: cancer research, graph theory, machine learning, single cell analysis
Procedia PDF Downloads 1133920 Business Intelligence for Profiling of Telecommunication Customer
Authors: Rokhmatul Insani, Hira Laksmiwati Soemitro
Abstract:
Business Intelligence is a methodology that exploits the data to produce information and knowledge systematically, business intelligence can support the decision-making process. Some methods in business intelligence are data warehouse and data mining. A data warehouse can store historical data from transactional data. For data modelling in data warehouse, we apply dimensional modelling by Kimball. While data mining is used to extracting patterns from the data and get insight from the data. Data mining has many techniques, one of which is segmentation. For profiling of telecommunication customer, we use customer segmentation according to customer’s usage of services, customer invoice and customer payment. Customers can be grouped according to their characteristics and can be identified the profitable customers. We apply K-Means Clustering Algorithm for segmentation. The input variable for that algorithm we use RFM (Recency, Frequency and Monetary) model. All process in data mining, we use tools IBM SPSS modeller.Keywords: business intelligence, customer segmentation, data warehouse, data mining
Procedia PDF Downloads 4843919 Using Self Organizing Feature Maps for Classification in RGB Images
Authors: Hassan Masoumi, Ahad Salimi, Nazanin Barhemmat, Babak Gholami
Abstract:
Artificial neural networks have gained a lot of interest as empirical models for their powerful representational capacity, multi input and output mapping characteristics. In fact, most feed-forward networks with nonlinear nodal functions have been proved to be universal approximates. In this paper, we propose a new supervised method for color image classification based on self organizing feature maps (SOFM). This algorithm is based on competitive learning. The method partitions the input space using self-organizing feature maps to introduce the concept of local neighborhoods. Our image classification system entered into RGB image. Experiments with simulated data showed that separability of classes increased when increasing training time. In additional, the result shows proposed algorithms are effective for color image classification.Keywords: classification, SOFM algorithm, neural network, neighborhood, RGB image
Procedia PDF Downloads 4783918 Optimum Dimensions of Hydraulic Structures Foundation and Protections Using Coupled Genetic Algorithm with Artificial Neural Network Model
Authors: Dheyaa W. Abbood, Rafa H. AL-Suhaili, May S. Saleh
Abstract:
A model using the artificial neural networks and genetic algorithm technique is developed for obtaining optimum dimensions of the foundation length and protections of small hydraulic structures. The procedure involves optimizing an objective function comprising a weighted summation of the state variables. The decision variables considered in the optimization are the upstream and downstream cutoffs length sand their angles of inclination, the foundation length, and the length of the downstream soil protection. These were obtained for a given maximum difference in head, depth of impervious layer and degree of anisotropy.The optimization carried out subjected to constraints that ensure a safe structure against the uplift pressure force and sufficient protection length at the downstream side of the structure to overcome an excessive exit gradient. The Geo-studios oft ware, was used to analyze 1200 different cases. For each case the length of protection and volume of structure required to satisfy the safety factors mentioned previously were estimated. An ANN model was developed and verified using these cases input-output sets as its data base. A MatLAB code was written to perform a genetic algorithm optimization modeling coupled with this ANN model using a formulated optimization model. A sensitivity analysis was done for selecting the cross-over probability, the mutation probability and level ,the number of population, the position of the crossover and the weights distribution for all the terms of the objective function. Results indicate that the most factor that affects the optimum solution is the number of population required. The minimum value that gives stable global optimum solution of this parameters is (30000) while other variables have little effect on the optimum solution.Keywords: inclined cutoff, optimization, genetic algorithm, artificial neural networks, geo-studio, uplift pressure, exit gradient, factor of safety
Procedia PDF Downloads 3243917 Learning Grammars for Detection of Disaster-Related Micro Events
Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev
Abstract:
Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter
Procedia PDF Downloads 4783916 Prevention of Road Accidents by Computerized Drowsiness Detection System
Authors: Ujjal Chattaraj, P. C. Dasbebartta, S. Bhuyan
Abstract:
This paper aims to propose a method to detect the action of the driver’s eyes, using the concept of face detection. There are three major key contributing methods which can rapidly process the framework of the facial image and hence produce results which further can program the reactions of the vehicles as pre-programmed for the traffic safety. This paper compares and analyses the methods on the basis of their reaction time and their ability to deal with fluctuating images of the driver. The program used in this study is simple and efficient, built using the AdaBoost learning algorithm. Through this program, the system would be able to discard background regions and focus on the face-like regions. The results are analyzed on a common computer which makes it feasible for the end users. The application domain of this experiment is quite wide, such as detection of drowsiness or influence of alcohols in drivers or detection for the case of identification.Keywords: AdaBoost learning algorithm, face detection, framework, traffic safety
Procedia PDF Downloads 1573915 Integrated Location-Allocation Planning in Multi Product Multi Echelon Single Period Closed Loop Supply Chain Network Design
Authors: Santhosh Srinivasan, Vipul Garhiya, Shahul Hamid Khan
Abstract:
Environmental performance along with social performance is becoming vital factors for industries to achieve global standards. With a good environmental policy global industries are differentiating them from their competitors. This paper concentrates on multi stage, multi product and multi period manufacturing network. Single objective mathematical models for a total cost for the entire forward supply chain and reverse chain are considered. Here five different problems are considered by varying the number of facilities for illustration. M-MOGA, Shuffle Frog Leaping algorithm (SFLA) and CPLEX are used for finding the optimal solution for the mathematical model.Keywords: closed loop supply chain, genetic algorithm, random search, multi period, green supply chain
Procedia PDF Downloads 391