Search results for: neural progentor cells
3336 Investigation of the Effects of Quercetin on Oxidative Stress in Cells Infected with Infectious Pancreatic Necrosis Virus
Authors: Dilek Zorlu Kaya, Sena Çenesiz, Utku Duran
Abstract:
Infectious pancreatic necrosis virus is a disease of great concern in aquaculture, causing mortality of 80 - 90% of the stocks in salmonid production. We aimed to investigate the efficacy of quercetin on oxidant and antioxidant parameters of infectious pancreatic necrosis virus, which is important for fish farming and economy in vitro. Quercetin experimental model was used in the cell culture of Oncorhynchus mykiss infected with infectious pancreatic necrosis virus. Malondialdehyde, ceruloplasmin, total oxidant capacity, total antioxidant levels, and glutathione-peroxidase were measured in the samples. As a result of the study, it was observed that quercetin can minimize the damage caused by scavenging free radicals in cells infected with infectious pancreatic necrosis virus. Thus, we think that an important development can be achieved for fish farming and the economy.Keywords: IPNV, oncorhynchus mykiss, TAS, TOS, quercetin
Procedia PDF Downloads 653335 Comparison of Support Vector Machines and Artificial Neural Network Classifiers in Characterizing Threatened Tree Species Using Eight Bands of WorldView-2 Imagery in Dukuduku Landscape, South Africa
Authors: Galal Omer, Onisimo Mutanga, Elfatih M. Abdel-Rahman, Elhadi Adam
Abstract:
Threatened tree species (TTS) play a significant role in ecosystem functioning and services, land use dynamics, and other socio-economic aspects. Such aspects include ecological, economic, livelihood, security-based, and well-being benefits. The development of techniques for mapping and monitoring TTS is thus critical for understanding the functioning of ecosystems. The advent of advanced imaging systems and supervised learning algorithms has provided an opportunity to classify TTS over fragmenting landscape. Recently, vegetation maps have been produced using advanced imaging systems such as WorldView-2 (WV-2) and robust classification algorithms such as support vectors machines (SVM) and artificial neural network (ANN). However, delineation of TTS in a fragmenting landscape using high resolution imagery has widely remained elusive due to the complexity of the species structure and their distribution. Therefore, the objective of the current study was to examine the utility of the advanced WV-2 data for mapping TTS in the fragmenting Dukuduku indigenous forest of South Africa using SVM and ANN classification algorithms. The results showed the robustness of the two machine learning algorithms with an overall accuracy (OA) of 77.00% (total disagreement = 23.00%) for SVM and 75.00% (total disagreement = 25.00%) for ANN using all eight bands of WV-2 (8B). This study concludes that SVM and ANN classification algorithms with WV-2 8B have the potential to classify TTS in the Dukuduku indigenous forest. This study offers relatively accurate information that is important for forest managers to make informed decisions regarding management and conservation protocols of TTS.Keywords: artificial neural network, threatened tree species, indigenous forest, support vector machines
Procedia PDF Downloads 5153334 Recurrent Neural Networks with Deep Hierarchical Mixed Structures for Chinese Document Classification
Authors: Zhaoxin Luo, Michael Zhu
Abstract:
In natural languages, there are always complex semantic hierarchies. Obtaining the feature representation based on these complex semantic hierarchies becomes the key to the success of the model. Several RNN models have recently been proposed to use latent indicators to obtain the hierarchical structure of documents. However, the model that only uses a single-layer latent indicator cannot achieve the true hierarchical structure of the language, especially a complex language like Chinese. In this paper, we propose a deep layered model that stacks arbitrarily many RNN layers equipped with latent indicators. After using EM and training it hierarchically, our model solves the computational problem of stacking RNN layers and makes it possible to stack arbitrarily many RNN layers. Our deep hierarchical model not only achieves comparable results to large pre-trained models on the Chinese short text classification problem but also achieves state of art results on the Chinese long text classification problem.Keywords: nature language processing, recurrent neural network, hierarchical structure, document classification, Chinese
Procedia PDF Downloads 683333 Mitigating the Aggregation of Human Islet Amyloid Polypeptide with Nanomaterials
Authors: Ava Faridi, Pouya Faridi, Aleksandr Kakinen, Ibrahim Javed, Thomas P. Davis, Pu Chun Ke
Abstract:
Human islet amyloid polypeptide (IAPP) is a hormone associated with glycemic control and type 2 diabetes. Biophysically, the chirality of IAPP fibrils has been little explored with respect to the aggregation and toxicity of the peptide. Biochemically, it remains unclear as for how protein expression in pancreatic beta cells may be altered by cell exposure to the peptide, and how such changes may be mitigated by nanoparticle inhibitors for IAPP aggregation. In this study, we first demonstrated the elimination of the IAPP nucleation phase and shortening of its elongation phase by silica nanoribbons. This accelerated IAPP fibrillization translated to reduced toxicity, especially for the right-handed silica nanoribbons, as revealed by cell viability, helium ion microscopy, as well as zebrafish embryo survival, developmental and behavioral assays. We then examined the proteomes of βTC6 pancreatic beta cells exposed to the three main aggregation states of monomeric, oligomeric and amyloid fibrillar IAPP, and compared that with cellular protein expression modulated by graphene quantum dots (GQDs). A total of 29 proteins were significantly regulated by different forms of IAPP, and the majority of these proteins were nucleotide-binding proteins. A regulatory capacity of GQDs against aberrant protein expression was confirmed. These studies have demonstrated the great potential of employing nanomaterials targeting the mesoscopic enantioselectivity and protein expression dysregulation in pancreatic beta cells.Keywords: graphene quantum dots, IAPP, silica nanoribbons, protein expression, toxicity
Procedia PDF Downloads 1423332 Modelling of Silicon Solar Cell with Anti-reflecting Coating
Authors: Ankita Gaur, Mouli Karmakar, Shyam
Abstract:
In this study, a silicon solar cell has been modeled and analyzed to enhance its electrical performance by improving the optical properties using an antireflecting coating (ARC). The dynamic optical reflectance, transmittance along with the net transmissivity absorptivity product of each layer are assessed as per the diurnal variation of the angle of incidence using MATLAB 2019. The model is tested with various Anti-Reflective coatings and the performance has also been compared with uncoated cells. ARC improves the optical transmittance of the photon. Higher transmittance of ⁓96.57% with lowest reflectance of ⁓ 1.74% at 12.00 hours was obtained with MgF₂ coated silicon cells. The electrical efficiency of the configured solar cell was evaluated for a composite climate of New Delhi, India, for all weather conditions. The annual electricity generation for Anti-reflective coated and uncoated crystalline silicon PV Module was observed to be 103.14 KWh and 99.51 KWh, respectively.Keywords: antireflecting coating, electrical efficiency, reflectance, solar cell, transmittance
Procedia PDF Downloads 1533331 Paramecuim as a Model for the Evaluation of Toxicity (Growth, Total Proteins, Respiratory and GSH Bio Marker Changes) Observed after Treatment with Essential Oils Isolated from Artemisia herba-alba Plant of Algeria
Authors: Bouchiha Hanene, Rouabhi Rachid, Bouchama Khaled, Djebar Berrebbah Houraya, Djebar Mohamed Reda
Abstract:
Recently, some natural products such as essentials oils (EOs) have been used in the fields as alternative to synthetic compounds, to minimize the negative impacts to the environment. This fact has led to questions about the possible impact of EOs on ecosystems. Currently in toxicology, the use of alternative models can help to understand the mechanisms of toxic action, at different levels of organization of ecosystems. Algae, protozoa and bacteria form the base of the food chain and protozoan cells are used as bioindicators often of pollution in environment. Unicellular organisms offer the possibility of direct study of independent cells with specific characteristics of individual cells and whole organisms at the same time. This unicellular facilitates the study of physiological processes, and effects of pollutants at the cellular level, which makes it widely used to assess the toxic effects of various xenobiotics. This study aimed to verify the effects of EOs of one famous plant used tremendously in our folk medicine, namely Artemisia herba alba in causing acute toxicity (24 hours) and chronic (15 days) toxicity for model cellular (Paramecium sp). To this end, cellular’s of paramecium were exposed to various concentrations (Three doses were chosen) of EOs extracted from plant (Artemisia herba alba). In the first experiment, the cellular s cultures were exposed for 48 hours to different concentrations to determine the median lethal concentration (DL50). We followed the evolution of physiological parameters (growth), biochemical (total proteins, respiratory metabolism), as well as the variations of a bio marker the GSH. Our results highlighted a light inhibition of the growth of the protozoa as well as a disturbance of the contents of total proteins and a reduction in the reduced rate of glutathione. The polarographic study revealed a stimulation of the consumption of O2 and this at the treated cells.Keywords: essential oils, protozoa, bio indicators, toxicity, Growth, bio marker, proteins, polarographic
Procedia PDF Downloads 3463330 Characterization of High Phosphorus Gray Iron for the Stub- Anode Connection in the Aluminium Reduction Cells
Authors: Mohamed M. Ali, Adel Nofal, Amr Kandil, Mahmoud Agour
Abstract:
High phosphorus gray iron (HPGI) is used to connect the steel stub of an anode rod to a prebaked anode carbon block in the aluminium reduction cells. In this paper, a complete characterization for HPGI was done, includes studying the chemical composition of the HPGI collar, anodic voltage drop, collar temperature over 30 days anode life cycle, microstructure and mechanical properties. During anode life cycle, the carbon content in HPGI was lowed from 3.73 to 3.38%, and different changes in the anodic voltage drop at the stub- collar-anode connection were recorded. The collar temperature increases over the anode life cycle and reaches to 850°C in four weeks after anode changing. Significant changes in the HPGI microstructure were observed after 3 and 30 days from the anode changing. To simulate the actual operating conditions in the steel stub/collar/carbon anode connection, a bench-scale experimental set-up was designed and used for electrical resistance and resistivity respectively. The results showed the current HPGI properties needed to modify or producing new alloys with excellent electrical and mechanical properties. The steel stub and HPGI thermal expansion were measured and studied. Considerable permanent expansion was observed for the HPGI collar after the completion of the heating-cooling cycle.Keywords: high phosphorus gray iron (HPGI), aluminium reduction cells, anodic voltage drop, microstructure, mechanical and electrical properties
Procedia PDF Downloads 4563329 Preparation, Characterization and Ionic Conductivity of (1‒x) (CdI2‒Ag2CrO4)‒(x) Al2O3 Composite Solid Electrolytes
Authors: Rafiuddin
Abstract:
Composite solid electrolyte of the salt and oxide type is an effective approach to improve the ionic conductivity in low and intermediate temperature regions. The conductivity enhancement in the composites occurs via interfaces. Because of their high ionic conduction, composite electrolytes have wide applications in different electrochemical devices such as solid-state batteries, solid oxide fuel cells, and electrochemical cells. In this work, a series of novel (1‒x) (CdI2‒Ag2CrO4)‒xAl2O3 composite solid electrolytes has been synthesized. The prepared materials were characterized by X‒ray diffraction, differential thermal analysis, and AC impedance spectroscopy. The impedance spectra show single semicircle representing the simultaneous contribution of grain and grain boundary. The conductivity increased with the increase of Al2O3 content and shows the maximum conductivity (σ= 0.0012 S cm‒1) for 30% of Al2O3 content at 30 ℃.Keywords: composite solid electrolyte, X-ray diffraction, Impedance spectroscopy, ionic conductivity
Procedia PDF Downloads 4053328 An Original and Suitable Induction Method of Repeated Hypoxic Stress by Hydralazine to Investigate the Integrity of an in Vitro Contact Co-Culture Blood Brain Barrier Model
Authors: Morgane Chatard, Clémentine Puech, Nathalie Perek, Frédéric Roche
Abstract:
Several neurological disorders are linked to repeated hypoxia. The impact of such repeated hypoxic stress, on endothelial cells function of the blood-brain barrier (BBB) is little studied in the literature. Indeed, the study of hypoxic stress in cellular pathways is complex using hypoxia exposure because HIF 1α (factor induced by hypoxia) has a short half life. Our study presents an innovative induction method of repeated hypoxic stress, more reproducible, which allows us to study its impacts on an in vitro contact co-culture BBB model. Repeated hypoxic stress was induced by hydralazine (a mimetic agent of hypoxia pathway) during two hours and repeated during 24 hours. Then, BBB integrity was assessed by permeability measurements (transendothelial electrical resistance and membrane permeability), tight junction protein expressions (cell-ELISA and confocal microscopy) and by studying expression and activity of efflux transporters. First, this study showed that repeated hypoxic stress leads to a BBB’s dysfunction illustrated by a significant increase in permeability. This loss of membrane integrity was linked to a significant decrease of tight junctions’ protein expressions, facilitating a possible transfer of potential cytotoxic compounds in the brain. Secondly, we demonstrated that brain microvascular endothelial cells had set-up defence mechanism. These endothelial cells significantly increased the activity of their efflux transporters which was associated with a significant increase in their expression. In conclusion, repeated hypoxic stress lead to a loss of BBB integrity with a decrease of tight junction proteins. In contrast, endothelial cells increased the expression of their efflux transporters to fight against cytotoxic compounds brain crossing. Unfortunately, enhanced efflux activity could also lead to reducing pharmacological drugs delivering to the brain in such hypoxic conditions.Keywords: BBB model, efflux transporters, repeated hypoxic stress, tigh junction proteins
Procedia PDF Downloads 2923327 The Role of Planning and Memory in the Navigational Ability
Authors: Greeshma Sharma, Sushil Chandra, Vijander Singh, Alok Prakash Mittal
Abstract:
Navigational ability requires spatial representation, planning, and memory. It covers three interdependent domains, i.e. cognitive and perceptual factors, neural information processing, and variability in brain microstructure. Many attempts have been made to see the role of spatial representation in the navigational ability, and the individual differences have been identified in the neural substrate. But, there is also a need to address the influence of planning, memory on navigational ability. The present study aims to evaluate relations of aforementioned factors in the navigational ability. Total 30 participants volunteered in the study of a virtual shopping complex and subsequently were classified into good and bad navigators based on their performances. The result showed that planning ability was the most correlated factor for the navigational ability and also the discriminating factor between the good and bad navigators. There was also found the correlations between spatial memory recall and navigational ability. However, non-verbal episodic memory and spatial memory recall were also found to be correlated with the learning variable. This study attempts to identify differences between people with more and less navigational ability on the basis of planning and memory.Keywords: memory, planning navigational ability, virtual reality
Procedia PDF Downloads 3383326 Artificial Neural Network Based Approach in Prediction of Potential Water Pollution Across Different Land-Use Patterns
Authors: M.Rüştü Karaman, İsmail İşeri, Kadir Saltalı, A.Reşit Brohi, Ayhan Horuz, Mümin Dizman
Abstract:
Considerable relations has recently been given to the environmental hazardous caused by agricultural chemicals such as excess fertilizers. In this study, a neural network approach was investigated in the prediction of potential nitrate pollution across different land-use patterns by using a feedforward multilayered computer model of artificial neural network (ANN) with proper training. Periodical concentrations of some anions, especially nitrate (NO3-), and cations were also detected in drainage waters collected from the drain pipes placed in irrigated tomato field, unirrigated wheat field, fallow and pasture lands. The soil samples were collected from the irrigated tomato field and unirrigated wheat field on a grid system with 20 m x 20 m intervals. Site specific nitrate concentrations in the soil samples were measured for ANN based simulation of nitrate leaching potential from the land profiles. In the application of ANN model, a multi layered feedforward was evaluated, and data sets regarding with training, validation and testing containing the measured soil nitrate values were estimated based on spatial variability. As a result of the testing values, while the optimal structures of 2-15-1 was obtained (R2= 0.96, P < 0.01) for unirrigated field, the optimal structures of 2-10-1 was obtained (R2= 0.96, P < 0.01) for irrigated field. The results showed that the ANN model could be successfully used in prediction of the potential leaching levels of nitrate, based on different land use patterns. However, for the most suitable results, the model should be calibrated by training according to different NN structures depending on site specific soil parameters and varied agricultural managements.Keywords: artificial intelligence, ANN, drainage water, nitrate pollution
Procedia PDF Downloads 3103325 An Intelligent Thermal-Aware Task Scheduler in Multiprocessor System on a Chip
Authors: Sina Saadati
Abstract:
Multiprocessors Systems-On-Chips (MPSOCs) are used widely on modern computers to execute sophisticated software and applications. These systems include different processors for distinct aims. Most of the proposed task schedulers attempt to improve energy consumption. In some schedulers, the processor's temperature is considered to increase the system's reliability and performance. In this research, we have proposed a new method for thermal-aware task scheduling which is based on an artificial neural network (ANN). This method enables us to consider a variety of factors in the scheduling process. Some factors like ambient temperature, season (which is important for some embedded systems), speed of the processor, computing type of tasks and have a complex relationship with the final temperature of the system. This Issue can be solved using a machine learning algorithm. Another point is that our solution makes the system intelligent So that It can be adaptive. We have also shown that the computational complexity of the proposed method is cheap. As a consequence, It is also suitable for battery-powered systems.Keywords: task scheduling, MOSOC, artificial neural network, machine learning, architecture of computers, artificial intelligence
Procedia PDF Downloads 1033324 Neural Network Approach for Solving Integral Equations
Authors: Bhavini Pandya
Abstract:
This paper considers Hη: T2 → T2 the Perturbed Cerbelli-Giona map. That is a family of 2-dimensional nonlinear area-preserving transformations on the torus T2=[0,1]×[0,1]= ℝ2/ ℤ2. A single parameter η varies between 0 and 1, taking the transformation from a hyperbolic toral automorphism to the “Cerbelli-Giona” map, a system known to exhibit multifractal properties. Here we study the multifractal properties of the family of maps. We apply a box-counting method by defining a grid of boxes Bi(δ), where i is the index and δ is the size of the boxes, to quantify the distribution of stable and unstable manifolds of the map. When the parameter is in the range 0.51< η <0.58 and 0.68< η <1 the map is ergodic; i.e., the unstable and stable manifolds eventually cover the whole torus, although not in a uniform distribution. For accurate numerical results we require correspondingly accurate construction of the stable and unstable manifolds. Here we use the piecewise linearity of the map to achieve this, by computing the endpoints of line segments which define the global stable and unstable manifolds. This allows the generalized fractal dimension Dq, and spectrum of dimensions f(α), to be computed with accuracy. Finally, the intersection of the unstable and stable manifold of the map will be investigated, and compared with the distribution of periodic points of the system.Keywords: feed forward, gradient descent, neural network, integral equation
Procedia PDF Downloads 1893323 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network
Authors: P. Karthick, K. Mahesh
Abstract:
Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system
Procedia PDF Downloads 1873322 Polypeptide Modified Carbon Nanotubes – Mediated GFP Gene Transfection for H1299 Cells and Toxicity Assessment
Authors: Pei-Ying Lo, Jing-Hao Ciou, Kai-Cheng Yang, Jia-Huei Zheng, Shih-Hsiang Huang, Kuen-Chan Lee, Er-Chieh Cho
Abstract:
As-produced CNTs are insoluble in all organic solvents and aqueous solutions have imposed limitations to the use of CNTs. Therefore, how to debundle carbon nanotubes and to modify them for further uses is an important issue. There are several methods for the dispersion of CNTs in water using covalent attachment of hydrophilic groups to the surface of tubes. These methods, however, alter the electronic structure of the nanotubes by disrupting the network of sp2 hybridized carbons. In order to keep the nanotubes’ intrinsic mechanical and electrical properties intact, non-covalent interactions are increasingly being explored as an alternative route for dispersion. Apart from conventional surfactants such as sodium dodecylsulfate (SDS) or sodium dodecylbenzenesulfonate (SDBS) which are highly effective in dispersing CNTs, biopolymers have received much attention as dispersing agents due to the anticipated biocompatibility of the dispersed CNTs. Also, The pyrenyl group is known to interact strongly with the basal plane of graphene via π-stacking. In this study, a highly re-dispersible biopolymer is reported for the synthesis of pyrene-modified poly-L-lysine (PBPL) and poly(D-Glu, D-Lys) (PGLP). To provide the evidence of the safety of the PBPL/CNT & PGLP/CNT materials we use in this study, H1299 and HCT116 cells were incubated with PBPL/CNT & PGLP/CNT materials for toxicity analysis, MTS assays. The results from MTS assays indicated that no significant cellular toxicity was shown in H1299 and HCT116 cells. Furthermore, the fluorescence marker fluorescein isothiocyanate (FITC) was added to PBPL & PGLP dispersions. From the fluorescent measurements showed that the chemical functionalisation of the PBPL/CNT & PGLP/CNT conjugates with the fluorescence marker were successful. The fluorescent PBPL/CNT & PGLP/CNT conjugates could find application in medical imaging. In the next step, the GFP gene is immobilized onto PBPL/CNT conjugates by introducing electrostatic interaction. GFP-transfected cells that emitted fluorescence were imaged and counted under a fluorescence microscope. Due to the unique biocompatibility of PBPL modified CNTs, the GFP gene could be transported into H1299 cells without using antibodies. The applicability of such soluble and chemically functionalised polypeptide/CNT conjugates in biomedicine is currently investigated. We expect that this polypeptide/CNT system will be a safe and multi-functional nanomedical delivery platform and contribute to future medical therapy.Keywords: carbon nanotube, nanotoxicology, GFP transfection, polypeptide/CNT hybrids
Procedia PDF Downloads 3393321 One-Pot Facile Synthesis of N-Doped Graphene Synthesized from Paraphenylenediamine as Metal-Free Catalysts for the Oxygen Reduction Used for Alkaline Fuel Cells
Authors: Leila Samiee, Amir Yadegari, Saeedeh Tasharrofi
Abstract:
In the work presented here, nitrogen-doped graphene materials were synthesized and used as metal-free electrocatalysts for oxygen reduction reaction (ORR) under alkaline conditions. Paraphenylenediamine was used as N precursor. The N-doped graphene was synthesized under hydrothermal treatment at 200°C. All the materials have been characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and X-ray photo-electron spectroscopy (XPS). Moreover, for electrochemical evaluation of samples, Rotating Disk electrode (RDE) and Cyclic Voltammetry techniques (CV) were employed. The resulting material exhibits an outstanding catalytic activity for the oxygen reduction reaction (ORR) as well as excellent resistance towards methanol crossover effects, indicating their promising potential as ORR electrocatalysts for alkaline fuel cells.Keywords: alkaline fuel cell, graphene, metal-free catalyst, paraphenylen diamine
Procedia PDF Downloads 4793320 The Convolution Recurrent Network of Using Residual LSTM to Process the Output of the Downsampling for Monaural Speech Enhancement
Authors: Shibo Wei, Ting Jiang
Abstract:
Convolutional-recurrent neural networks (CRN) have achieved much success recently in the speech enhancement field. The common processing method is to use the convolution layer to compress the feature space by multiple upsampling and then model the compressed features with the LSTM layer. At last, the enhanced speech is obtained by deconvolution operation to integrate the global information of the speech sequence. However, the feature space compression process may cause the loss of information, so we propose to model the upsampling result of each step with the residual LSTM layer, then join it with the output of the deconvolution layer and input them to the next deconvolution layer, by this way, we want to integrate the global information of speech sequence better. The experimental results show the network model (RES-CRN) we introduce can achieve better performance than LSTM without residual and overlaying LSTM simply in the original CRN in terms of scale-invariant signal-to-distortion ratio (SI-SNR), speech quality (PESQ), and intelligibility (STOI).Keywords: convolutional-recurrent neural networks, speech enhancement, residual LSTM, SI-SNR
Procedia PDF Downloads 2003319 An Investigation of Peptide Functionalized Gold Nanoparticles On Colon Cancer Cells For Biomedical Application
Authors: Rolivhuwa Bishop Ramagoma1*, Lynn Cairncross1, , Saartjie Roux1
Abstract:
According to the world health organisation, colon cancer is among the most common cancers diagnosed in both men and women. Specifically, it is the second leading cause of cancer related deaths accounting for over 860 000 deaths worldwide in 2018. Currently, chemotherapy has become an essential component of most cancer treatments. Despite progress in cancer drug development over the previous years, traditional chemotherapeutic drugs still have low selectivity for targeting tumour tissues and are frequently constrained by dose-limiting toxicity. The creation of nanoscale delivery vehicles capable of directly directing treatment into cancer cells has recently caught the interest of researchers. Herein, the development of peptide-functionalized polyethylene glycol gold nanoparticles (Peptide-PEG-AuNPs) as a cellular probe and delivery agent is described, with the higher aim to develop a specific diagnostic prototype and assess their specificity not only against cell lines but primary human cells as well. Gold nanoparticles (AuNPs) were synthesized and stabilized through chemical conjugation. The synthesized AuNPs were characterized, stability in physiological solutions was assessed, their cytotoxicity against colon carcinoma and non-carcinoma skin fibroblasts was also studied. Furthermore, genetic effect through real-time polymerase chain reaction (RT-PCR), localization and uptake, peptide specificity were also determined. In this study, different peptide-AuNPs were found to have preferential toxicity at higher concentrations, as revealed by cell viability assays, however, all AuNPs presented immaculate stability for over 3 months following the method of synthesis. The final obtained peptide-PEG-AuNP conjugates showed good biocompatibility in the presence of high ionic solutions and biological media and good cellular uptake. Formulation of colon cancer specific targeting peptide was successful, additionally, the genes/pathways affected by the treatments were determined through RT-PCR. Primary cells study is still on going with promising results thus far.Keywords: nanotechnology, cancer, diagnosis, therapeutics, gold nanoparticles.
Procedia PDF Downloads 943318 Ground Surface Temperature History Prediction Using Long-Short Term Memory Neural Network Architecture
Authors: Venkat S. Somayajula
Abstract:
Ground surface temperature history prediction model plays a vital role in determining standards for international nuclear waste management. International standards for borehole based nuclear waste disposal require paleoclimate cycle predictions on scale of a million forward years for the place of waste disposal. This research focuses on developing a paleoclimate cycle prediction model using Bayesian long-short term memory (LSTM) neural architecture operated on accumulated borehole temperature history data. Bayesian models have been previously used for paleoclimate cycle prediction based on Monte-Carlo weight method, but due to limitations pertaining model coupling with certain other prediction networks, Bayesian models in past couldn’t accommodate prediction cycle’s over 1000 years. LSTM has provided frontier to couple developed models with other prediction networks with ease. Paleoclimate cycle developed using this process will be trained on existing borehole data and then will be coupled to surface temperature history prediction networks which give endpoints for backpropagation of LSTM network and optimize the cycle of prediction for larger prediction time scales. Trained LSTM will be tested on past data for validation and then propagated for forward prediction of temperatures at borehole locations. This research will be beneficial for study pertaining to nuclear waste management, anthropological cycle predictions and geophysical featuresKeywords: Bayesian long-short term memory neural network, borehole temperature, ground surface temperature history, paleoclimate cycle
Procedia PDF Downloads 1283317 DPAGT1 Inhibitors: Discovery of Anti-Metastatic Drugs
Authors: Michio Kurosu
Abstract:
Alterations in glycosylation not only directly impact cell growth and survival but also facilitate tumor-induced immunomodulation and eventual metastasis. Identification of cell type-specific glycoconjugates (tumor markers) has led to the discovery of new assay systems for certain cancers via immunodetection reagents. N- and O-linked glycans are the most abundant forms of glycoproteins. Recent studies of cancer immunotherapy are based on the immunogenicity of truncated O-glycan chains (e.g., Tn, sTn, T, and sLea/x). The prevalence of N-linked glycan changes in the development of tumor cells is known; however, therapeutic antibodies against N-glycans have not yet been developed. This is due to the lack of specificity of N-linked glycans between normal/healthy and cancer cells. Abnormal branching of N-linked glycans has been observed, particularly in solid cancer cells. While the discovery of drug-like glycosyltransferase inhibitors that block the biosynthesis of specific branching has a very low likelihood of success, altered glycosylation levels can be exploited by suppressing N-glycan biosynthesis through the inhibition of dolichyl-phosphate N-acetylglucosaminephosphotransferase1 (DPAGT1) activity. Inhibition of DPAGT1 function leads to changes of O-glycosylation on proteins associated with mitochondria and zinc finger binding proteins (indirect effects). On the basis of dynamic crosstalk between DPAGT1 and Snail/Slung/ZEB1 (a family of transcription factors that promote the repression of the adhesion molecules), we have developed pharmacologically acceptable selective DPAGT1 inhibitors. Tunicamycin kills a wide range of cancer and healthy cells in a non-selective manner. In sharp contrast, our DPAGT1 inhibitors display strong cytostatic effects against 16 solid cancers, which require the overexpression of DPAGT1 in their progression but do not affect the cell viability of healthy cells. The identified DPAGT1 inhibitors possess impressive anti-metastatic ability in various solid cancer cell lines and induce their mitochondrial structural changes, resulting in apoptosis. A prototype DPAGT1 inhibitor, APPB has already been proven to shrink solid tumors (e.g., pancreatic cancers, triple-negative breast cancers) in vivo while suppressing metastases and has strong synergistic effects when combined with current cytotoxic drugs (e.g., paclitaxel). At this conference, our discovery of selective DPAGT1 inhibitors with drug-like properties and proof-of-pharmaceutical concept studies of a novel DPAGT1 inhibitor are presented.Keywords: DPAGT1 inhibitors, anti-metastatic drugs, natural product based drug designs, cytostatic effects
Procedia PDF Downloads 763316 Screening of the Genes FOLH1 and MTHFR among the Mothers of Congenital Neural Tube Defected Babies in West Bengal, India
Authors: Silpita Paul, Susanta Sadhukhan, Biswanath Maity, Madhusudan Das
Abstract:
Neural tube defects (NTDs) are one of the most common forms of birth defect and affect ~300,000 new born worldwide each year. The prevalence is higher in Northern India (11 per 1000 birth) compare to southern India (5 per 1000 birth). NTDs are one of the common birth defects related with low blood folate and Hcy concentration. Though the mechanism is still unknown, but it is now established that, NTDs in human are polygenic in nature and follow the heterogeneous trait. In spite of its heterogeneity, polymorphism in few genes affects significantly the trait of NTDs. Polymorphisms in the genes FOLH1 and MTHFR plays important role in NTDs. In this study, the polymorphisms of these genes were screened by bi-directional sequencing from 30 mothers with NTD babies as case. The result revealed that 26.67% patients had bi-allelic FOLH1 polymorphism. The polymorphism has been identified as p.Y60H and frequent to cause NTDs. The study of MTHFR gene showed 2 different SNPs rs1801131 (at exon 4) and rs1801131 (at exon 7). The study showed 6.67% patients of both mono- and bi-allelic MTHFR-rs1801131 polymorphism and 6.67% patients of bi-allelic MTHFR-rs1801131 polymorphism. These polymorphisms has been responsible for p.A222V and p.E429A change respectively and frequently involved in NTD formation. Those polymorphisms affect mainly the absorption of dietary folate from intestine and the formation of 5-methylenetetrahydrofolate (5 MTHF) from 5,10-methylenetetrahydrofolate (5,10- MTHF), which is the functional folate form in our system. Though the study is not complete yet, but these polymorphisms play crucial roles in the formation of NTDs in other world population. Based on the result till date, it can be concluded that they also play significant role in our population too as in control samples we have not found any changes.Keywords: neural tube defects, polymorphism, FOLH1, MTHFR
Procedia PDF Downloads 3033315 Effect of Non-Regulated pH on the Dynamics of Dark Fermentative Biohydrogen Production with Suspended and Immobilized Cell Culture
Authors: Joelle Penniston, E. B. Gueguim-Kana
Abstract:
Biohydrogen has been identified as a promising alternative to the use of non-renewable fossil reserves, owing to its sustainability and non-polluting nature. pH is considered as a key parameter in fermentative biohydrogen production processes, due to its effect on the hydrogenase activity, metabolic activity as well as substrate hydrolysis. The present study assesses the influence of regulating pH on dark fermentative biohydrogen production. Four experimental hydrogen production schemes were evaluated. Two were implemented using suspended cells under regulated pH growth conditions (Sus_R) and suspended and non-regulated pH (Sus_N). The two others regimes consisted of alginate immobilized cells under pH regulated growth conditions (Imm_R) and immobilized and non-pH regulated conditions (Imm_N). All experiments were carried out at 37.5°C with glucose as sole source of carbon. Sus_R showed a lag time of 5 hours and a peak hydrogen fraction of 36% and a glucose degradation of 37%, compared to Sus_N which showed a peak hydrogen fraction of 44% and complete glucose degradation. Both suspended culture systems showed a higher peak biohydrogen fraction compared to the immobilized cell system. Imm_R experiments showed a lag phase of 8 hours, a peak biohydrogen fraction of 35%, while Imm_N showed a lag phase of 5 hours, a peak biohydrogen fraction of 22%. 100% glucose degradation was observed in both pH regulated and non-regulated processes. This study showed that biohydrogen production in batch mode with suspended cells in a non-regulated pH environment results in a partial degradation of substrate, with lower yield. This scheme has been the culture mode of choice for most reported studies in biohydrogen research. The relatively lower slope in pH trend of the non-regulated pH experiment with immobilized cells (Imm_N) compared to Sus_N revealed that that immobilized systems have a better buffering capacity compared to suspended systems, which allows for the extended production of biohydrogen even under non-regulated pH conditions. However, alginate immobilized cultures in flask systems showed some drawbacks associated to high rate of gas production that leads to increased buoyancy of the immobilization beads. This ultimately impedes the release of gas out of the flask.Keywords: biohydrogen, sustainability, suspended, immobilized
Procedia PDF Downloads 3423314 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1263313 Comparing Pathogen Inhibition Effect of Different Preparations of Probiotic L. reuteri Strains
Authors: Tejinder Pal Singh, Ravinder Kumar Malik, Gurpreet Kaur
Abstract:
Adhesion is key factor for colonization of the gastrointestinal tract and the ability of probiotic strains to inhibit pathogens. Therefore, the adhesion ability is considered as a suitable biomarker for the selection of potential probiotic. In the present study, eight probiotic Lactobacillus reuteri strains were evaluated as viable, LiCl treated or heat-killed forms and compared with probiotic reference strains (L. reuteri ATCC55730). All strains investigated were able to adhere to Caco-2 cells. All probiotic L. reuteri strains tested were able to inhibit and displace (P < 0.05) the adhesion of Escherichia coli ATCC25922, Salmonella typhi NCDC113, Listeria monocytogenes ATCC53135 and Enterococcus faecalis NCDC115. The probiotic strain L. reuteri LR6 showed the strongest adhesion and pathogen inhibition ability among the eight L. reuteri strains tested. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting the involvement of various mechanisms. The adhesion and antagonistic potential of the probiotic strains were significantly decreased upon exposure to 5M LiCl, showing that surface molecules, proteinaceous in nature, are involved. The heat-killed forms of the probiotic L. reuteri strains also inhibited the attachment of selected pathogens to Caco-2 cells. In conclusion, in vitro assays showed that L. reuteri strains, as viable or heat-killed forms, are adherent to Caco-2 cell line model and are highly antagonistic to selected pathogens in which surface molecules, proteinaceous molecules in particular, plays an important role.Keywords: probiotics, Lactobacillus reuteri, adhesion, Caco-2 cells
Procedia PDF Downloads 2513312 Applying Renowned Energy Simulation Engines to Neural Control System of Double Skin Façade
Authors: Zdravko Eškinja, Lovre Miljanić, Ognjen Kuljača
Abstract:
This paper is an overview of simulation tools used to model specific thermal dynamics that occurs while controlling double skin façade. Research has been conducted on simplified construction with single zone where one side is glazed. Heat flow and temperature responses are simulated in three different simulation tools: IDA-ICE, EnergyPlus and HAMBASE. The excitation of observed system, used in all simulations, was a temperature step of exterior environment. Air infiltration, insulation and other disturbances are excluded from this research. Although such isolated behaviour is not possible in reality, experiments are carried out to gain novel information about heat flow transients which are not observable under regular conditions. Results revealed new possibilities for adapting the parameters of the neural network regulator. Along numerical simulations, the same set-up has been also tested in a real-time experiment with a 1:18 scaled model and thermal chamber. The comparison analysis brings out interesting conclusion about simulation accuracy in this particular case.Keywords: double skin façade, experimental tests, heat control, heat flow, simulated tests, simulation tools
Procedia PDF Downloads 2313311 Effect of Monotonically Decreasing Parameters on Margin Softmax for Deep Face Recognition
Authors: Umair Rashid
Abstract:
Normally softmax loss is used as the supervision signal in face recognition (FR) system, and it boosts the separability of features. In the last two years, a number of techniques have been proposed by reformulating the original softmax loss to enhance the discriminating power of Deep Convolutional Neural Networks (DCNNs) for FR system. To learn angularly discriminative features Cosine-Margin based softmax has been adjusted as monotonically decreasing angular function, that is the main challenge for angular based softmax. On that issue, we propose monotonically decreasing element for Cosine-Margin based softmax and also, we discussed the effect of different monotonically decreasing parameters on angular Margin softmax for FR system. We train the model on publicly available dataset CASIA- WebFace via our proposed monotonically decreasing parameters for cosine function and the tests on YouTube Faces (YTF, Labeled Face in the Wild (LFW), VGGFace1 and VGGFace2 attain the state-of-the-art performance.Keywords: deep convolutional neural networks, cosine margin face recognition, softmax loss, monotonically decreasing parameter
Procedia PDF Downloads 1013310 Mitochondrial Apolipoprotein A-1 Binding Protein Promotes Repolarization of Inflammatory Macrophage by Repairing Mitochondrial Respiration
Authors: Hainan Chen, Jina Qing, Xiao Zhu, Ling Gao, Ampadu O. Jackson, Min Zhang, Kai Yin
Abstract:
Objective: Editing macrophage activation to dampen inflammatory diseases by promoting the repolarization of inflammatory (M1) macrophages to anti-inflammatory (M2) macrophages is highly associated with mitochondrial respiration. Recent studies have suggested that mitochondrial apolipoprotein A-1 binding protein (APOA1BP) was essential for the cellular metabolite NADHX repair to NADH, which is necessary for the mitochondrial function. The exact role of APOA1BP in the repolarization of M1 to M2, however, is uncertain. Material and method: THP-1-derived macrophages were incubated with LPS (10 ng/ml) or/and IL-4 (100 U/ml) for 24 hours. Biochemical parameters of oxidative phosphorylation and M1/M2 markers were analyzed after overexpression of APOA1BP in cells. Results: Compared with control and IL-4-exposed M2 cells, APOA1BP was downregulated in M1 macrophages. APOA1BP restored the decline in mitochondrial function to improve metabolic and phenotypic reprogramming of M1 to M2 macrophages. Blocking oxidative phosphorylation by oligomycin blunts the effects of APOA1BP on M1 to M2 repolarization. Mechanistically, LPS triggered the hydration of NADH and increased its hydrate NADHX which inhibit cellular NADH dehydrogenases, a key component of electron transport chain for oxidative phosphorylation. APOA1BP decreased the level of NADHX via converting R-NADHX to biologically useful S-NADHX. The mutant of APOA1BP aspartate188, the binding site of NADHX, fail to repair oxidative phosphorylation, thereby preventing repolarization. Conclusions: Restoring mitochondrial function by increasing mitochondrial APOA1BP might be useful to improve the reprogramming of inflammatory macrophages into anti-inflammatory cells to control inflammatory diseases.Keywords: inflammatory diseases, macrophage repolarization, mitochondrial respiration, apolipoprotein A-1 binding protein, NADHX, NADH
Procedia PDF Downloads 1723309 Vibration and Freeze-Thaw Cycling Tests on Fuel Cells for Automotive Applications
Authors: Gema M. Rodado, Jose M. Olavarrieta
Abstract:
Hydrogen fuel cell technologies have experienced a great boost in the last decades, significantly increasing the production of these devices for both stationary and portable (mainly automotive) applications; these are influenced by two main factors: environmental pollution and energy shortage. A fuel cell is an electrochemical device that converts chemical energy directly into electricity by using hydrogen and oxygen gases as reactive components and obtaining water and heat as byproducts of the chemical reaction. Fuel cells, specifically those of Proton Exchange Membrane (PEM) technology, are considered an alternative to internal combustion engines, mainly because of the low emissions they produce (almost zero), high efficiency and low operating temperatures (< 373 K). The introduction and use of fuel cells in the automotive market requires the development of standardized and validated procedures to test and evaluate their performance in different environmental conditions including vibrations and freeze-thaw cycles. These situations of vibration and extremely low/high temperatures can affect the physical integrity or even the excellent operation or performance of the fuel cell stack placed in a vehicle in circulation or in different climatic conditions. The main objective of this work is the development and validation of vibration and freeze-thaw cycling test procedures for fuel cell stacks that can be used in a vehicle in order to consolidate their safety, performance, and durability. In this context, different experimental tests were carried out at the facilities of the National Hydrogen Centre (CNH2). The experimental equipment used was: A vibration platform (shaker) for vibration test analysis on fuel cells in three axes directions with different vibration profiles. A walk-in climatic chamber to test the starting, operating, and stopping behavior of fuel cells under defined extreme conditions. A test station designed and developed by the CNH2 to test and characterize PEM fuel cell stacks up to 10 kWe. A 5 kWe PEM fuel cell stack in off-operation mode was used to carry out two independent experimental procedures. On the one hand, the fuel cell was subjected to a sinusoidal vibration test on the shaker in the three axes directions. It was defined by acceleration and amplitudes in the frequency range of 7 to 200 Hz for a total of three hours in each direction. On the other hand, the climatic chamber was used to simulate freeze-thaw cycles by defining a temperature range between +313 K and -243 K with an average relative humidity of 50% and a recommended ramp up and rump down of 1 K/min. The polarization curve and gas leakage rate were determined before and after the vibration and freeze-thaw tests at the fuel cell stack test station to evaluate the robustness of the stack. The results were very similar, which indicates that the tests did not affect the fuel cell stack structure and performance. The proposed procedures were verified and can be used as an initial point to perform other tests with different fuel cells.Keywords: climatic chamber, freeze-thaw cycles, PEM fuel cell, shaker, vibration tests
Procedia PDF Downloads 1173308 Spatiotemporal Neural Network for Video-Based Pose Estimation
Authors: Bin Ji, Kai Xu, Shunyu Yao, Jingjing Liu, Ye Pan
Abstract:
Human pose estimation is a popular research area in computer vision for its important application in human-machine interface. In recent years, 2D human pose estimation based on convolution neural network has got great progress and development. However, in more and more practical applications, people often need to deal with tasks based on video. It’s not far-fetched for us to consider how to combine the spatial and temporal information together to achieve a balance between computing cost and accuracy. To address this issue, this study proposes a new spatiotemporal model, namely Spatiotemporal Net (STNet) to combine both temporal and spatial information more rationally. As a result, the predicted keypoints heatmap is potentially more accurate and spatially more precise. Under the condition of ensuring the recognition accuracy, the algorithm deal with spatiotemporal series in a decoupled way, which greatly reduces the computation of the model, thus reducing the resource consumption. This study demonstrate the effectiveness of our network over the Penn Action Dataset, and the results indicate superior performance of our network over the existing methods.Keywords: convolutional long short-term memory, deep learning, human pose estimation, spatiotemporal series
Procedia PDF Downloads 1483307 Cellular Technologies in Urology
Authors: R. Zhankina, U. Zhanbyrbekuly, A. Tamadon, M. Askarov, R. Sherkhanov, D. Akhmetov, D. Saipiyeva, N. Keulimzhaev
Abstract:
Male infertility affects about 15% of couples of reproductive age. Approximately 10–15% have azoospermia who have previously been diagnosed with male infertility. Azoospermia is regarded as the absence of spermatozoa in the ejaculate and is found in 10-15% of infertile men. Non-obstructive azoospermia is considered a cause of male infertility that is not amenable to drug therapy. Patients with non-obstructive azoospermia are unable to have their "own" children and have only options for adoption or use of donor sperm. Advances in assisted reproductive technologies such as intracytoplasmic sperm injection in vitro fertilization have significantly changed the management of patients with non-obstructive azoospermia. Advances in biotechnology have increased the options for treating patients with non-obstructive azoospermia. Mesenchymal stem cell therapy has been recognized as a new option for infertility treatment. Material and methods of the study: After obtaining informed consent, 5 patients diagnosed with non-obstructive azoospermia were included in an open, non-randomized study. The age of the patients ranged from 24 to 35 years. The examination was carried out before the start of treatment, which included biochemical blood tests, hormonal profile levels (luteinizing hormone, follicle-stimulating hormone, testosterone, prolactin, inhibin B); tests for tumor markers; genetic research. All studies were carried out in compliance with the requirements of Protocol No. 8 dated 06/09/20, approved by the Local Ethical Commission of NJSC "Astana Medical University". The control examination of patients was carried out after 6 months, by re-taking the program and hormonal profile (testosterone, luteinizing hormone, follicle-stimulating hormone, prolactin, inhibin B). Before micro-TESE of the testis, all 5 patients underwent myeloexfusion in the operating room. During the micro-TESE, autotransplantation of mesenchymal stem cells into the testicular network, previously cultured in a cell technology laboratory for 2 weeks, was performed. Results of the study: in all patients, the levels of total testosterone increased, the level of follicle-stimulating hormone decreased, the levels of luteinizing hormone returned to normal, the level of inhibin B increased. IVF with a positive result; another patient (20%) had spermatogenesis cells. Non-obstructive azoospermia and mesenchymal stem cells Conclusions: The positive results of this work serve as the basis for the application of a new cellular therapeutic approach for the treatment of non-obstructive azoospermia using mesenchymal stem cells.Keywords: cell therapy, regenerative medicine, male infertility, mesenchymal stem cells
Procedia PDF Downloads 114