Search results for: corporate credit rating prediction
2371 FT-NIR Method to Determine Moisture in Gluten Free Rice-Based Pasta during Drying
Authors: Navneet Singh Deora, Aastha Deswal, H. N. Mishra
Abstract:
Pasta is one of the most widely consumed food products around the world. Rapid determination of the moisture content in pasta will assist food processors to provide online quality control of pasta during large scale production. Rapid Fourier transform near-infrared method (FT-NIR) was developed for determining moisture content in pasta. A calibration set of 150 samples, a validation set of 30 samples and a prediction set of 25 samples of pasta were used. The diffuse reflection spectra of different types of pastas were measured by FT-NIR analyzer in the 4,000-12,000 cm-1 spectral range. Calibration and validation sets were designed for the conception and evaluation of the method adequacy in the range of moisture content 10 to 15 percent (w.b) of the pasta. The prediction models based on partial least squares (PLS) regression, were developed in the near-infrared. Conventional criteria such as the R2, the root mean square errors of cross validation (RMSECV), root mean square errors of estimation (RMSEE) as well as the number of PLS factors were considered for the selection of three pre-processing (vector normalization, minimum-maximum normalization and multiplicative scatter correction) methods. Spectra of pasta sample were treated with different mathematic pre-treatments before being used to build models between the spectral information and moisture content. The moisture content in pasta predicted by FT-NIR methods had very good correlation with their values determined via traditional methods (R2 = 0.983), which clearly indicated that FT-NIR methods could be used as an effective tool for rapid determination of moisture content in pasta. The best calibration model was developed with min-max normalization (MMN) spectral pre-processing (R2 = 0.9775). The MMN pre-processing method was found most suitable and the maximum coefficient of determination (R2) value of 0.9875 was obtained for the calibration model developed.Keywords: FT-NIR, pasta, moisture determination, food engineering
Procedia PDF Downloads 2582370 Protecting the Cloud Computing Data Through the Data Backups
Authors: Abdullah Alsaeed
Abstract:
Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.
Procedia PDF Downloads 872369 Predicting Growth of Eucalyptus Marginata in a Mediterranean Climate Using an Individual-Based Modelling Approach
Authors: S.K. Bhandari, E. Veneklaas, L. McCaw, R. Mazanec, K. Whitford, M. Renton
Abstract:
Eucalyptus marginata, E. diversicolor and Corymbia calophylla form widespread forests in south-west Western Australia (SWWA). These forests have economic and ecological importance, and therefore, tree growth and sustainable management are of high priority. This paper aimed to analyse and model the growth of these species at both stand and individual levels, but this presentation will focus on predicting the growth of E. Marginata at the individual tree level. More specifically, the study wanted to investigate how well individual E. marginata tree growth could be predicted by considering the diameter and height of the tree at the start of the growth period, and whether this prediction could be improved by also accounting for the competition from neighbouring trees in different ways. The study also wanted to investigate how many neighbouring trees or what neighbourhood distance needed to be considered when accounting for competition. To achieve this aim, the Pearson correlation coefficient was examined among competition indices (CIs), between CIs and dbh growth, and selected the competition index that can best predict the diameter growth of individual trees of E. marginata forest managed under different thinning regimes at Inglehope in SWWA. Furthermore, individual tree growth models were developed using simple linear regression, multiple linear regression, and linear mixed effect modelling approaches. Individual tree growth models were developed for thinned and unthinned stand separately. The developed models were validated using two approaches. In the first approach, models were validated using a subset of data that was not used in model fitting. In the second approach, the model of the one growth period was validated with the data of another growth period. Tree size (diameter and height) was a significant predictor of growth. This prediction was improved when the competition was included in the model. The fit statistic (coefficient of determination) of the model ranged from 0.31 to 0.68. The model with spatial competition indices validated as being more accurate than with non-spatial indices. The model prediction can be optimized if 10 to 15 competitors (by number) or competitors within ~10 m (by distance) from the base of the subject tree are included in the model, which can reduce the time and cost of collecting the information about the competitors. As competition from neighbours was a significant predictor with a negative effect on growth, it is recommended including neighbourhood competition when predicting growth and considering thinning treatments to minimize the effect of competition on growth. These model approaches are likely to be useful tools for the conservations and sustainable management of forests of E. marginata in SWWA. As a next step in optimizing the number and distance of competitors, further studies in larger size plots and with a larger number of plots than those used in the present study are recommended.Keywords: competition, growth, model, thinning
Procedia PDF Downloads 1282368 Prospects and Challenges of Sports Culture in India: A Case Study of Gujarat
Authors: Jay Raval
Abstract:
Sports and physical fitness have been a vital component of our civilization. It is such a power which, motivates and inspires every individual, communities and even countries to be aware of the physical and mental health. All though, sports play vital role in the overall development of the nation, but in the developing countries such as India, this culture of sports is yet to be motivated. However, in India lack of sporting culture has held back the growth of a similar industry in the past, despite the growing awareness and interest in various different sports besides cricket. Hence, due to a lack of sporting culture, corporate investments in India’s sports have traditionally been limited to only non-profit corporate social responsibility activities and initiatives. From past couple of years, India has come up with new initiatives such as Indian Premier League (Cricket), Hockey India League, Indian Badminton League, Pro Kabaddi League, and Indian Super League (Football) which help to boost Indian sports culture and thereby increase economy of the country. Out of 29 states of India, among all of those competitive states, Gujarat is showing very rapid increase in sports participation. Khel Mahakumbh, the competition conducted for the last six years has been a giant step in this direction and covers rural and urban areas of Gujarat. The objective of the research is to address the overall development of the sports system. Sports system includes infrastructure, coaches, resources, and participants. The current existing system is not disabled friendly. This research paper highlights adequate steps in order to improve and sort out pressing issues in the sports system. Education system is highly academic-centric with a definite trend towards reducing school sports and extra-curricular sports in the Gujarat state. Constituents of this research work make an attempt to evaluate the framework of the Olympic Charter, the Sports Authority of India, the Indian Olympics Association and the National Sports Federations. It explores the areas that need to be revamped, rejuvenated and reoriented to function in an open, democratic, equitable, transparent and accountable manner. Research is based on mixed method approach. It is used for the data collection which includes the personal interviews, document analysis and the use of news article. Quality assurance is also tested by conducting the trustworthiness of the paper. Mixed method helps to strengthen the analysis part and give strong base for the discussion during the analysis.Keywords: physical development, sports authority of India, sports policy, women empowerment
Procedia PDF Downloads 1422367 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 3512366 Capital Market Reaction to Governance and Disclosure Violations: Evidence from the Saudi Arabian Capital Market
Authors: Nasser Alsadoun
Abstract:
Today's companies in Saudi Arabian capital market must comply with strict criteria and adhere to rigid corporate governance rules and continuous disclosure requirements. Unlike other regulators in the region, decision makers of the Capital Market Authority (hereafter CMA) of Saudi Arabia believes that the announcements of economic sanctions and penalties for non-compliance firms will foster more effective regulatory compliance and hence improve the quality of financial reporting. An implied argument put forward by the opponents, however, states that such penalties are unnecessary and stated to be onerous for non-compliance firms. Over that last years, the CMA has publicly announced several economic fines levied on some listed companies for their failing to comply with corporate governance and continuous disclosure regulation clauses, with the amount of fine levied ranges between 50,000 SR to 100,000 SR for each failing. Economic theory suggests that rational investors make decisions based on a cost-benefit principal. The regulatory intervention made by CMA on the announcement of economic sanctions has been costly to the society (economy) hoping that it improves the transparency of financial statements. It is argued, therefore, that threat of regulators and economic sanctions will provide incentives for firms’ managers to report more relevant and reliable accounting information, and the benefit of such announcements is likely to be reflected in the context of the quality of the financial reports. Yet, the economic consequences of the revealed fines announcement for non-compliance firms in Saudi Arabian market have not been examined. Thus, this study attempts to empirically examine whether market participants are pricing the supposed benefits of rigid governance and disclosure rules in the Saudi market. The study employs an event study methodology to assess the impact of CMA economic sanctions announcements on the market price of non-compliance firms. The study also estimates and examines bid–ask spread behavior of violated firms around the CMA announcements. The findings indicate that the CMA fines announcements for failing to comply with governance and disclosure rules do not appear to play any significant role in securities pricing. In addition, tests of bid-ask behavior does not indicate any significant increases in information asymmetry surrounding these announcements. While the CMA has developed many goals to increase the awareness of listed companies with the best governance and disclosure practices, it seems they have to develop more goals to improve market efficiency and increase investors and public awareness.Keywords: governance and disclosure violations, financial reporting quality, regulatory intervention, market efficiency
Procedia PDF Downloads 3052365 Real-Time Radar Tracking Based on Nonlinear Kalman Filter
Authors: Milca F. Coelho, K. Bousson, Kawser Ahmed
Abstract:
To accurately track an aerospace vehicle in a time-critical situation and in a highly nonlinear environment, is one of the strongest interests within the aerospace community. The tracking is achieved by estimating accurately the state of a moving target, which is composed of a set of variables that can provide a complete status of the system at a given time. One of the main ingredients for a good estimation performance is the use of efficient estimation algorithms. A well-known framework is the Kalman filtering methods, designed for prediction and estimation problems. The success of the Kalman Filter (KF) in engineering applications is mostly due to the Extended Kalman Filter (EKF), which is based on local linearization. Besides its popularity, the EKF presents several limitations. To address these limitations and as a possible solution to tracking problems, this paper proposes the use of the Ensemble Kalman Filter (EnKF). Although the EnKF is being extensively used in the context of weather forecasting and it is being recognized for producing accurate and computationally effective estimation on systems with a very high dimension, it is almost unknown by the tracking community. The EnKF was initially proposed as an attempt to improve the error covariance calculation, which on the classic Kalman Filter is difficult to implement. Also, in the EnKF method the prediction and analysis error covariances have ensemble representations. These ensembles have sizes which limit the number of degrees of freedom, in a way that the filter error covariance calculations are a lot more practical for modest ensemble sizes. In this paper, a realistic simulation of a radar tracking was performed, where the EnKF was applied and compared with the Extended Kalman Filter. The results suggested that the EnKF is a promising tool for tracking applications, offering more advantages in terms of performance.Keywords: Kalman filter, nonlinear state estimation, optimal tracking, stochastic environment
Procedia PDF Downloads 1462364 Health Assessment of Power Transformer Using Fuzzy Logic
Authors: Yog Raj Sood, Rajnish Shrivastava, Anchal Wadhwa
Abstract:
Power transformer is one of the electrical equipment that has a central and critical role in the power system. In order to avoid power transformer failure, information system that provides the transformer condition is needed. This paper presents an information system to know the exact situations prevailing within the transformer by declaring its health index. Health index of a transformer is decided by considering several diagnostic tools. The current work deals with UV-Vis, IFT, FP, BDV and Water Content. UV/VIS results have been pre-accessed using separate FL controller for concluding with the Furan contents. It is broadly accepted that the life of a power transformer is the life of the oil/ paper insulating system. The method relies on the use of furan analysis (insulation paper), and other oil analysis results as a means to declare health index. Fuzzy logic system is used to develop the information system. The testing is done on 5 samples of oil of transformers of rating 132/66 KV to obtain the results and results are analyzed using fuzzy logic model.Keywords: interfacial tension analyzer (ift), flash point (fp), furfuraldehyde (fal), health index
Procedia PDF Downloads 6342363 Risk Assessment and Management Using Machine Learning Models
Authors: Lagnajeet Mohanty, Mohnish Mishra, Pratham Tapdiya, Himanshu Sekhar Nayak, Swetapadma Singh
Abstract:
In the era of global interconnectedness, effective risk assessment and management are critical for organizational resilience. This review explores the integration of machine learning (ML) into risk processes, examining its transformative potential and the challenges it presents. The literature reveals ML's success in sectors like consumer credit, demonstrating enhanced predictive accuracy, adaptability, and potential cost savings. However, ethical considerations, interpretability issues, and the demand for skilled practitioners pose limitations. Looking forward, the study identifies future research scopes, including refining ethical frameworks, advancing interpretability techniques, and fostering interdisciplinary collaborations. The synthesis of limitations and future directions highlights the dynamic landscape of ML in risk management, urging stakeholders to navigate challenges innovatively. This abstract encapsulates the evolving discourse on ML's role in shaping proactive and effective risk management strategies in our interconnected and unpredictable global landscape.Keywords: machine learning, risk assessment, ethical considerations, financial inclusion
Procedia PDF Downloads 722362 Disability and Quality of Life in Low Back Pain: A Cross-Sectional Study
Authors: Zarina Zahari, Maria Justine, Kamaria Kamaruddin
Abstract:
Low back pain (LBP) is a major musculoskeletal problem in global population. This study aimed to examine the relationship between pain, disability and quality of life in patients with non-specific low back pain (LBP). One hundred LBP participants were recruited in this cross-sectional study (mean age = 42.23±11.34 years old). Pain was measured using Numerical Rating Scale (11-point). Disability was assessed using the revised Oswestry low back pain disability questionnaire (ODQ) and quality of life (QoL) was evaluated using the SF-36 v2. Majority of participants (58%) presented with moderate pain and 49% experienced severe disability. Thus, the pain and disability were found significant with negative correlation (r= -0.712, p<0.05). The pain and QoL also showed significant and positive correlation with both Physical Health Component Summary (PHCS) (r= .840, p<0.05) and Mental Health Component Summary (MHCS) (r= 0.446, p<0.05). Regression analysis indicated that pain emerged as an indicator of both disability and QoL (PHCS and MHCS) accounting for 51%, 71% and 21% of the variances respectively. This indicates that pain is an important factor in predicting disability and QoL in LBP sufferers.Keywords: disability, low back pain, pain, quality of life
Procedia PDF Downloads 5332361 Graph Neural Network-Based Classification for Disease Prediction in Health Care Heterogeneous Data Structures of Electronic Health Record
Authors: Raghavi C. Janaswamy
Abstract:
In the healthcare sector, heterogenous data elements such as patients, diagnosis, symptoms, conditions, observation text from physician notes, and prescriptions form the essentials of the Electronic Health Record (EHR). The data in the form of clear text and images are stored or processed in a relational format in most systems. However, the intrinsic structure restrictions and complex joins of relational databases limit the widespread utility. In this regard, the design and development of realistic mapping and deep connections as real-time objects offer unparallel advantages. Herein, a graph neural network-based classification of EHR data has been developed. The patient conditions have been predicted as a node classification task using a graph-based open source EHR data, Synthea Database, stored in Tigergraph. The Synthea DB dataset is leveraged due to its closer representation of the real-time data and being voluminous. The graph model is built from the EHR heterogeneous data using python modules, namely, pyTigerGraph to get nodes and edges from the Tigergraph database, PyTorch to tensorize the nodes and edges, PyTorch-Geometric (PyG) to train the Graph Neural Network (GNN) and adopt the self-supervised learning techniques with the AutoEncoders to generate the node embeddings and eventually perform the node classifications using the node embeddings. The model predicts patient conditions ranging from common to rare situations. The outcome is deemed to open up opportunities for data querying toward better predictions and accuracy.Keywords: electronic health record, graph neural network, heterogeneous data, prediction
Procedia PDF Downloads 862360 Influencing Factors and Mechanism of Patient Engagement in Healthcare: A Survey in China
Authors: Qing Wu, Xuchun Ye, Kirsten Corazzini
Abstract:
Objective: It is increasingly recognized that patients’ rational and meaningful engagement in healthcare could make important contributions to their health care and safety management. However, recent evidence indicated that patients' actual roles in healthcare didn’t match their desired roles, and many patients reported a less active role than desired, which suggested that patient engagement in healthcare may be influenced by various factors. This study aimed to analyze influencing factors on patient engagement and explore the influence mechanism, which will be expected to contribute to the strategy development of patient engagement in healthcare. Methods: On the basis of analyzing the literature and theory study, the research framework was developed. According to the research framework, a cross-sectional survey was employed using the behavior and willingness of patient engagement in healthcare questionnaire, Chinese version All Aspects of Health Literacy Scale, Facilitation of Patient Involvement Scale and Wake Forest Physician Trust Scale, and other influencing factor related scales. A convenience sample of 580 patients was recruited from 8 general hospitals in Shanghai, Jiangsu Province, and Zhejiang Province. Results: The results of the cross-sectional survey indicated that the mean score for the patient engagement behavior was (4.146 ± 0.496), and the mean score for the willingness was (4.387 ± 0.459). The level of patient engagement behavior was inferior to their willingness to be involved in healthcare (t = 14.928, P < 0.01). The influencing mechanism model of patient engagement in healthcare was constructed by the path analysis. The path analysis revealed that patient attitude toward engagement, patients’ perception of facilitation of patient engagement and health literacy played direct prediction on the patients’ willingness of engagement, and standard estimated values of path coefficient were 0.341, 0.199, 0.291, respectively. Patients’ trust in physician and the willingness of engagement played direct prediction on the patient engagement, and standard estimated values of path coefficient were 0.211, 0.641, respectively. Patient attitude toward engagement, patients’ perception of facilitation and health literacy played indirect prediction on patient engagement, and standard estimated values of path coefficient were 0.219, 0.128, 0.187, respectively. Conclusions: Patients engagement behavior did not match their willingness to be involved in healthcare. The influencing mechanism model of patient engagement in healthcare was constructed. Patient attitude toward engagement, patients’ perception of facilitation of engagement and health literacy posed indirect positive influence on patient engagement through the patients’ willingness of engagement. Patients’ trust in physician and the willingness of engagement had direct positive influence on the patient engagement. Patient attitude toward engagement, patients’ perception of physician facilitation of engagement and health literacy were the factors influencing the patients’ willingness of engagement. The results of this study provided valuable evidence on guiding the development of strategies for promoting patient rational and meaningful engagement in healthcare.Keywords: healthcare, patient engagement, influencing factor, the mechanism
Procedia PDF Downloads 1562359 Relevance of Reliability Approaches to Predict Mould Growth in Biobased Building Materials
Authors: Lucile Soudani, Hervé Illy, Rémi Bouchié
Abstract:
Mould growth in living environments has been widely reported for decades all throughout the world. A higher level of moisture in housings can lead to building degradation, chemical component emissions from construction materials as well as enhancing mould growth within the envelope elements or on the internal surfaces. Moreover, a significant number of studies have highlighted the link between mould presence and the prevalence of respiratory diseases. In recent years, the proportion of biobased materials used in construction has been increasing, as seen as an effective lever to reduce the environmental impact of the building sector. Besides, bio-based materials are also hygroscopic materials: when in contact with the wet air of a surrounding environment, their porous structures enable a better capture of water molecules, thus providing a more suitable background for mould growth. Many studies have been conducted to develop reliable models to be able to predict mould appearance, growth, and decay over many building materials and external exposures. Some of them require information about temperature and/or relative humidity, exposure times, material sensitivities, etc. Nevertheless, several studies have highlighted a large disparity between predictions and actual mould growth in experimental settings as well as in occupied buildings. The difficulty of considering the influence of all parameters appears to be the most challenging issue. As many complex phenomena take place simultaneously, a preliminary study has been carried out to evaluate the feasibility to sadopt a reliability approach rather than a deterministic approach. Both epistemic and random uncertainties were identified specifically for the prediction of mould appearance and growth. Several studies published in the literature were selected and analysed, from the agri-food or automotive sectors, as the deployed methodology appeared promising.Keywords: bio-based materials, mould growth, numerical prediction, reliability approach
Procedia PDF Downloads 462358 Social Business Models: When Profits and Impacts Are Not at Odds
Authors: Elisa Pautasso, Matteo Castagno, Michele Osella
Abstract:
In the last decade, the emergence of new social needs as an effect of the economic crisis has stimulated the flourishing of business endeavours characterised by explicit social goals. Social start-ups, social enterprises or Corporate Social Responsibility operations carried out by traditional companies are quintessential examples in this regard. This paper analyses these kinds of initiatives in order to discover the main characteristics of social business models and to provide insights to social entrepreneurs for developing or improving their strategies. The research is conducted through the integration of literature review and case study analysis and, thanks to the recognition of the importance of both profits and social impacts as the key success factors for a social business model, proposes a framework for identifying indicators suitable for measuring the social impacts generated.Keywords: business model, case study, impacts, social business
Procedia PDF Downloads 3492357 Provisions for Risk in Islamic Banking and Finance in Comparison to the Conventional Banks in Malaysia
Authors: Rashid Masoud Ali Al-Mazrui, Ramadhani Mashaka Shabani
Abstract:
Islamic banks and financial institutions are exposed to the same risks as conventional banking. These risks include the rate return risk, credit or market risk, liquidity risk, and operational risk among others. However, being a financial institution that operates Islamic banking and finance operations, there is additional risk associated with its operations different from conventional finance, such as displacing commercial risk. They face Shari'ah compliance risks because of their failure to follow Shari'ah principles. To have proper mitigation and risk management, banks should have proper risk management policies to mitigate risks. This paper aims to study the risk management taken by Islamic banks in comparison with conventional banks. Also, the study evaluates the provisions for risk management taken by selected Islamic banks and conventional banks. The study employs qualitative analysis using secondary data by applying a content analysis approach with a sample size of 4 Islamic banks and four conventional banks ranging from 2010 to 2020. We find that these banks all use the same technique, except for the associated risk. The extra ways are used, but only for additional risks that are available to Islamic banking and finance.Keywords: emerging risk, risk management, Islamic banking, conventional bank
Procedia PDF Downloads 832356 Changing New York Financial Clusters in the 2000s: Modeling the Impact and Policy Implication of the Global Financial Crisis
Authors: Silvia Lorenzo, Hongmian Gong
Abstract:
With the influx of research assessing the economic impact of the global financial crisis of 2007-8, a spatial analysis based on empirical data is needed to better understand the spatial significance of the financial crisis in New York, a key international financial center also considered the origin of the crisis. Using spatial statistics, the existence of financial clusters specializing in credit and securities throughout the New York metropolitan area are identified for 2000 and 2010, the time period before and after the height of the global financial crisis. Geographically Weighted Regressions are then used to examine processes underlying the formation and movement of financial geographies across state, county and ZIP codes of the New York metropolitan area throughout the 2000s with specific attention to tax regimes, employment, household income, technology, and transportation hubs. This analysis provides useful inputs for financial risk management and public policy initiatives aimed at addressing regional economic sustainability across state boundaries, while also developing the groundwork for further research on a spatial analysis of the global financial crisis.Keywords: financial clusters, New York, global financial crisis, geographically weighted regression
Procedia PDF Downloads 3092355 Statistical Analysis of the Main Causes of Delay Factors of Infrastructure Projects
Authors: Seyed Ali Mohammadiborna, Mehdi Ravanshadnia
Abstract:
Project delays usually detrimentally affect perceptions of project success and can in some instances, result in increased costs and other time-related damages to project stakeholders. One of the realities in the national infrastructure projects is that since the primary stakeholders are state-affiliated, the delay factors of the projects have not been seriously taken into account despite the importance of on-time completion of projects. Project postponement has different economic and social consequences and leads to the technical and economic infeasibility of the infrastructure projects in the form of reduced productivity and exploitation capacity. The present study aimed at investigating delay factors of Iranian national infrastructure projects according to regulatory reports of the Plan and Budget Organization (BPO) of Iran. The present study scrutinized the influence of each of the factors that caused delays in national Iranian infrastructure projects according to the supervision reports of the planning and budget organization in 8 years. For this purpose, the study analyzed the information regarding the impact of 12 key delay factors causing delays in average 4867 projects per year in all provinces. The said factors were classified into the three groups of executive, credit, and financial and environmental-procurement factors.Keywords: delays, infrastructure, projects, regulatory
Procedia PDF Downloads 1372354 The Impact of Employee Assistance Program on New Hire Well Being and Turnover
Authors: Steffira Anjani, Agnes Dessyana, Luciyana Lesmana
Abstract:
Employee well-being has been a major factor for an employee to deliver optimal performance in the workplace. During the COVID-19 pandemic, there has been a major concern for organizations to develop Employee Assistance Program as an approach to maintain employees’ well-being. However, there is little published evidence assessing the effectiveness of Employee Assistance Program for the employee’s well-being. The purpose of this paper is to advance theory and practice by understanding how the Employee Assistance Program (EAP) impacts to new hire well-being and turnover, especially in private organization. This paper provides an intervention framework used for new employees. The intervention program (onboarding and support group) is carried out to improve new hire well-being and to make them stay at the organization. The intervention is delivered to 36 new hire employees that were recruited from January 2021 to still ongoing 2022. The result of level 1 evaluation shows that new hire employees give a good rating to the intervention program. Next, the result of level 2 evaluation shows that the intervention has a significant difference in new hire well-being before and after the intervention program (Z=-2,11, p<0.05) and increases the percentage of recruitment quality index (RQI = 10%).Keywords: Employee Assistance Program, well-being, turnover, intervention program
Procedia PDF Downloads 1672353 Potential of Comparative Management and Aspects of Its Application in Georgia
Authors: Evgeni Baratashvili, Nino Pailodze, Ana Bolkvadze, Giorgi Sulashvili
Abstract:
At the present stage in our country intensifies cooperation with different business cultures, actively developing the process of implementation of Georgia in the global business system that requires us to develop a specific concept, including in the field of management. With the entry of Georgia into the international community, exchange of experience will only intensify. It is clear that the achievement of goals such as the doubling of the National Product increase the competitiveness of Georgian enterprises can’t be recorded without foreign management experience. On the other hand, knowledge of the areas of comparative management can be used in the process of choosing the path of socio-economic development of Georgia.Keywords: business cultures, comparative management, corporate culture, Georgian business, Anglo-Saxon model, Georgian civilization, anti-capitalist mentality, culture management
Procedia PDF Downloads 4702352 Consumer Protection: An Exploration of the Role of the State in Protecting Consumers Before and During Inflation
Authors: Fatimah Opebiyi
Abstract:
Economic growth promotion, inflation reduction and consumer protection are among the core public interest aims of governments. Nevertheless, higher rates of default by consumers in relation to credit card loans and mortgages in recent times illustrate that government’s performance in balancing the protection of the economy and consumer is subpar. This thereby raises an important question on the role of government in protecting consumers during prolonged spells of inflation, particularly when such inflationary trends may be traceable to the acts of the government. Adopting a doctrinal research methodology, this article investigates the evolution of the concept of consumer protection in the United Kingdom and also brings to the fore the tensions and conflicts of interests in the aims and practices of the main regulators within the financial services industry. Relying on public interest theories of regulation and responsive regulatory theory, the article explores the limitations in the state’s ability to strike the right balance in meeting regulatory aims of the regulatory agencies at the opposite ends of the spectrum.Keywords: financial regulation, consumer protection, prudential regulation, public interest theories of regulation, central bank
Procedia PDF Downloads 772351 Counseling Ethics in Turkish Counseling Programs
Authors: Umut Arslan, John Sommers Flanagan
Abstract:
The purpose of this study was to investigate qualifications of ethics training in counselor education programs in Turkey. The survey data were collected from 251 Turkish counseling students to examine differences in ethical judgments between freshmen and seniors. Chi-square analysis was used to analyze the data from an ethical practice and belief survey. This survey was used to assess counselor candidates’ ethical judgments regarding Turkish counseling ethical codes and sources of ethics information. Statistically significant differences were found between university seniors and freshmen on items that are related to confidentiality, dual relationships, and professional relationships. Furthermore, patterns based on demographic information showed significant differences as a result of gender, economic status, and parents’ educational level. Participants gave the highest rating of information sources to Turkish counseling ethical codes.Keywords: ethics, training, Turkey, counselor, education
Procedia PDF Downloads 3732350 The Effect of Post Spinal Hypotension on Cerebral Oxygenation Using Near-Infrared Spectroscopy and Neonatal Outcomes in Full Term Parturient Undergoing Lower Segment Caesarean Section: A Prospective Observational Study
Authors: Shailendra Kumar, Lokesh Kashyap, Puneet Khanna, Nishant Patel, Rakesh Kumar, Arshad Ayub, Kelika Prakash, Yudhyavir Singh, Krithikabrindha V.
Abstract:
Introduction: Spinal anesthesia is considered a standard anesthesia technique for caesarean delivery. The incidence of spinal hypotension during caesarean delivery is 70 -80%. Spinal hypotension may cause cerebral hypoperfusion in the mother, but physiologically cerebral autoregulatory mechanisms accordingly prevent cerebral hypoxia. Cerebral blood flow remains constant in the 50-150 mmHg of Cerebral Perfusion Pressure (CPP) range. Near-infrared spectroscopy (NIRS) is a non-invasive technology that is used to detect Cerebral Desaturation Events (CDEs) immediately compared to other conventional intraoperative monitoring techniques. Objective: The primary aim of the study is to correlate the change in cerebral oxygen saturation using NIRS with respect to a fall in mean blood pressure after spinal anaesthesia and to find out the effects of spinal hypotension on neonatal APGAR score, neonatal acid-base variations, and presence of Postoperative Delirium (POD). Methodology: NIRS sensors were attached to the forehead of all the patients, and their baseline readings of cerebral oxygenation on the right and left frontal regions and mean blood pressure were noted. Subarachnoid block was given with hyperbaric 0.5% bupivacaine plus fentanyl, the dose being determined by the individual anaesthesiologist. Co-loading of IV crystalloid solutions was given to the patient. Blood pressure reading and cerebral saturation were recorded every 1 minute till 30min. Hypotension was a fall in MAP less than 20% of the baseline values. Patients going for hypotension were treated with an IV Bolus of phenylephrine/ephedrine. Umbilical cord blood samples were taken for blood gas analysis, and neonatal APGAR was noted by a neonatologist. Study design: A prospective observational study conducted in a population of Thirty ASA 2 and 3 parturients scheduled for lower segment caesarean section (LSCS). Results: Mean fall in regional cerebral saturation is 28.48 ± 14.7% with respect to the mean fall in blood pressure 38.92 ± 8.44 mm Hg. The correlation coefficient between fall in saturation and fall in mean blood pressure is 0.057, and p-value {0.7} after subarachnoid block. A fall in regional cerebral saturation occurred 2±1 min before a fall in mean blood pressure. Twenty-nine out of thirty patients required vasopressors during hypotension. The first dose of vasopressor requirement is needed at 6.02±2 min after the block. The mean APGAR score was 7.86 and 9.74 at 1 and 5 min of birth, respectively, and the mean umbilical arterial pH of 7.3±0.1. According to DRS-98 (Delirium Rating Scale), the mean delirium rating score on postoperative day 1 and day 2 were 0.1 and 0.7, respectively. Discussion: There was a fall in regional cerebral oxygen saturation, which started before with respect to a significant fall in mean blood pressure readings but was statistically not significant. Maximal fall in blood pressure requiring vasopressors occurs within 10 min of SAB. Neonatal APGAR scores and acid-base variations were in the normal range with maternal hypotension, and there was no incidence of postoperative delirium in patients with post-spinal hypotension.Keywords: cerebral oxygenation, LSCS, NIRS, spinal hypotension
Procedia PDF Downloads 692349 The Macrophage Migration Inhibitory Factor and Stem Cell Factor Levels in Serum of Adolescent and Young Adults with Mood Disorders: A Two Year Follow-Up Study
Authors: Aleksandra Rajewska-Rager, Maria Skibinska, Monika Dmitrzak-Weglarz, Natalia Lepczynska, Pawel Kapelski, Joanna Pawlak, Joanna Hauser
Abstract:
Introduction: Inflammation and cytokines have emerged as a promising target in mood disorders research; however there are still very limited numbers of study regarding inflammatory alterations among adolescents and young adults with mood disorders. The Macrophage Migration Inhibitory Factor (MIF) and Stem Cell Factor (SCF) are the pleiotropic cytokines which may play an important role in mood disorders pathophysiology. The aim of this study was to investigate levels of these factors in serum of adolescent and young adults with mood disorders compared to healthy controls. Subjects: We involved 79 patients aged 12-24 years in 2-year follow-up study with a primary diagnosis of mood disorders: bipolar disorder (BP) and unipolar disorder with BP spectrum. Study group includes 23 males (mean age 19.08, SD 3.3) and 56 females (18.39, SD 3.28). Control group consisted 35 persons: 7 males (20.43, SD 4.23) and 28 females (21.25, SD 2.11). Clinical diagnoses according to DSM-IV-TR criteria were assessed using Kiddie-Schedule for Affective Disorders and Schizophrenia-Present and Lifetime Version (K-SADS-PL) and Structured Clinical Interview for the Diagnostic and Statistical Manual (SCID) in young adults respectively. Clinical assessment includes evaluation of clinical factors and symptoms severity (rated using the Hamilton Depression Rating Scale and Young Mania Rating Scale). Clinical and biological evaluations were made at control visits respectively at baseline (week 0), euthymia (at month 3 or 6) and after 12 and 24 months. Methods: Serum protein concentration was determined by Enzyme-Linked Immunosorbent Assays (ELISA) method. Human MIF and SCF DuoSet ELISA kits were used. In the analyses non-parametric tests were used: Mann-Whitney U test, Kruskal-Wallis ANOVA, Friedman’s ANOVA, Wilcoxon signed rank test, Spearman correlation. We defined statistical significance as p < 0.05. Results: Comparing MIF and SCF levels between acute episode of depression/hypo/mania at baseline and euthymia (at month 3 or 6) we did not find any statistical differences. At baseline patients with age above 18 years old had decreased MIF level compared to patients younger than 18 years. MIF level at baseline positively correlated with age (p=0.004). Positive correlations of SCF level at month 3 and 6 with depression or mania occurrence at month 24 (p=0.03 and p=0.04, respectively) was detected. Strong correlations between MIF and SCF levels at baseline (p=0.0005) and month 3 (p=0.03) were observed. Discussion: Our results did not show any differences in MIF and SCF levels between acute episode of depression/hypo/mania and euthymia in young patients. Further studies on larger groups are recommended. Grant was founded by National Science Center in Poland no 2011/03/D/NZ5/06146.Keywords: cytokines, MIF, mood disorders, SCF
Procedia PDF Downloads 2012348 Relationship between Financial Reporting Transparency and Investment Efficiency: Evidence from Iran
Authors: Bita Mashayekhi, Hamid Kalhornia
Abstract:
One of the most important roles of financial reporting is improving the firms’ investment decisions; however, there is not much supporting evidence for this claim in emerging markets like Iran. In this study, the effect of financial reporting transparency in investment efficiency of Iranian firms has been investigated. In order to do this, 336 listed companies on Tehran Stock Exchange (TSE) has been selected for time period 2012 to 2015 as research sample. For testing our main hypothesis, we classified sample firms into two groups based on their deviation from expected investment: under-investment and over-investment cases. The results indicate that there is positive significant relationship between financial transparency and investment efficiency. In the other words, transparency can mitigate both underinvestment and overinvestment situations.Keywords: corporate governance, disclosure, investment decisions, investment efficiency, transparency
Procedia PDF Downloads 3782347 Analyzing the Untenable Corruption Intricate Patterns in Africa and Combating Strategies for the Efficiency of Public Sector Supply Chains
Authors: Charles Mazhazhate
Abstract:
This study interrogates and analyses the intricate kin- and- kith network patterns of corruption and mismanagement of resources prevalent in public sector supply chains bedeviling the developing economies of Sub-Saharan Africa with particular reference to Zimbabwe. This is forcing governments to resort to harsh fiscal policies that see their citizens paying high taxes against a backdrop of incomes below the poverty datum line, and this negatively affects their quality of life. The corporate world is also affected by the various tax-regime instituted. Mismanagement of resources and corrupt practices are rampant in state-owned enterprises to the extent that institutional policies, procedures, and practices are often flouted for the benefit of a clique of individuals. This interwoven in kith and kin blood human relations in organizations where appointments to critical positions are based on ascribed status. People no longer place value in their systems to make them work thereby violating corporate governance principles. Greediness and ‘unholy friendship connections’ are instrumental in fueling the employment of people who know each other from their discrete backgrounds. Such employments or socio-metric unions are meant to protect those at the top by giving them intelligent information through spying on what other subordinates are doing inside and outside the organization. This practice has led to the underperforming of organizations as those employees with connections and their upper echelons favorites connive to abuse resources for their own benefit. Even if culprits are known, no draconian measures are employed as a deterrence measure. Public value along public sector supply chains is lost. The study used a descriptive case study research design on fifty organizations in Zimbabwe mainly state-owned enterprises. Both qualitative and quantitative instrumentations were used. Both Snowball and random sampling techniques were used. The study found out that in all the fifty SOEs, there were employees in key positions related to top management, with tentacles feeding into the law enforcement agents, judiciary, security systems, and the executive. Such employees in public seem not to know each other with but would be involved in dirty scams and then share the proceeds with top people behind the scenes. The study also established that the same employees do not have the necessary competencies, qualifications, abilities, and capabilities to be in those positions. This culture is now strong that it is difficult to bust. The study recommends recruitment of all employees through an independent employment bureau to ensure strategic fit.Keywords: corruption, state owned enterprises, strategic fit, public sector supply chains, efficiency
Procedia PDF Downloads 1602346 Multi-Model Super Ensemble Based Advanced Approaches for Monsoon Rainfall Prediction
Authors: Swati Bhomia, C. M. Kishtawal, Neeru Jaiswal
Abstract:
Traditionally, monsoon forecasts have encountered many difficulties that stem from numerous issues such as lack of adequate upper air observations, mesoscale nature of convection, proper resolution, radiative interactions, planetary boundary layer physics, mesoscale air-sea fluxes, representation of orography, etc. Uncertainties in any of these areas lead to large systematic errors. Global circulation models (GCMs), which are developed independently at different institutes, each of which carries somewhat different representation of the above processes, can be combined to reduce the collective local biases in space, time, and for different variables from different models. This is the basic concept behind the multi-model superensemble and comprises of a training and a forecast phase. The training phase learns from the recent past performances of models and is used to determine statistical weights from a least square minimization via a simple multiple regression. These weights are then used in the forecast phase. The superensemble forecasts carry the highest skill compared to simple ensemble mean, bias corrected ensemble mean and the best model out of the participating member models. This approach is a powerful post-processing method for the estimation of weather forecast parameters reducing the direct model output errors. Although it can be applied successfully to the continuous parameters like temperature, humidity, wind speed, mean sea level pressure etc., in this paper, this approach is applied to rainfall, a parameter quite difficult to handle with standard post-processing methods, due to its high temporal and spatial variability. The present study aims at the development of advanced superensemble schemes comprising of 1-5 day daily precipitation forecasts from five state-of-the-art global circulation models (GCMs), i.e., European Centre for Medium Range Weather Forecasts (Europe), National Center for Environmental Prediction (USA), China Meteorological Administration (China), Canadian Meteorological Centre (Canada) and U.K. Meteorological Office (U.K.) obtained from THORPEX Interactive Grand Global Ensemble (TIGGE), which is one of the most complete data set available. The novel approaches include the dynamical model selection approach in which the selection of the superior models from the participating member models at each grid and for each forecast step in the training period is carried out. Multi-model superensemble based on the training using similar conditions is also discussed in the present study, which is based on the assumption that training with the similar type of conditions may provide the better forecasts in spite of the sequential training which is being used in the conventional multi-model ensemble (MME) approaches. Further, a variety of methods that incorporate a 'neighborhood' around each grid point which is available in literature to allow for spatial error or uncertainty, have also been experimented with the above mentioned approaches. The comparison of these schemes with respect to the observations verifies that the newly developed approaches provide more unified and skillful prediction of the summer monsoon (viz. June to September) rainfall compared to the conventional multi-model approach and the member models.Keywords: multi-model superensemble, dynamical model selection, similarity criteria, neighborhood technique, rainfall prediction
Procedia PDF Downloads 1392345 Automated Prepaid Billing Subscription System
Authors: Adekunle K. O, Adeniyi A. E, Kolawole E
Abstract:
One of the most dramatic trends in the communications market in recent years has been the growth of prepaid services. Today, prepaid no longer constitutes the low-revenue, basic-service segment. It is driven by a high margin, value-add service customers who view it as a convenient way of retaining control over their usage and communication spending while expecting high service levels. To service providers, prepaid services offer the advantage of reducing bad accounts while allowing them to predict usage and plan network resources. Yet, the real-time demands of prepaid services require a scalable, real-time platform to manage customers through their entire life cycle. It delivers integrated real-time rating, voucher management, recharge management, customer care and service provisioning for the generation of new prepaid services. It carries high scalability that can handle millions of prepaid customers in real-time through their entire life cycle.Keywords: prepaid billing, voucher management, customers, automated, security
Procedia PDF Downloads 1152344 Prioritization of Customer Order Selection Factors by Utilizing Conjoint Analysis: A Case Study for a Structural Steel Firm
Authors: Burcu Akyildiz, Cigdem Kadaifci, Y. Ilker Topcu, Burc Ulengin
Abstract:
In today’s business environment, companies should make strategic decisions to gain sustainable competitive advantage. Order selection is a crucial issue among these decisions especially for steel production industry. When the companies allocate a high proportion of their design and production capacities to their ongoing projects, determining which customer order should be chosen among the potential orders without exceeding the remaining capacity is the major critical problem. In this study, it is aimed to identify and prioritize the evaluation factors for the customer order selection problem. Conjoint analysis is used to examine the importance level of each factor which is determined as the potential profit rate per unit of time, the compatibility of potential order with available capacity, the level of potential future order with higher profit, customer credit of future business opportunity, and the negotiability level of production schedule for the order.Keywords: conjoint analysis, order prioritization, profit management, structural steel firm
Procedia PDF Downloads 3842343 Measuring Student Teachers' Attitude and Intention toward Cell-Phone Use for Learning in Nigeria
Authors: Shittu Ahmed Tajudeen
Abstract:
This study examines student-teachers’ attitude and intention towards cell-phone use for learning. The study involves one hundred and ninety (190) trainee teachers in one of the Institutes of Education in Nigeria. The data of the study was collected through a questionnaire on a rating of seven point likert-type Scale. The data collected was used to test the hypothesized model of the study using Structural Equation Modeling approach. The finding of the study revealed that Perceived Usefulness (PU), Perceived Ease of Use (PEU), Subjective Norm (SN) and Attitude significantly influence students’ intention towards adoption of cell-phone for learning. The study showed that perceived ease of use stands to be the strongest predictor of cell-phone use. The model of the study exhibits a good-fit with the data and provides an explanation on student- teachers’ attitude and intention towards cell-phone for learning.Keywords: cell-phone, adoption, structural equation modeling, technology acceptance model
Procedia PDF Downloads 4532342 CFD Study of Subcooled Boiling Flow at Elevated Pressure Using a Mechanistic Wall Heat Partitioning Model
Authors: Machimontorn Promtong, Sherman C. P. Cheung, Guan H. Yeoh, Sara Vahaji, Jiyuan Tu
Abstract:
The wide range of industrial applications involved with boiling flows promotes the necessity of establishing fundamental knowledge in boiling flow phenomena. For this purpose, a number of experimental and numerical researches have been performed to elucidate the underlying physics of this flow. In this paper, the improved wall boiling models, implemented on ANSYS CFX 14.5, were introduced to study subcooled boiling flow at elevated pressure. At the heated wall boundary, the Fractal model, Force balance approach and Mechanistic frequency model are given for predicting the nucleation site density, bubble departure diameter, and bubble departure frequency. The presented wall heat flux partitioning closures were modified to consider the influence of bubble sliding along the wall before the lift-off, which usually happens in the flow boiling. The simulation was performed based on the Two-fluid model, where the standard k-ω SST model was selected for turbulence modelling. Existing experimental data at around 5 bars were chosen to evaluate the accuracy of the presented mechanistic approach. The void fraction and Interfacial Area Concentration (IAC) are in good agreement with the experimental data. However, the predicted bubble velocity and Sauter Mean Diameter (SMD) are over-predicted. This over-prediction may be caused by consideration of only dispersed and spherical bubbles in the simulations. In the future work, the important physical mechanisms of bubbles, such as merging and shrinking during sliding on the heated wall will be incorporated into this mechanistic model to enhance its capability for a wider range of flow prediction.Keywords: subcooled boiling flow, computational fluid dynamics (CFD), mechanistic approach, two-fluid model
Procedia PDF Downloads 318