Search results for: bi-directional long and short-term memory networks
8016 Grand Paris Residential Real Estate as an Effective Hedge against Inflation
Authors: Yasmine Essafi Zouari, Aya Nasreddine
Abstract:
Following a long inflationary period from the post-war era to the mid-1980s (+10.1% annually), France went through a moderate inflation period between 1986 and 2001 (+2.1% annually) and even lower inflation between 2002 and 2016 (+1.4% annually). In 2022, inflation in France increased rapidly and reached 4.5% over one year in March, according to INSEE estimates. Over a long period, even low inflation has an impact on portfolio value and households’ purchasing power. In such a context, inflation hedging should remain an important issue for investors. In particular, long-term investors, who are concerned with the protection of their wealth, seek to hold effective hedging assets. Considering a mixed-asset portfolio composed of housing assets (residential real estate in 150 Grand Paris communes) as well as financial assets, and using both correlation and regression analysis, results confirm the attribute of the direct housing investment as an inflation hedge especially particularly against its unexpected component. Further, cash and bonds were found to provide respectively a partial and an over hedge against unexpected inflation. Stocks act as a perverse hedge against unexpected inflation and provide no significant positive hedge against expected inflation.Keywords: direct housing, inflation, hedging ability, optimal portfolio, Grand Paris metropolis
Procedia PDF Downloads 1148015 Prediction of Remaining Life of Industrial Cutting Tools with Deep Learning-Assisted Image Processing Techniques
Authors: Gizem Eser Erdek
Abstract:
This study is research on predicting the remaining life of industrial cutting tools used in the industrial production process with deep learning methods. When the life of cutting tools decreases, they cause destruction to the raw material they are processing. This study it is aimed to predict the remaining life of the cutting tool based on the damage caused by the cutting tools to the raw material. For this, hole photos were collected from the hole-drilling machine for 8 months. Photos were labeled in 5 classes according to hole quality. In this way, the problem was transformed into a classification problem. Using the prepared data set, a model was created with convolutional neural networks, which is a deep learning method. In addition, VGGNet and ResNet architectures, which have been successful in the literature, have been tested on the data set. A hybrid model using convolutional neural networks and support vector machines is also used for comparison. When all models are compared, it has been determined that the model in which convolutional neural networks are used gives successful results of a %74 accuracy rate. In the preliminary studies, the data set was arranged to include only the best and worst classes, and the study gave ~93% accuracy when the binary classification model was applied. The results of this study showed that the remaining life of the cutting tools could be predicted by deep learning methods based on the damage to the raw material. Experiments have proven that deep learning methods can be used as an alternative for cutting tool life estimation.Keywords: classification, convolutional neural network, deep learning, remaining life of industrial cutting tools, ResNet, support vector machine, VggNet
Procedia PDF Downloads 778014 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations
Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain
Abstract:
Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers
Procedia PDF Downloads 1028013 An Integrated Approach to the Carbonate Reservoir Modeling: Case Study of the Eastern Siberia Field
Authors: Yana Snegireva
Abstract:
Carbonate reservoirs are known for their heterogeneity, resulting from various geological processes such as diagenesis and fracturing. These complexities may cause great challenges in understanding fluid flow behavior and predicting the production performance of naturally fractured reservoirs. The investigation of carbonate reservoirs is crucial, as many petroleum reservoirs are naturally fractured, which can be difficult due to the complexity of their fracture networks. This can lead to geological uncertainties, which are important for global petroleum reserves. The problem outlines the key challenges in carbonate reservoir modeling, including the accurate representation of fractures and their connectivity, as well as capturing the impact of fractures on fluid flow and production. Traditional reservoir modeling techniques often oversimplify fracture networks, leading to inaccurate predictions. Therefore, there is a need for a modern approach that can capture the complexities of carbonate reservoirs and provide reliable predictions for effective reservoir management and production optimization. The modern approach to carbonate reservoir modeling involves the utilization of the hybrid fracture modeling approach, including the discrete fracture network (DFN) method and implicit fracture network, which offer enhanced accuracy and reliability in characterizing complex fracture systems within these reservoirs. This study focuses on the application of the hybrid method in the Nepsko-Botuobinskaya anticline of the Eastern Siberia field, aiming to prove the appropriateness of this method in these geological conditions. The DFN method is adopted to model the fracture network within the carbonate reservoir. This method considers fractures as discrete entities, capturing their geometry, orientation, and connectivity. But the method has significant disadvantages since the number of fractures in the field can be very high. Due to limitations in the amount of main memory, it is very difficult to represent these fractures explicitly. By integrating data from image logs (formation micro imager), core data, and fracture density logs, a discrete fracture network (DFN) model can be constructed to represent fracture characteristics for hydraulically relevant fractures. The results obtained from the DFN modeling approaches provide valuable insights into the East Siberia field's carbonate reservoir behavior. The DFN model accurately captures the fracture system, allowing for a better understanding of fluid flow pathways, connectivity, and potential production zones. The analysis of simulation results enables the identification of zones of increased fracturing and optimization opportunities for reservoir development with the potential application of enhanced oil recovery techniques, which were considered in further simulations on the dual porosity and dual permeability models. This approach considers fractures as separate, interconnected flow paths within the reservoir matrix, allowing for the characterization of dual-porosity media. The case study of the East Siberia field demonstrates the effectiveness of the hybrid model method in accurately representing fracture systems and predicting reservoir behavior. The findings from this study contribute to improved reservoir management and production optimization in carbonate reservoirs with the use of enhanced and improved oil recovery methods.Keywords: carbonate reservoir, discrete fracture network, fracture modeling, dual porosity, enhanced oil recovery, implicit fracture model, hybrid fracture model
Procedia PDF Downloads 758012 Utilization of Secure Wireless Networks as Environment for Learning and Teaching in Higher Education
Authors: Mohammed A. M. Ibrahim
Abstract:
This paper investigate the utilization of wire and wireless networks to be platform for distributed educational monitoring system. Universities in developing countries suffer from a lot of shortages(staff, equipment, and finical budget) and optimal utilization of the wire and wireless network, so universities can mitigate some of the mentioned problems and avoid the problems that maybe humble the education processes in many universities by using our implementation of the examinations system as a test-bed to utilize the network as a solution to the shortages for academic staff in Taiz University. This paper selects a two areas first one quizzes activities is only a test bed application for wireless network learning environment system to be distributed among students. Second area is the features and the security of wireless, our tested application implemented in a promising area which is the use of WLAN in higher education for leering environment.Keywords: networking wire and wireless technology, wireless network security, distributed computing, algorithm, encryption and decryption
Procedia PDF Downloads 3378011 Coffee Consumption and Glucose Metabolism: a Systematic Review of Clinical Trials
Authors: Caio E. G. Reis, Jose G. Dórea, Teresa H. M. da Costa
Abstract:
Objective: Epidemiological data shows an inverse association of coffee consumption with risk of type 2 diabetes mellitus. However, the clinical effects of coffee consumption on the glucose metabolism biomarkers remain controversial. Thus, this paper reviews clinical trials that evaluated the effects of coffee consumption on glucose metabolism. Research Design and Methods: We identified studies published until December 2014 by searching electronic databases and reference lists. We included randomized clinical trials which the intervention group received caffeinated and/or decaffeinated coffee and the control group received water or placebo treatments and measured biomarkers of glucose metabolism. The Jadad Score was applied to evaluate the quality of the studies whereas studies that scored ≥ 3 points were considered for the analyses. Results: Seven clinical trials (total of 237 subjects) were analyzed involving adult healthy, overweight and diabetic subjects. The studies were divided in short-term (1 to 3h) and long-term (2 to 16 weeks) duration. The results for short-term studies showed that caffeinated coffee consumption may increase the area under the curve for glucose response, while for long-term studies caffeinated coffee may improve the glycemic metabolism by reducing the glucose curve and increasing insulin response. These results seem to show that the benefits of coffee consumption occur in the long-term as has been shown in the reduction of type 2 diabetes mellitus risk in epidemiological studies. Nevertheless, until the relationship between long-term coffee consumption and type 2 diabetes mellitus is better understood and any mechanism involved identified, it is premature to make claims about coffee preventing type 2 diabetes mellitus. Conclusion: The findings suggest that caffeinated coffee may impairs glucose metabolism in short-term but in the long-term the studies indicate reduction of type 2 diabetes mellitus risk. More clinical trials with comparable methodology are needed to unravel this paradox.Keywords: coffee, diabetes mellitus type 2, glucose, insulin
Procedia PDF Downloads 4668010 An Energy-Balanced Clustering Method on Wireless Sensor Networks
Authors: Yu-Ting Tsai, Chiun-Chieh Hsu, Yu-Chun Chu
Abstract:
In recent years, due to the development of wireless network technology, many researchers have devoted to the study of wireless sensor networks. The applications of wireless sensor network mainly use the sensor nodes to collect the required information, and send the information back to the users. Since the sensed area is difficult to reach, there are many restrictions on the design of the sensor nodes, where the most important restriction is the limited energy of sensor nodes. Because of the limited energy, researchers proposed a number of ways to reduce energy consumption and balance the load of sensor nodes in order to increase the network lifetime. In this paper, we proposed the Energy-Balanced Clustering method with Auxiliary Members on Wireless Sensor Networks(EBCAM)based on the cluster routing. The main purpose is to balance the energy consumption on the sensed area and average the distribution of dead nodes in order to avoid excessive energy consumption because of the increasing in transmission distance. In addition, we use the residual energy and average energy consumption of the nodes within the cluster to choose the cluster heads, use the multi hop transmission method to deliver the data, and dynamically adjust the transmission radius according to the load conditions. Finally, we use the auxiliary cluster members to change the delivering path according to the residual energy of the cluster head in order to its load. Finally, we compare the proposed method with the related algorithms via simulated experiments and then analyze the results. It reveals that the proposed method outperforms other algorithms in the numbers of used rounds and the average energy consumption.Keywords: auxiliary nodes, cluster, load balance, routing algorithm, wireless sensor network
Procedia PDF Downloads 2748009 Modelling the Long Rune of Aggregate Import Demand in Libya
Authors: Said Yousif Khairi
Abstract:
Being a developing economy, imports of capital, raw materials and manufactories goods are vital for sustainable economic growth. In 2006, Libya imported LD 8 billion (US$ 6.25 billion) which composed of mainly machinery and transport equipment (49.3%), raw material (18%), and food products and live animals (13%). This represented about 10% of GDP. Thus, it is pertinent to investigate factors affecting the amount of Libyan imports. An econometric model representing the aggregate import demand for Libya was developed and estimated using the bounds test procedure, which based on an unrestricted error correction model (UECM). The data employed for the estimation was from 1970–2010. The results of the bounds test revealed that the volume of imports and its determinants namely real income, consumer price index and exchange rate are co-integrated. The findings indicate that the demand for imports is inelastic with respect to income, index price level and The exchange rate variable in the short run is statistically significant. In the long run, the income elasticity is elastic while the price elasticity and the exchange rate remains inelastic. This indicates that imports are important elements for Libyan economic growth in the long run.Keywords: import demand, UECM, bounds test, Libya
Procedia PDF Downloads 3618008 The Effect of Second Language Listening Proficiency on Cognitive Control among Young Adult Bilinguals
Authors: Zhilong Xie, Jinwen Huang, Guofang Zeng
Abstract:
The existing body of research on bilingualism has consistently linked the use of multiple languages to enhanced cognitive control. Numerous studies have demonstrated that bilingual individuals exhibit advantages in non-linguistic tasks demanding cognitive control. However, recent investigations have challenged these findings, leading to a debate regarding the extent and nature of bilingual advantages. The adaptive control hypothesis posits that variations in bilingual experiences hold the key to resolving these controversies. This study aims to contribute to this discussion by exploring the impact of second language (L2) listening experience on cognitive control among young Chinese-English bilinguals. By examining this specific aspect of bilingualism, the study offers a perspective on the origins of bilingual advantages. This study employed a range of cognitive tasks, including the Flanker task, Wisconsin Card Sorting Test (WCST), Operation Span Task (OSPAN), and a second language listening comprehension test. After controlling for potential confounding variables such as intelligence, socioeconomic status, and overall language proficiency, independent sample t-test analysis revealed significant differences in performance between groups with high and low L2 listening proficiency in the Flanker task and OSPAN. However, no significant differences emerged between the two groups in the WCST. These findings suggest that L2 listening proficiency has a significant impact on inhibitory control and working memory but not on conflict monitoring or mental set shifting. These specific findings provide a more nuanced understanding of the origins of bilingual advantages within a specific bilingual context, highlighting the importance of considering the nature of bilingual experience when exploring cognitive benefits.Keywords: bilingual advantage, inhibitory control, L2 listening, working memory
Procedia PDF Downloads 108007 Analytical Downlink Effective SINR Evaluation in LTE Networks
Authors: Marwane Ben Hcine, Ridha Bouallegue
Abstract:
The aim of this work is to provide an original analytical framework for downlink effective SINR evaluation in LTE networks. The classical single carrier SINR performance evaluation is extended to multi-carrier systems operating over frequency selective channels. Extension is achieved by expressing the link outage probability in terms of the statistics of the effective SINR. For effective SINR computation, the exponential effective SINR mapping (EESM) method is used on this work. Closed-form expression for the link outage probability is achieved assuming a log skew normal approximation for single carrier case. Then we rely on the lognormal approximation to express the exponential effective SINR distribution as a function of the mean and standard deviation of the SINR of a generic subcarrier. Achieved formulas is easily computable and can be obtained for a user equipment (UE) located at any distance from its serving eNodeB. Simulations show that the proposed framework provides results with accuracy within 0.5 dB.Keywords: LTE, OFDMA, effective SINR, log skew normal approximation
Procedia PDF Downloads 3658006 The Contribution of SMES to Improve the Transient Stability of Multimachine Power System
Authors: N. Chérif, T. Allaoui, M. Benasla, H. Chaib
Abstract:
Industrialization and population growth are the prime factors for which the consumption of electricity is steadily increasing. Thus, to have a balance between production and consumption, it is necessary at first to increase the number of power plants, lines and transformers, which implies an increase in cost and environmental degradation. As a result, it is now important to have mesh networks and working close to the limits of stability in order to meet these new requirements. The transient stability studies involve large disturbances such as short circuits, loss of work or production group. The consequence of these defects can be very serious, and can even lead to the complete collapse of the network. This work focuses on the regulation means that networks can help to keep their stability when submitted to strong disturbances. The magnetic energy storage-based superconductor (SMES) comprises a superconducting coil short-circuited on it self. When such a system is connected to a power grid is able to inject or absorb the active and reactive power. This system can be used to improve the stability of power systems.Keywords: short-circuit, power oscillations, multiband PSS, power system, SMES, transient stability
Procedia PDF Downloads 4578005 Presentation of HVA Faults in SONELGAZ Underground Network and Methods of Faults Diagnostic and Faults Location
Authors: I. Touaїbia, E. Azzag, O. Narjes
Abstract:
Power supply networks are growing continuously and their reliability is getting more important than ever. The complexity of the whole network comprises numerous components that can fail and interrupt the power supply for the end user. Underground distribution systems are normally exposed to permanent faults, due to specific construction characteristics. In these systems, visual inspection cannot be performed. In order to enhance service restoration, accurate fault location techniques must be applied. This paper describes the different faults that affect the underground distribution system of SONELGAZ (National Society of Electricity and Gas of Algeria), and cable fault location procedure with impulse reflection method (TDR), based in the analyses of the cable response of the electromagnetic impulse, allows cable fault prelocation. The results are obtained from real test in the underground distribution feeder from electrical network of energy distribution company of Souk-Ahras, in order to know the influence of cable characteristics in the types and frequency of faults.Keywords: distribution networks, fault location, TDR, underground cable
Procedia PDF Downloads 5338004 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2618003 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications
Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes
Abstract:
Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM
Procedia PDF Downloads 728002 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour
Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale
Abstract:
Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.Keywords: artificial neural network, back-propagation, tide data, training algorithm
Procedia PDF Downloads 4848001 Financing from Customers for SMEs and Managing Financial Risks: The Role of Customer Relationships
Authors: Yongsheng Guo, Mengyu Lu
Abstract:
This study investigates how Chinese SMEs manage financial risks in financing from customers from the perspectives of ethics and national culture. A grounded theory approach is adopted to identify the causal conditions, actions/interactions, and consequences. 32 interviews were conducted, and systematic coding methods were used to identify themes and categories. This study found that Chinese ethical principles, including integrity, friendship, and reciprocity, and cultural traits, including collectivism, acquaintance society, and long-term orientation, provide conditions for financing from customers. The SMEs establish trust-based relationships with customers through personal communications and social networks and reduce financial risk through diversification, frequent operations, and enterprise reputations. Both customers and SMEs can get benefits like financial resources and customer experiences. This study creates a theoretical framework that connects the causal conditions, processes, and outcomes, providing a deeper understanding of financing from customers. A resource and process capability theory of SMEs and a customer capital and customer value model are proposed to connect accounting and finance concepts. Suggestions are proposed for the authorities as more guidance and regulations are needed for this informal finance.Keywords: CRM, culture, ethics, SME, risk management
Procedia PDF Downloads 458000 Effects of Long Term Whole Body Vibration Training on Lipid Profile of Young Men
Authors: Farshad Ghazalian, Laleh Hakemi, Lotfali Pourkazemi, Maryam Ameri, Seyed Hossein Alavi
Abstract:
Background: The use of whole body vibration (WBV) as an exercise method has rapidly increased over the last decade. The aim of this study was to evaluate long term effects of different amplitudes of whole body vibration training with progressive frequencies on lipid profile of young healthy men. Materials and methods: Thirty three healthy male students were divided randomly in three groups: high amplitude vibration group (n=11), low amplitude vibration group (n=11), and control group (n=11). The vibration training consisted of 5 week whole-body vibration 3 times a week with amplitudes 4 and 2 mm and progressive frequencies from 25 Hz with increments of 5 Hz weekly. Concentrations TG, HDL, LDL, cholesterol, and VLDL before and after 5 weeks of training were measured in plasma samples. Statistical analysis was done using one way analysis of variance. P<0.05 was considered statistically significant. Results: The most important result of the present study is finding no favorable changes of 5-week vibration training with different amplitudes on blood lipid profiles. Discussion and conclusions: It was emphasized that in vibration training there should be a relationship between intensity and volume of exercise and lipid responses in order to improve blood lipoprotein profiles.Keywords: long term, body, vibration training, lipid
Procedia PDF Downloads 4197999 Methodological Analysis and Exploration of Feminist Planning Research in the Field of Urban and Rural Planning
Authors: Xi Zuo
Abstract:
As a part of the urban population that cannot be ignored, women have long been less involved in urban planning due to socio-economic constraints. Urban planning and development have long been influenced by the mainstream "male standard," paying less attention to women's needs for space in the city. However, with the development of the economy and society and the improvement of women's social status, their participation in urban life is gradually increasing, and their needs for the city are diversifying. Therefore, different scholars, planning designers and governmental departments have explored this field in different degrees and directions. This paper summarizes the research on urban planning from women's perspectives and, discusses its strengths, weaknesses, and methodology with specific case studies, and then further discusses the direction of further research on this topic.Keywords: urban planning, feminism, methodology, gender
Procedia PDF Downloads 807998 Improving Fingerprinting-Based Localization System Using Generative AI
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 427997 Military Leadership: Emotion Culture and Emotion Coping in Morally Stressful Situations
Authors: Sofia Nilsson, Alicia Ohlsson, Linda-Marie Lundqvist, Aida Alvinius, Peder Hyllengren, Gerry Larsson
Abstract:
In irregular warfare contexts, military personnel are often presented with morally ambiguous situations where they are aware of the morally correct choice but may feel prevented to follow through with it due to organizational demands. Moral stress and/or injury can be the outcome of the individual’s experienced dissonance. These types of challenges put a large demand on the individual to manage their own emotions and the emotions of others, particularly in the case of a leader. Both the ability and inability for emotional regulation can result in different combinations of short and long term reactions after morally stressful events, which can be either positive or negative. Our study analyzed the combination of these reactions based upon the types of morally challenging events that were described by the subjects. 1)What institutionalized norms concerning emotion regulation are favorable in short-and long-term perspectives after a morally stressful event? 2)What individual emotion-focused coping strategies are favorable in short-and long-perspectives after a morally stressful? To address these questions, we conducted a quantitative study in military contexts in Sweden and Norway on upcoming or current military officers (n=331). We tested a theoretical model built upon a recently developed qualitative study. The data was analyzed using factor analysis, multiple regression analysis and subgroup analyses. The results indicated that an individual’s restriction of emotion in order to achieve an organizational goal, which results in emotional dissonance, can be an effective short term strategy for both the individual and the organization; however, it appears to be unfavorable in a long-term perspective which can result in negative reactions. Our results are intriguing because they showed an increased percentage of reported negative long term reactions (13%), which indicated PTSD-related symptoms in comparison to previous Swedish studies which indicated lower PTSD symptomology.Keywords: emotion culture, emotion coping, emotion management, military
Procedia PDF Downloads 5997996 Evaluating the Perception of Roma in Europe through Social Network Analysis
Authors: Giulia I. Pintea
Abstract:
The Roma people are a nomadic ethnic group native to India, and they are one of the most prevalent minorities in Europe. In the past, Roma were enslaved and they were imprisoned in concentration camps during the Holocaust; today, Roma are subject to hate crimes and are denied access to healthcare, education, and proper housing. The aim of this project is to analyze how the public perception of the Roma people may be influenced by antiziganist and pro-Roma institutions in Europe. In order to carry out this project, we used social network analysis to build two large social networks: The antiziganist network, which is composed of institutions that oppress and racialize Roma, and the pro-Roma network, which is composed of institutions that advocate for and protect Roma rights. Measures of centrality, density, and modularity were obtained to determine which of the two social networks is exerting the greatest influence on the public’s perception of Roma in European societies. Furthermore, data on hate crimes on Roma were gathered from the Organization for Security and Cooperation in Europe (OSCE). We analyzed the trends in hate crimes on Roma for several European countries for 2009-2015 in order to see whether or not there have been changes in the public’s perception of Roma, thus helping us evaluate which of the two social networks has been more influential. Overall, the results suggest that there is a greater and faster exchange of information in the pro-Roma network. However, when taking the hate crimes into account, the impact of the pro-Roma institutions is ambiguous, due to differing patterns among European countries, suggesting that the impact of the pro-Roma network is inconsistent. Despite antiziganist institutions having a slower flow of information, the hate crime patterns also suggest that the antiziganist network has a higher impact on certain countries, which may be due to institutions outside the political sphere boosting the spread of antiziganist ideas and information to the European public.Keywords: applied mathematics, oppression, Roma people, social network analysis
Procedia PDF Downloads 2777995 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks
Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba
Abstract:
Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN
Procedia PDF Downloads 567994 Attributes That Influence Respondents When Choosing a Mate in Internet Dating Sites: An Innovative Matching Algorithm
Authors: Moti Zwilling, Srečko Natek
Abstract:
This paper aims to present an innovative predictive analytics analysis in order to find the best combination between two consumers who strive to find their partner or in internet sites. The methodology shown in this paper is based on analysis of consumer preferences and involves data mining and machine learning search techniques. The study is composed of two parts: The first part examines by means of descriptive statistics the correlations between a set of parameters that are taken between man and women where they intent to meet each other through the social media, usually the internet. In this part several hypotheses were examined and statistical analysis were taken place. Results show that there is a strong correlation between the affiliated attributes of man and woman as long as concerned to how they present themselves in a social media such as "Facebook". One interesting issue is the strong desire to develop a serious relationship between most of the respondents. In the second part, the authors used common data mining algorithms to search and classify the most important and effective attributes that affect the response rate of the other side. Results exhibit that personal presentation and education background are found as most affective to achieve a positive attitude to one's profile from the other mate.Keywords: dating sites, social networks, machine learning, decision trees, data mining
Procedia PDF Downloads 2937993 War Heritage: Different Perceptions of the Dominant Discourse among Visitors to the “Adem Jashari” Memorial Complex in Prekaz
Authors: Zana Llonçari Osmani, Nita Llonçari
Abstract:
In Kosovo, public rhetoric and popular sentiment position the War of 1998-99 (the war) as central to the formation of contemporary Kosovo's national identity. This period was marked by the forced massive displacement of Kosovo Albanians, the destruction of entire settlements, the loss of family members, and the profound emotional trauma experienced by civilians, particularly those who actively participated in the war as members of the Kosovo Liberation Army (KLA). Amidst these profound experiences, the Prekaz Massacre (The Massacre) is widely regarded as the defining event that preceded the final struggles of 1999 and the long-awaited attainment of independence. This study aims to explore how different visitors perceive the dominant discourse at The Memorial, a site dedicated to commemorating the Prekaz Massacre, and to identify the factors that influence their perceptions. The research employs a comprehensive mixed-method approach, combining online surveys, critical discourse analysis of visitor impressions, and content analysis of media representations. The findings of the study highlight the significant role played by original material remains in shaping visitor perceptions of The Memorial in comparison to the curated symbols and figurative representations interspersed throughout the landscape. While the design elements and physical layout of the memorial undeniably hold significance in conveying the memoryscape, there are notable shortcomings in enhancing the overall visitor experience. Visitors are still primarily influenced by the tangible remnants of the war, suggesting that there is room for improvement in how design elements can more effectively contribute to the memorial's narrative and the collective memory of the Prekaz Massacre.Keywords: critical discourse analysis, memorialisation, national discourse, public rhetoric, war tourism
Procedia PDF Downloads 857992 Novel Liposomal Nanocarriers For Long-term Tumor Imaging
Authors: Mohamad Ahrari, Kayvan Sadri, Mahmoud Reza Jafari
Abstract:
PEGylated liposomes have a smaller volume of distribution and decreased clearance, consequently, due to their more prolonged presence in bloodstream and maintaining their stability during this period, these liposomes can be applied for imaging tumoral sites. The purpose of this study is to develop an appropriate radiopharmaceutical agent in long-term imaging for improved diagnosis and evaluation of tumors. In this study, liposomal formulations encapsulating albumin is synthesized by solvent evaporation method along with homogenization, and their characteristics were assessed. Then these liposomes labeled by Philips method and the rate of stability of labeled liposomes in serum, and ultimately the rate of biodistribution and gamma scintigraphy in C26-colon carcinoma tumor-bearing mice, were studied. The result of the study of liposomal characteristics displayed that capable of accumulating in tumor sites based of EPR phenomenon. these liposomes also have high stability for maintaining encapsulated albumin in a long time. In the study of biodistribution of these liposomes in mice, they accumulated more in the kidney, liver, spleen, and tumor sites, which, even after clearing formulations in the bloodstream, they existed in high levels in these organs up to 96 hours. In gamma scintigraphy also, organs with high activity accumulation from early hours up to 96 hours were visible in the form of hot spots. concluded that PEGylated liposomal formulation encapsulating albumin can be labeled with In-Oxine, and obtained stabilized formulation for long-term imaging, that have more favorable conditions for the evaluation of tumors and it will cause early diagnosis of tumors.Keywords: nano liposome, 111In-oxine, imaging, biodistribution, tumor
Procedia PDF Downloads 1137991 Decision Support System for Fetus Status Evaluation Using Cardiotocograms
Authors: Oyebade K. Oyedotun
Abstract:
The cardiotocogram is a technical recording of the heartbeat rate and uterine contractions of a fetus during pregnancy. During pregnancy, several complications can occur to both the mother and the fetus; hence it is very crucial that medical experts are able to find technical means to check the healthiness of the mother and especially the fetus. It is very important that the fetus develops as expected in stages during the pregnancy period; however, the task of monitoring the health status of the fetus is not that which is easily achieved as the fetus is not wholly physically available to medical experts for inspection. Hence, doctors have to resort to some other tests that can give an indication of the status of the fetus. One of such diagnostic test is to obtain cardiotocograms of the fetus. From the analysis of the cardiotocograms, medical experts can determine the status of the fetus, and therefore necessary medical interventions. Generally, medical experts classify examined cardiotocograms into ‘normal’, ‘suspect’, or ‘pathological’. This work presents an artificial neural network based decision support system which can filter cardiotocograms data, producing the corresponding statuses of the fetuses. The capability of artificial neural network to explore the cardiotocogram data and learn features that distinguish one class from the others has been exploited in this research. In this research, feedforward and radial basis neural networks were trained on a publicly available database to classify the processed cardiotocogram data into one of the three classes: ‘normal’, ‘suspect’, or ‘pathological’. Classification accuracies of 87.8% and 89.2% were achieved during the test phase of the trained network for the feedforward and radial basis neural networks respectively. It is the hope that while the system described in this work may not be a complete replacement for a medical expert in fetus status evaluation, it can significantly reinforce the confidence in medical diagnosis reached by experts.Keywords: decision support, cardiotocogram, classification, neural networks
Procedia PDF Downloads 3327990 Improving Fingerprinting-Based Localization (FPL) System Using Generative Artificial Intelligence (GAI)
Authors: Getaneh Berie Tarekegn, Li-Chia Tai
Abstract:
With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine
Procedia PDF Downloads 477989 Study of Energy Efficient and Quality of Service Based Routing Protocols in Wireless Sensor Networking
Authors: Sachin Sharma
Abstract:
A wireless sensor network (WSN) consists of a large number of sensor nodes which are deployed over an area to perform local computations based on information gathered from the surroundings. With the increasing demand for real-time applications in WSN, real-time critical events anticipate an efficient quality-of-service (QoS) based routing for data delivery from the network infrastructure. Hence, maximizing the lifetime of the network through minimizing the energy is an important challenge in WSN; sensors cannot be easily replaced or recharged due to their ad-hoc deployment in a hazardous environment. Considerable research has been focused on developing robust energy efficient QoS based routing protocols. The main focus of this article is primarily on periodical cycling schemes which represent the most compatible technique for energy saving and we also focus on the data-driven approaches that can be used to improve the energy efficiency. Finally, we will make a review on some communication protocols proposed for sensor networks.Keywords: energy efficient, quality of service, wireless sensor networks, MAC
Procedia PDF Downloads 3487988 Poster : Incident Signals Estimation Based on a Modified MCA Learning Algorithm
Authors: Rashid Ahmed , John N. Avaritsiotis
Abstract:
Many signal subspace-based approaches have already been proposed for determining the fixed Direction of Arrival (DOA) of plane waves impinging on an array of sensors. Two procedures for DOA estimation based neural networks are presented. First, Principal Component Analysis (PCA) is employed to extract the maximum eigenvalue and eigenvector from signal subspace to estimate DOA. Second, minor component analysis (MCA) is a statistical method of extracting the eigenvector associated with the smallest eigenvalue of the covariance matrix. In this paper, we will modify a Minor Component Analysis (MCA(R)) learning algorithm to enhance the convergence, where a convergence is essential for MCA algorithm towards practical applications. The learning rate parameter is also presented, which ensures fast convergence of the algorithm, because it has direct effect on the convergence of the weight vector and the error level is affected by this value. MCA is performed to determine the estimated DOA. Preliminary results will be furnished to illustrate the convergences results achieved.Keywords: Direction of Arrival, neural networks, Principle Component Analysis, Minor Component Analysis
Procedia PDF Downloads 4517987 Cognitive Deficits and Association with Autism Spectrum Disorder and Attention Deficit Hyperactivity Disorder in 22q11.2 Deletion Syndrome
Authors: Sinead Morrison, Ann Swillen, Therese Van Amelsvoort, Samuel Chawner, Elfi Vergaelen, Michael Owen, Marianne Van Den Bree
Abstract:
22q11.2 Deletion Syndrome (22q11.2DS) is caused by the deletion of approximately 60 genes on chromosome 22 and is associated with high rates of neurodevelopmental disorders such as Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorders (ASD). The presentation of these disorders in 22q11.2DS is reported to be comparable to idiopathic forms and therefore presents a valuable model for understanding mechanisms of neurodevelopmental disorders. Cognitive deficits are thought to be a core feature of neurodevelopmental disorders, and possibly manifest in behavioural and emotional problems. There have been mixed findings in 22q11.2DS on whether the presence of ADHD or ASD is associated with greater cognitive deficits. Furthermore, the influence of developmental stage has never been taken into account. The aim was therefore to examine whether the presence of ADHD or ASD was associated with cognitive deficits in childhood and/or adolescence in 22q11.2DS. We conducted the largest study to date of this kind in 22q11.2DS. The same battery of tasks measuring processing speed, attention and spatial working memory were completed by 135 participants with 22q11.2DS. Wechsler IQ tests were completed, yielding Full Scale (FSIQ), Verbal (VIQ) and Performance IQ (PIQ). Age-standardised difference scores were produced for each participant. Developmental stages were defined as children (6-10 years) and adolescents (10-18 years). ADHD diagnosis was ascertained from a semi-structured interview with a parent. ASD status was ascertained from a questionnaire completed by a parent. Interaction and main effects of cognitive performance of those with or without a diagnosis of ADHD or ASD in childhood or adolescence were conducted with 2x2 ANOVA. Significant interactions were followed up with t-tests of simple effects. Adolescents with ASD displayed greater deficits in all measures (processing speed, p = 0.022; sustained attention, p = 0.016; working memory, p = 0.006) than adolescents without ASD; there was no difference between children with and without ASD. There were no significant differences on IQ measures. Both children and adolescents with ADHD displayed greater deficits on sustained attention (p = 0.002) than those without ADHD. There were no significant differences on any other measures for ADHD. Magnitude of cognitive deficit in individuals with 22q11.2DS varied by cognitive domain, developmental stage and presence of neurodevelopmental disorder. Adolescents with 22q11.2DS and ASD showed greater deficits on all measures, which suggests there may be a sensitive period in childhood to acquire these domains, or reflect increasing social and academic demands in adolescence. The finding of poorer sustained attention in children and adolescents with ADHD supports previous research and suggests a specific deficit which can be separated from processing speed and working memory. This research provides unique insights into the association of ASD and ADHD with cognitive deficits in a group at high genomic risk of neurodevelopmental disorders.Keywords: 22q11.2 deletion syndrome, attention deficit hyperactivity disorder, autism spectrum disorder, cognitive development
Procedia PDF Downloads 151