Search results for: artificial stock market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5900

Search results for: artificial stock market

4370 Enhancing the Performance of Bug Reporting System by Handling Duplicate Reporting Reports: Artificial Intelligence Based Mantis

Authors: Afshan Saad, Muhammad Saad, Shah Muhammad Emaduddin

Abstract:

Bug reporting systems are most important tool that guides regarding different maintenance activities in software engineering. Duplicate bug reports which describe the bugs and issues in bug reporting system repository increases processing time of bug triage that monitors all such activities and software programmers who are working and spending time on reports which were assigned by triage. These reports can reveal imperfections and degrade software quality. As there is a number of the potential duplicate bug reports increases, the number of bug reports in bug repository increases. Identifying duplicate bug reports help in decreasing development work load in fixing defects. However, it is difficult to manually identify all possible duplicates because of the huge number of already reported bug reports. In this paper, an artificial intelligence based system using Mantis is proposed to automatically detect duplicate bug reports. When new bugs are submitted to repository triages will mark it with a tag. It will investigate that whether it is a duplicate of an existing bug report by matching or not. Reports with duplicate tags will be eliminated from the repository which not only will improve the performance of the system but can also save cost and effort waste on bug triage and finding the duplicate bug.

Keywords: bug tracking, triager, tool, quality assurance

Procedia PDF Downloads 194
4369 State of Conservation of the British Colonial Architectural Heritage of Karachi: Case Study of Damage Mapping of Empress Market Building

Authors: Tania Ali Soomro

Abstract:

In 1839, the British, after the annexation of the port city of Karachi, established a new urban centre consisting of various quarters and introduced new settlements there. These quarters were out of the boundaries of fortified native old area and now contain much of the oldest parts of the city and signify the colonial history of Karachi, in particular the Saddar Bazaar and the neighboring areas of Kharadar and Mithadar. These quarters bestow a mix of functional typology built in a hybrid form of construction - an adaptation of the western architectural attributes to regional requirements and characteristics. This approach is referred to as the Anglo Vernacular, Colonial or the Domestic Gothic architectural form. This research paper investigates the historical and architectural value of one such property: the Empress Market designed by then Municipal Architect, Ar. James Strachan in 1889 as a commemorative monument for the jubilee of Her Majesty the Queen Victoria; Empress of British India, at that time. This paper presents information on the present conservation status of the market building and highlights its role as a catalyst to the community interconnection. This building has survived to present day and functioned well, despite undergoing numerous transformations. A detailed analysis of the bio-degradation (Natural-Chemical dissolution of material) and the bio-deterioration (Manmade-Negative state change of the material) of the building, based on the examination of the prevailing causes of these bio-alterations is carried out, and is presented in form of a damage atlas containing both the categories of bio-alteration/ changes occurred to the building over the time. The research methodology followed in this paper starts with the available archival analysis, physical observation, photographic documentation, the statistics review and the interviews with the direct and indirect stakeholders. The results and findings of this research portray that these bio-alterations and changes are the essential part of the life cycle of Empress Market building which illustrate the historic development of the premise and therefore ought to be given due importance (depending upon their condition) while developing the conservation plan for the building.

Keywords: British colonial architecture, bio-alteration, bio-degradation, bio-deterioration, domestic gothic architectural form

Procedia PDF Downloads 150
4368 A Real Time Set Up for Retrieval of Emotional States from Human Neural Responses

Authors: Rashima Mahajan, Dipali Bansal, Shweta Singh

Abstract:

Real time non-invasive Brain Computer Interfaces have a significant progressive role in restoring or maintaining a quality life for medically challenged people. This manuscript provides a comprehensive review of emerging research in the field of cognitive/affective computing in context of human neural responses. The perspectives of different emotion assessment modalities like face expressions, speech, text, gestures, and human physiological responses have also been discussed. Focus has been paid to explore the ability of EEG (Electroencephalogram) signals to portray thoughts, feelings, and unspoken words. An automated workflow-based protocol to design an EEG-based real time Brain Computer Interface system for analysis and classification of human emotions elicited by external audio/visual stimuli has been proposed. The front end hardware includes a cost effective and portable Emotive EEG Neuroheadset unit, a personal computer and a set of external stimulators. Primary signal analysis and processing of real time acquired EEG shall be performed using MATLAB based advanced brain mapping toolbox EEGLab/BCILab. This shall be followed by the development of MATLAB based self-defined algorithm to capture and characterize temporal and spectral variations in EEG under emotional stimulations. The extracted hybrid feature set shall be used to classify emotional states using artificial intelligence tools like Artificial Neural Network. The final system would result in an inexpensive, portable and more intuitive Brain Computer Interface in real time scenario to control prosthetic devices by translating different brain states into operative control signals.

Keywords: brain computer interface, electroencephalogram, EEGLab, BCILab, emotive, emotions, interval features, spectral features, artificial neural network, control applications

Procedia PDF Downloads 317
4367 An Exploratory Study of Potential Cruisers Preferences Using Choice Experiment and Latent Class Modelling

Authors: Renuka Mahadevan, Sharon Chang

Abstract:

This exploratory study is based on potential cruisers’ monetary valuation of cruise attributes. Using choice experiment, monetary trade-offs between four different cruise attributes are examined with Australians as a case study. We found 50% of the sample valued variety of onboard cruise activities the least while 30% were willing to pay A$87 for cruise-organised activities per day, and the remaining 20% regarded an ocean view to be most valuable at A$125. Latent class modelling was then applied and results revealed that potential cruisers’ valuation of the attributes can be used to segment the market into adventurers, budget conscious and comfort lovers. Evidence showed that socio demographics are not as insightful as lifestyle preferences in developing cruise packages and pricing that would appeal to potential cruisers. Marketing also needs to counter the mindset of potential cruisers’ belief that cruises are often costly and that cruising can be done later in life.

Keywords: latent class modelling, choice experiment, potential cruisers, market segmentation, willingness to pay

Procedia PDF Downloads 81
4366 Analyzing and Predicting the CL-20 Detonation Reaction Mechanism Based on Artificial Intelligence Algorithm

Authors: Kaining Zhang, Lang Chen, Danyang Liu, Jianying Lu, Kun Yang, Junying Wu

Abstract:

In order to solve the problem of a large amount of simulation and limited simulation scale in the first-principle molecular dynamics simulation of energetic material detonation reaction, we established an artificial intelligence model for analyzing and predicting the detonation reaction mechanism of CL-20 based on the first-principle molecular dynamics simulation of the multiscale shock technique (MSST). We employed principal component analysis to identify the dominant charge features governing molecular reactions. We adopted the K-means clustering algorithm to cluster the reaction paths and screen out the key reactions. We introduced the neural network algorithm to construct the mapping relationship between the charge characteristics of the molecular structure and the key reaction characteristics so as to establish a calculation method for predicting detonation reactions based on the charge characteristics of CL-20 and realize the rapid analysis of the reaction mechanism of energetic materials.

Keywords: energetic material detonation reaction, first-principle molecular dynamics simulation of multiscale shock technique, neural network, CL-20

Procedia PDF Downloads 113
4365 Effects of an Economic Recession on Executive Compensation: A Panel Analysis of Listed Companies in Brazil

Authors: Joaquim Rubens Fontes-Filho, Felipe Buchbinder, Marcelo Desterro

Abstract:

The study aims to identify the effects of an economic recession on the compensation of executives of listed companies. Market-based and labor environment explanations have received particular attention, both to explain the reasons for a growth in this compensation and to indicate that they may increase agency problems rather than mitigate them. In this sense, labor forces, especially related to the market for executives, contribute to defining the terms of compensation packages and represent a significant external control mechanism to moderate agency problems, but may be of little effect if the executives are entrenched and concentrate enough power to have a say in his/her compensation. Based on a five-year data panel related to executive compensation in 250 listed companies in Brazil, we examine whether the economic recession in the last two years produced any impact in this compensation, controlling for the sector and level of governance of the company.

Keywords: agency problems, executive compensation, control mechanisms, corporate governance

Procedia PDF Downloads 445
4364 Carbon Pool Assessment in Community Forests, Nepal

Authors: Medani Prasad Rijal

Abstract:

Forest itself is a factory as well as product. It supplies tangible and intangible goods and services. It supplies timber, fuel wood, fodder, grass leaf litter as well as non timber edible goods and medicinal and aromatic products additionally provides environmental services. These environmental services are of local, national or even global importance. In Nepal, more than 19 thousands community forests are providing environmental service in less economic benefit than actual efficiency. There is a risk of cost of management of those forest exceeds benefits and forests get converted to open access resources in future. Most of the environmental goods and services do not have markets which mean no prices at which they are available to the consumers, therefore the valuation of these services goods and services establishment of paying mechanism for such services and insure the benefit to community is more relevant in local as well as global scale. There are few examples of carbon trading in domestic level to meet the country wide emission goal. In this contest, the study aims to explore the public attitude towards carbon offsetting and their responsibility over service providers. This study helps in promotion of environment service awareness among general people, service provider and community forest. The research helps to unveil the carbon pool scenario in community forest and willingness to pay for carbon offsetting of people who are consuming more energy than general people and emitting relatively more carbon in atmosphere. The study has assessed the carbon pool status in two community forest and valuated carbon service from community forest through willingness to pay in Dharan municipality situated in eastern. In the study, in two community forests carbon pools were assessed following the guideline “Forest Carbon Inventory Guideline 2010” prescribed by Ministry of Forest and soil Conservation, Nepal. Final outcomes of analysis in intensively managed area of Hokse CF recorded as 103.58 tons C /ha with 6173.30 tons carbon stock. Similarly in Hariyali CF carbon density was recorded 251.72 mg C /ha. The total carbon stock of intensively managed blocks in Hariyali CF is 35839.62 tons carbon.

Keywords: carbon, offsetting, sequestration, valuation, willingness to pay

Procedia PDF Downloads 355
4363 Application of Artificial Intelligence to Schedule Operability of Waterfront Facilities in Macro Tide Dominated Wide Estuarine Harbour

Authors: A. Basu, A. A. Purohit, M. M. Vaidya, M. D. Kudale

Abstract:

Mumbai, being traditionally the epicenter of India's trade and commerce, the existing major ports such as Mumbai and Jawaharlal Nehru Ports (JN) situated in Thane estuary are also developing its waterfront facilities. Various developments over the passage of decades in this region have changed the tidal flux entering/leaving the estuary. The intake at Pir-Pau is facing the problem of shortage of water in view of advancement of shoreline, while jetty near Ulwe faces the problem of ship scheduling due to existence of shallower depths between JN Port and Ulwe Bunder. In order to solve these problems, it is inevitable to have information about tide levels over a long duration by field measurements. However, field measurement is a tedious and costly affair; application of artificial intelligence was used to predict water levels by training the network for the measured tide data for one lunar tidal cycle. The application of two layered feed forward Artificial Neural Network (ANN) with back-propagation training algorithms such as Gradient Descent (GD) and Levenberg-Marquardt (LM) was used to predict the yearly tide levels at waterfront structures namely at Ulwe Bunder and Pir-Pau. The tide data collected at Apollo Bunder, Ulwe, and Vashi for a period of lunar tidal cycle (2013) was used to train, validate and test the neural networks. These trained networks having high co-relation coefficients (R= 0.998) were used to predict the tide at Ulwe, and Vashi for its verification with the measured tide for the year 2000 & 2013. The results indicate that the predicted tide levels by ANN give reasonably accurate estimation of tide. Hence, the trained network is used to predict the yearly tide data (2015) for Ulwe. Subsequently, the yearly tide data (2015) at Pir-Pau was predicted by using the neural network which was trained with the help of measured tide data (2000) of Apollo and Pir-Pau. The analysis of measured data and study reveals that: The measured tidal data at Pir-Pau, Vashi and Ulwe indicate that there is maximum amplification of tide by about 10-20 cm with a phase lag of 10-20 minutes with reference to the tide at Apollo Bunder (Mumbai). LM training algorithm is faster than GD and with increase in number of neurons in hidden layer and the performance of the network increases. The predicted tide levels by ANN at Pir-Pau and Ulwe provides valuable information about the occurrence of high and low water levels to plan the operation of pumping at Pir-Pau and improve ship schedule at Ulwe.

Keywords: artificial neural network, back-propagation, tide data, training algorithm

Procedia PDF Downloads 483
4362 Housing Price Dynamics: Comparative Study of 1980-1999 and the New Millenium

Authors: Janne Engblom, Elias Oikarinen

Abstract:

The understanding of housing price dynamics is of importance to a great number of agents: to portfolio investors, banks, real estate brokers and construction companies as well as to policy makers and households. A panel dataset is one that follows a given sample of individuals over time, and thus provides multiple observations on each individual in the sample. Panel data models include a variety of fixed and random effects models which form a wide range of linear models. A special case of panel data models is dynamic in nature. A complication regarding a dynamic panel data model that includes the lagged dependent variable is endogeneity bias of estimates. Several approaches have been developed to account for this problem. In this paper, the panel models were estimated using the Common Correlated Effects estimator (CCE) of dynamic panel data which also accounts for cross-sectional dependence which is caused by common structures of the economy. In presence of cross-sectional dependence standard OLS gives biased estimates. In this study, U.S housing price dynamics were examined empirically using the dynamic CCE estimator with first-difference of housing price as the dependent and first-differences of per capita income, interest rate, housing stock and lagged price together with deviation of housing prices from their long-run equilibrium level as independents. These deviations were also estimated from the data. The aim of the analysis was to provide estimates with comparisons of estimates between 1980-1999 and 2000-2012. Based on data of 50 U.S cities over 1980-2012 differences of short-run housing price dynamics estimates were mostly significant when two time periods were compared. Significance tests of differences were provided by the model containing interaction terms of independents and time dummy variable. Residual analysis showed very low cross-sectional correlation of the model residuals compared with the standard OLS approach. This means a good fit of CCE estimator model. Estimates of the dynamic panel data model were in line with the theory of housing price dynamics. Results also suggest that dynamics of a housing market is evolving over time.

Keywords: dynamic model, panel data, cross-sectional dependence, interaction model

Procedia PDF Downloads 251
4361 The Role of Privatization on the Formulation of Productive Supply Chain: The Case of Ethiopian Firms

Authors: Merhawit Fisseha Gebremariam, Yohannes Yebabe Tesfay

Abstract:

This study focuses on the formulation of a sustainable, effective, and efficient supply chain strategy framework that will enable Ethiopian privatized firms. The study examined the role of privatization in productive sourcing, production, and delivery to Ethiopian firm’s performances. To analyze our hypothesis, the authors applied the concepts of Key Performance Indicator (KPI), strategic outsourcing, purchasing portfolio analysis, and Porter's marketing analysis. The authors selected ten privatized companies and compared their financial, market expansion, and sustainability performances. The Chi-Square Test showed that at the 5% level of significance, privatization and outsourcing activities can assist the business performances of Ethiopian firms in terms of product promotion and new market expansion. At the 5% level of significance, the independent t-test result showed that firms that were privatized by Ethiopian investors showed stronger financial performance than those that were privatized by foreign investors. Furthermore, it is better if Ethiopian firms apply both cost leadership and differentiated strategy to enhance thriving in their business area. Ethiopian firms need to implement the supply chain operations reference (SCOR) model for an exclusive framework that supports communication links the supply chain partners, and enhances productivity. The government of Ethiopia should be aware that the privatization of firms by Ethiopian investors will strengthen the economy. Otherwise, the privatization process will be risky for the country, and therefore, the government of Ethiopia should stop doing those activities.

Keywords: correlation analysis, market strategies, KPIs, privatization, risk and Ethiopia

Procedia PDF Downloads 68
4360 Green Innovation and Artificial Intelligence in Service

Authors: Fatemeh Khalili Varnamkhasti

Abstract:

Numerous nations have recognized the critical ought to address natural issues, such as discuss contamination, squander transfer, worldwide warming, and common asset consumption, through the application of green innovation. The rise of cleverly advances has driven mechanical basic changes that will offer assistance accomplish carbon decrease. Manufactured insights (AI) innovation is an imperative portion of digitalization, giving unused mechanical apparatuses and bearings for the moo carbon advancement of endeavors. Quickening the brilliantly change of fabricating industry is an critical vital choice to realize the green advancement change. The reason why fabricating insights can advance the advancement of green advancement execution is that fabricating insights is conducive to the generation of "innovation advancement impact" and "fetched decrease impact" so as to advance green innovation advancement, at that point viably increment the alluring yields and essentially diminish the undesirable yields. AI improvement will boost GTI as it were when the escalated of natural direction and organization environment is over a certain edge esteem. In any case, the AI improvement spoken to by mechanical robot applications still has no self-evident impact on GTI, indeed, when the R&D venture surpasses a certain edge.

Keywords: greenhouse gas emissions, green infrastructure, artificial intelligence, environmental protection

Procedia PDF Downloads 70
4359 The Role of the Basel Accords in Mitigating Systemic Risk

Authors: Wassamon Kun-Amornpong

Abstract:

When a financial crisis occurs, there will be a law and regulatory reform in order to manage the turmoil and prevent a future crisis. One of the most important regulatory efforts to help cope with systemic risk and a financial crisis is the third version of the Basel Accord. Basel III has introduced some measures and tools (e.g., systemic risk buffer, countercyclical buffer, capital conservation buffer and liquidity risk) in order to mitigate systemic risk. Nevertheless, the effectiveness of these measures in Basel III in adequately addressing the problem of contagious runs that can quickly spread throughout the financial system is questionable. This paper seeks to contribute to the knowledge regarding the role of the Basel Accords in mitigating systemic risk. The research question is to what extent the Basel Accords can help control systemic risk in the financial markets? The paper tackles this question by analysing the concept of systemic risk. It will then examine the weaknesses of the Basel Accords before and after the Global financial crisis in 2008. Finally, it will suggest some possible solutions in order to improve the Basel Accord. The rationale of the study is the fact that academic works on systemic risk and financial crises are largely studied from economic or financial perspective. There is comparatively little research from the legal and regulatory perspective. The finding of the paper is that there are some problems in all of the three pillars of the Basel Accords. With regards to Pillar I, the risk model is excessively complex while the benefits of its complexity are doubtful. Concerning Pillar II, the effectiveness of the risk-based supervision in preventing systemic risk still depends largely upon its design and implementation. Factors such as organizational culture of the regulator and the political context within which the risk-based supervision operates might be a barrier against the success of Pillar II. Meanwhile, Pillar III could not provide adequate market discipline as market participants do not always act in a rational way. In addition, the too-big-to-fail perception reduced the incentives of the market participants to monitor risks. There has been some development in resolution measure (e.g. TLAC and MREL) which might potentially help strengthen the incentive of the market participants to monitor risks. However, those measures have some weaknesses. The paper argues that if the weaknesses in the three pillars are resolved, it can be expected that the Basel Accord could contribute to the mitigation of systemic risk in a more significant way in the future.

Keywords: Basel accords, financial regulation, risk-based supervision, systemic risk

Procedia PDF Downloads 128
4358 Artificial Neural Network and Statistical Method

Authors: Tomas Berhanu Bekele

Abstract:

Traffic congestion is one of the main problems related to transportation in developed as well as developing countries. Traffic control systems are based on the idea of avoiding traffic instabilities and homogenizing traffic flow in such a way that the risk of accidents is minimized and traffic flow is maximized. Lately, Intelligent Transport Systems (ITS) has become an important area of research to solve such road traffic-related issues for making smart decisions. It links people, roads and vehicles together using communication technologies to increase safety and mobility. Moreover, accurate prediction of road traffic is important to manage traffic congestion. The aim of this study is to develop an ANN model for the prediction of traffic flow and to compare the ANN model with the linear regression model of traffic flow predictions. Data extraction was carried out in intervals of 15 minutes from the video player. Video of mixed traffic flow was taken and then counted during office work in order to determine the traffic volume. Vehicles were classified into six categories, namely Car, Motorcycle, Minibus, mid-bus, Bus, and Truck vehicles. The average time taken by each vehicle type to travel the trap length was measured by time displayed on a video screen.

Keywords: intelligent transport system (ITS), traffic flow prediction, artificial neural network (ANN), linear regression

Procedia PDF Downloads 67
4357 Exploration of Artificial Neural Network and Response Surface Methodology in Removal of Industrial Effluents

Authors: Rakesh Namdeti

Abstract:

Toxic dyes found in industrial effluent must be treated before being disposed of due to their harmful impact on human health and aquatic life. Thus, Musa acuminata (Banana Leaves) was employed in the role of a biosorbent in this work to get rid of methylene blue derived from a synthetic solution. The effects of five process parameters, such as temperature, pH, biosorbent dosage, and initial methylene blue concentration, using a central composite design (CCD), and the percentage of dye clearance were investigated. The response was modelled using a quadratic model based on the CCD. The analysis of variance revealed the most influential element on experimental design response (ANOVA). The temperature of 44.30C, pH of 7.1, biosorbent dose of 0.3 g, starting methylene blue concentration of 48.4 mg/L, and 84.26 percent dye removal were the best conditions for Musa acuminata (Banana leave powder). At these ideal conditions, the experimental percentage of biosorption was 76.93. The link between the estimated results of the developed ANN model and the experimental results defined the success of ANN modeling. As a result, the study's experimental results were found to be quite close to the model's predicted outcomes.

Keywords: Musa acuminata, central composite design, methylene blue, artificial neural network

Procedia PDF Downloads 76
4356 Microstructural Interactions of Ag and Sc Alloying Additions during Casting and Artificial Ageing to a T6 Temper in a A356 Aluminium Alloy

Authors: Dimitrios Bakavos, Dimitrios Tsivoulas, Chaowalit Limmaneevichitr

Abstract:

Aluminium cast alloys, of the Al-Si system, are widely used for shape castings. Their microstructures can be further improved on one hand, by alloying modification and on the other, by optimised artificial ageing. In this project four hypoeutectic Al-alloys, the A356, A356+ Ag, A356+Sc, and A356+Ag+Sc have been studied. The interactions of Ag and Sc during solidification and artificial ageing at 170°C to a T6 temper have been investigated in details. The evolution of the eutectic microstructure is studied by thermal analysis and interrupted solidification. The ageing kinetics of the alloys has been identified by hardness measurements. The precipitate phases, number density, and chemical composition has been analysed by means of transmission electron microscopy (TEM) and EDS analysis. Furthermore, the SHT effect onto the Si eutectic particles for the four alloys has been investigated by means of optical microscopy, image analysis, and the UTS strength has been compared with the UTS of the alloys after casting. The results suggest that the Ag additions, significantly enhance the ageing kinetics of the A356 alloy. The formation of β” precipitates were kinetically accelerated and an increase of 8% and 5% in peak hardness strength has been observed compared to the base A356 and A356-Sc alloy. The EDS analysis demonstrates that Ag is present on the β” precipitate composition. After prolonged ageing 100 hours at 170°C, the A356-Ag exhibits 17% higher hardness strength compared to the other three alloys. During solidification, Sc additions change the macroscopic eutectic growth mode to the propagation of a defined eutectic front from the mold walls opposite to the heat flux direction. In contrast, Ag has no significance effect on the solidification mode revealing a macroscopic eutectic growth similar to A356 base alloy. However, the mechanical strength of the as cast A356-Ag, A356-Sc, and A356+Ag+Sc additions has increased by 5, 30, and 35 MPa, respectively. The outcome is a tribute to the refining of the eutectic Si that takes place which it is strong in the A356-Sc alloy and more profound when silver and scandium has been combined. Moreover after SHT the Al alloy with the highest mechanical strength, is the one with Ag additions, in contrast to the as-cast condition where the Sc and Sc+Ag alloy was the strongest. The increase of strength is mainly attributed to the dissolution of grain boundary precipitates the increase of the solute content into the matrix, the spherodisation, and coarsening of the eutectic Si. Therefore, we could safely conclude for an A356 hypoeutectic alloy additions of: Ag exhibits a refining effect on the Si eutectic which is improved when is combined with Sc. In addition Ag enhance, the ageing kinetics increases the hardness and retains its strength at prolonged artificial ageing in a Al-7Si 0.3Mg hypoeutectic alloy. Finally the addition of Sc is beneficial due to the refinement of the α-Al grain and modification-refinement of the eutectic Si increasing the strength of the as-cast product.

Keywords: ageing, casting, mechanical strength, precipitates

Procedia PDF Downloads 498
4355 Monitoring of Pesticide Content in Biscuits Available on the Vojvodina Market, Serbia

Authors: Ivana Loncarevic, Biljana Pajin, Ivana Vasiljevic, Milana Lazovic, Danica Mrkajic, Aleksandar Fises, Strahinja Kovacevic

Abstract:

Biscuits belong to a group of flour-confectionery products that are considerably consumed worldwide. The basic raw material for their production is wheat flour or integral flour as a nutritionally highly valuable component. However, this raw material is also a potential source of contamination since it may contain the residues of biochemical compounds originating from plant and soil protection agents. Therefore, it is necessary to examine the health safety of both raw materials and final products. The aim of this research was to examine the content of undesirable residues of pesticides (mostly organochlorine pesticides, organophosphorus pesticides, carbamate pesticides, triazine pesticides, and pyrethroid pesticides) in 30 different biscuit samples of domestic origin present on the Vojvodina market using Gas Chromatograph Thermo ISQ/Trace 1300. The results showed that all tested samples had the limit of detection of pesticide content below 0.01 mg/kg, indicating that this type of confectionary products is not contaminated with pesticides.

Keywords: biscuits, pesticides, contamination, quality

Procedia PDF Downloads 184
4354 Military Use of Artificial Intelligence under International Humanitarian Law: Insights from Canada

Authors: Mahshid TalebianKiakalayeh

Abstract:

As AI technologies can be used by both civilians and soldiers, it is vital to consider the consequences emanating from AI military as well as civilian use. Indeed, many of the same technologies can have a dual-use. This paper will explore the military uses of AI and assess its compliance with international legal norms. AI developments not only have changed the capacity of the military to conduct complex operations but have also increased legal concerns. The existence of a potential legal vacuum in legal principles on the military use of AI indicates the necessity of more study on compliance with International Humanitarian Law (IHL), the branch of international law which governs the conduct of hostilities. While capabilities of new means of military AI continue to advance at incredible rates, this body of law is seeking to limit the methods of warfare protecting civilian persons who are not participating in an armed conflict. Implementing AI in the military realm would result in potential issues, including ethical and legal challenges. For instance, when intelligence can perform any warfare task without any human involvement, a range of humanitarian debates will be raised as to whether this technology might distinguish between military and civilian targets or not. This is mainly because AI in fully military systems would not seem to carry legal and ethical judgment, which can interfere with IHL principles. The paper will take, as a case study, Canada’s compliance with IHL in the area of AI and the related legal issues that are likely to arise as this country continues to develop military uses of AI.

Keywords: artificial intelligence, military use, international humanitarian law, the Canadian perspective

Procedia PDF Downloads 186
4353 Exploring Transitions between Communal- and Market-Based Knowledge Sharing

Authors: Benbya Hind, Belbaly Nassim

Abstract:

Markets and communities are often cast as alternative forms of knowledge sharing, but an open question is how and why people dynamically transition between them. To study these transitions, we design a technology that allows geographically distributed participants to either buy knowledge (using virtual points) or request it for free. We use a data-driven, inductive approach, studying 550 members in over 5000 interactions, during nine months. Because the technology offered participants choices between market or community forms, we can document both individual and collective transitions that emerge as people cycle between these forms. Our inductive analysis revealed that uncertainties endemic to knowledge sharing were the impetus for these transitions. Communities evoke uncertainties about knowledge sharing’s costs and benefits, which markets resolve by quantifying explicit prices. However, if people manipulate markets, they create uncertainties about the validity of those prices, allowing communities to reemerge to establish certainty via identity-based validation.

Keywords: knowledge sharing, communities, information technology design, transitions, markets

Procedia PDF Downloads 180
4352 A User Centred Based Approach for Designing Everyday Product: A Case Study of an Alarm Clock

Authors: Obokhai Kess Asikhia

Abstract:

This work explores design concept generation by understanding user needs through observation and interview. The aim is to examine several principles and guidelines in obtaining evidence from observing how users interact with the targeted product and interviewing them to acquire deep insights of their needs. With the help of Quality Function Deployment (QFD), the identified needs of the users while interacting with the product were ranked using the normalised weighting approach. Furthermore, a low fidelity prototype of the alarm clock is developed with a view of addressing the identified needs of the users. Finally, the low fidelity prototype design was evaluated with two design prototypes already existing in the market through a study involving 30 participants. Preliminary results reveal higher performance ratings by the majority of the participants of the new prototype compared to the other existing alarm clocks in the market used in the study.

Keywords: design concept, low fidelity prototype, normalised weighting approach, quality function deployment, user needs

Procedia PDF Downloads 184
4351 Particle Separation Using Individually-Controlled Magnetic Soft Artificial Cilia

Authors: Yau-Luen Ng, Nathan Banka, Santosh Devasia

Abstract:

In this paper, a method based on soft artificial cilia is introduced to separate particles based on size and mass. In nature, cilia are used for fluid propulsion in the mammalian circulatory system, as well as for swimming and size-selective particle entrainment for feeding in microorganisms. Inspired by biological cilia, an array of artificial cilia was fabricated using Polydimethylsiloxane (PDMS) to simulate the actual motion. A row of four individually-controlled magnetic artificial cilia in a semi-circular channel are actuated by the magnetic fields from four permanent magnets. Each cilium is a slender rectangular cantilever approximately 13mm long made from a composite of PDMS and carbonyl iron particles. A time-varying magnetic force is achieved by periodically varying the out-of-plane distance from the permanent magnets to the cilia, resulting in large-amplitude deflections of the cilia that can be used to drive fluid motion. Previous results have shown that this system of individually-controlled magnetic cilia can generate effective mixing flows; the purpose of the present work is to apply the individual cilia control to a particle separation task. Based on the observed beating patterns of cilia arrays in nature, the experimental beating patterns were selected as a metachronal wave, in which a fixed phase lead or lag is imposed between adjacent cilia. Additionally, the beating frequency was varied. For each set of experimental parameters, the channel was filled with water and polyethylene microspheres introduced at the center of the cilia array. Two types of particles were used: large red microspheres with density 0.9971 g/cm³ and 850-1000 μm avg. diameter, and small blue microspheres with density 1.06 g/cm³ and diameter 30 μm. At low beating frequencies, all particles were propelled in the mean flow direction. However, the large particles were observed to reverse directions above about 4.8 Hz, whereas reversal of the small particle transport direction did not occur until 6 Hz. Between these two transition frequencies, the large and small particles can be separated as they move in opposite directions. The experimental results show that selecting an appropriate cilia beating pattern can lead to selective transport of neutrally-buoyant particles based on their size. Importantly, the separation threshold can be chosen dynamically by adjusting the actuation frequency. However, further study is required to determine the range of particle sizes that can be effectively separated for a given system geometry.

Keywords: magnetic cilia, particle separation, tunable separation, soft actutors

Procedia PDF Downloads 199
4350 The Evolution of National Technological Capability Roles From the Perspective of Researcher’s Transfer: A Case Study of Artificial Intelligence

Authors: Yating Yang, Xue Zhang, Chengli Zhao

Abstract:

Technology capability refers to the comprehensive ability that influences all factors of technological development. Among them, researchers’ resources serve as the foundation and driving force for technology capability, representing a significant manifestation of a country/region's technological capability. Therefore, the cross-border transfer behavior of researchers to some extent reflects changes in technological capability between countries/regions, providing a unique research perspective for technological capability assessment. This paper proposes a technological capability assessment model based on personnel transfer networks, which consists of a researchers' transfer network model and a country/region role evolution model. It evaluates the changes in a country/region's technological capability roles from the perspective of researcher transfers and conducts an analysis using artificial intelligence as a case study based on literature data. The study reveals that the United States, China, and the European Union are core nodes, and identifies the role evolution characteristics of several major countries/regions.

Keywords: transfer network, technological capability assessment, central-peripheral structure, role evolution

Procedia PDF Downloads 93
4349 Artificial Intelligent Tax Simulator to Minimize Tax Liability for Multinational Corporations

Authors: Sean Goltz, Michael Mayo

Abstract:

The purpose of this research is to use Global-Regulation.com database of the world laws, focusing on tax treaties between countries, in order to create an AI-driven tax simulator that will run an AI agent through potential tax scenarios across countries. The AI agent goal is to identify the scenario that will result in minimum tax liability based on tax treaties between countries. The results will be visualized by a three dimensional matrix. This will be an online web application. Multinational corporations are running their business through multiple countries. These countries, in turn, have a tax treaty with many other countries to regulate the payment of taxes on income that is transferred between these countries. As a result, planning the best tax scenario across multiple countries and numerous tax treaties is almost impossible. This research propose to use Global-Regulation.com database of word laws in English (machine translated by Google and Microsoft API’s) in order to create a simulator that will include the information in the tax treaties. Once ready, an AI agent will be sent through the simulator to identify the scenario that will result in minimum tax liability. Identifying the best tax scenario across countries may save multinational corporations, like Google, billions of dollars annually. Given the nature of the raw data and the domain of taxes (i.e., numbers), this is a promising ground to employ artificial intelligence towards a practical and beneficial purpose.

Keywords: taxation, law, multinational, corporation

Procedia PDF Downloads 199
4348 Electrochemical Behaviour of 2014 and 2024 Al-Cu-Mg Alloys of Various Tempers

Authors: K. S. Ghosh, Sagnik Bose, Kapil Tripati

Abstract:

Potentiodynamic polarization studies carried out on AA2024 and AA2014 Al-Cu-Mg alloys of various tempers in 3.5 wt. % NaCl and in 3.5 wt. % NaCl + 1.0 % H2O2 solution characteristic E-i curves. Corrosion potential (Ecorr) value has shifted towards more negative potential with the increase of artificial aging time. The Ecorr value for the alloy tempers has also shifted anodically in presence of H2O2 in 3.5 % NaCl solution. Further, passivity phenomenon has been observed in all the alloy tempers when tested in 3.5 wt. % NaCl solution at pH 12. Stress corrosion cracking (SCC) behaviour of friction stir weld (FSW) joint of AA2014 alloy has been studied bu slow strain rate test (SSRT) in 3.5 wt. % NaCl solution. Optical micrographs of the corroded surfaces of polarised samples showed general corrosion, extensive pitting and intergranular corrosion as well. Further, potentiodynamic cyclic polarization curves displayed wide hysteresis loop indicating that the alloy tempers are susceptible to pit growth damage. Attempts have been made to explain the variation of observed electrochemical and SCC behaviour of the alloy tempers and the electrolyte conditions with the help of microstructural features.

Keywords: AA 2014 and AA 2024 Al-C-Mg alloy, artificial ageing, potentiodynamic polarization, TEM micrographs, stress corrosion cracking (SCC)

Procedia PDF Downloads 334
4347 Divergence of Innovation Capabilities within the EU

Authors: Vishal Jaunky, Jonas Grafström

Abstract:

The development of the European Union’s (EU) single economic market and rapid technological change has resulted in major structural changes in EU’s member states economies. The general liberalization process that the countries has undergone together has convinced the governments of the member states of need to upgrade their economic and training systems in order to be able to face the economic globalization. Several signs of economic convergence have been found but less is known about the knowledge production. This paper addresses the convergence pattern of technological innovation in 13 European Union (EU) states over the time period 1990-2011 by means of parametric and non-parametric techniques. Parametric approaches revolve around the neoclassical convergence theories. This paper reveals divergence of both the β and σ types. Further, we found evidence of stochastic divergence and non-parametric convergence approach such as distribution dynamics shows a tendency towards divergence. This result is supported with the occurrence of γ-divergence. The policies of the EU to reduce technological gap among its member states seem to be missing its target, something that can have negative long run consequences for the market.

Keywords: convergence, patents, panel data, European union

Procedia PDF Downloads 287
4346 Dividend Payout and Capital Structure: A Family Firm Perspective

Authors: Abhinav Kumar Rajverma, Arun Kumar Misra, Abhijeet Chandra

Abstract:

Family involvement in business is universal across countries, with varying characteristics. Firms of developed economies have diffused ownership structure; however, that of emerging markets have concentrated ownership structure, having resemblance with that of family firms. Optimization of dividend payout and leverage are very crucial for firm’s valuation. This paper studies dividend paying behavior of National Stock Exchange listed Indian firms from financial year 2007 to 2016. The final sample consists of 422 firms and of these more than 49% (207) are family firms. Results reveal that family firms pay lower dividend and are more leveraged compared to non-family firms. This unique data set helps to understand dividend behavior and capital structure of sample firms over a long-time period and across varying family ownership concentration. Using panel regression models, this paper examines factors affecting dividend payout and capital structure and establishes a link between the two using Two-stage Least Squares regression model. Profitability shows a positive impact on dividend and negative impact on leverage, confirming signaling and pecking order theory. Further, findings support bankruptcy theory as firm size has a positive relation with dividend and leverage and volatility shows a negative relation with both dividend and leverage. Findings are also consistent with agency theory, family ownership concentration has negative relation with both dividend payments and leverage. Further, the impact of family ownership control confirms the similar finding. The study further reveals that firms with high family ownership concentration (family control) do have an impact on determining the level of private benefits. Institutional ownership is not significant for dividend payments. However, it shows significant negative relation with leverage for both family and non-family firms. Dividend payout and leverage show mixed association with each other. This paper provides evidence of how varying level of family ownership concentration and ownership control influences the dividend policy and capital structure of firms in an emerging market like India and it can have significant contribution towards understanding and formulating corporate dividend policy decisions and capital structure for emerging economies, where majority of firms exhibit behavior of family firm.

Keywords: dividend, family firms, leverage, ownership structure

Procedia PDF Downloads 280
4345 Analysis of Financial Performance Measurement and Financial Distress Assessment of Highway Companies Listed on Indonesia Stock Exchange before and during COVID-19 Pandemic

Authors: Ari Prasetyo, Taufik Faturohman

Abstract:

The COVID-19 pandemic in Indonesia is part of the ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was confirmed to have spread to Indonesia on 2 March 2020. Moreover, the government of Indonesia has been conducting a local lockdown to limit people's movement from one city to another city. Therefore, this situation has impact on business operation, especially on highway companies listed on the Indonesia stock exchange. This study evaluates and measures three companies’ financial performance and health conditions before and during the COVID-19 pandemic from 2016 – 2020. The measurement is conducted by using financial ratio analysis and the Altman Z-score method. The ratio used to measure the financial ratio analysis is taken from the decree of the Ministry of SOE’s KEP-100/MBU/2002 about the company’s health level condition. From the decree, there are eight financial ratios used such as return on equity (ROE), return on investment (ROI), current ratio, cash ratio, collection period, inventory turnover, total asset turnover, and total equity to total asset. Altman Z-score is used to calculate the financial distress condition. The result shows that the highway companies for the period 2016 – 2020 are as follows: PT Jasa Marga (Persero) Tbk (AA, BB, BB, BB, C), PT Citra Marga Nusaphala Persada Tbk (BB, AA, BB, BBB, C), and PT Nusantara Infrastructure Tbk (BB, BB, AA, BBB, C). In addition, the Altman Z-score assessment performed in 2016-2020 shows that PT Jasa Marga (Persero) Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020. PT Citra Marga Nusaphala Persada Tbk was in the grey zone area for 2015-2019 and in the distress zone for 2020. PT Nusantara Infrastructure Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020.

Keywords: financial performance, financial ratio, Altman Z-score, financial distress, highway company

Procedia PDF Downloads 191
4344 A Students' Ability Analysis Methods, Devices, Electronic Equipment and Storage Media Design

Authors: Dequn Teng, Tianshuo Yang, Mingrui Wang, Qiuyu Chen, Xiao Wang, Katie Atkinson

Abstract:

Currently, many students are kind of at a loss in the university due to the complex environment within the campus, where every information within the campus is isolated with fewer interactions with each other. However, if the on-campus resources are gathered and combined with the artificial intelligence modelling techniques, there will be a bridge for not only students in understanding themselves, and the teachers will understand students in providing a much efficient approach in education. The objective of this paper is to provide a competency level analysis method, apparatus, electronic equipment, and storage medium. It uses a user’s target competency level analysis model from a plurality of predefined candidate competency level analysis models by obtaining a user’s promotion target parameters, promotion target parameters including at least one of the following parameters: target profession, target industry, and the target company, according to the promotion target parameters. According to the parameters, the model analyzes the user’s ability level, determines the user’s ability level, realizes the quantitative and personalized analysis of the user’s ability level, and helps the user to objectively position his ability level.

Keywords: artificial intelligence, model, university, education, recommendation system, evaluation, job hunting

Procedia PDF Downloads 144
4343 In-Game Business and the Problem of Gambling: Legal Analysis of Loot Boxes from the Perspective of Iranian Law

Authors: Vesali Naseh Morteza, Najafi Mohammad Hosein

Abstract:

The possibility of trading in-game items for real money provides a high economic capacity for online games and turns them into a business model. Nowadays, the market for in-game item purchases and microtransactions or micropayments has been growing increasingly. Since the market should be legal, lawyers and lawmakers around the world have expressed concerns over the legality of online gaming and in-game transactions. The issue is highlighted by the recent emergence of an in-game business model in the name of loot boxes. Similarities between loot boxes gaming and gambling features activities have started a legal debate as to whether loot boxes constitute a form of gambling or whether the game’s use of loot boxes should be considered gambling. Hence, based on the relationship between loot boxes purchasing and problem gambling, the paper investigates the legal effect of the newly emergent phenomenon of loot boxes on online games from the perspective of Iranian law.

Keywords: serious games, loot boxes, online gambling, in-game purchase, virtual items

Procedia PDF Downloads 107
4342 The Fusion of Blockchain and AI in Supply Chain Finance: Scalability in Distributed Systems

Authors: Wu You, Burra Venkata Durga Kumar

Abstract:

This study examines the promising potential of integrating Blockchain and Artificial Intelligence (AI) technologies to scalability in Distributed Systems within the field of supply chain finance. The finance industry is continually confronted with scalability challenges in its Distributed Systems, particularly within the supply chain finance sector, impacting efficiency and security. Blockchain, with its inherent attributes of high scalability and secure distributed ledger system, coupled with AI's strengths in optimizing data processing and decision-making, holds the key to innovating the industry's approach to these issues. This study elucidates the synergistic interplay between Blockchain and AI, detailing how their fusion can drive a significant transformation in the supply chain finance sector's Distributed Systems. It offers specific use-cases within this field to illustrate the practical implications and potential benefits of this technological convergence. The study also discusses future possibilities and current challenges in implementing this groundbreaking approach within the context of supply chain finance. It concludes that the intersection of Blockchain and AI could ignite a new epoch of enhanced efficiency, security, and transparency in the Distributed Systems of supply chain finance within the financial industry.

Keywords: blockchain, artificial intelligence (AI), scaled distributed systems, supply chain finance, efficiency and security

Procedia PDF Downloads 93
4341 Maturity Classification of Oil Palm Fresh Fruit Bunches Using Thermal Imaging Technique

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Reza Ehsani, Hawa Ze Jaffar, Ishak Aris

Abstract:

Ripeness estimation of oil palm fresh fruit is important processes that affect the profitableness and salability of oil palm fruits. The adulthood or ripeness of the oil palm fruits influences the quality of oil palm. Conventional procedure includes physical grading of Fresh Fruit Bunches (FFB) maturity by calculating the number of loose fruits per bunch. This physical classification of oil palm FFB is costly, time consuming and the results may have human error. Hence, many researchers try to develop the methods for ascertaining the maturity of oil palm fruits and thereby, deviously the oil content of distinct palm fruits without the need for exhausting oil extraction and analysis. This research investigates the potential of infrared images (Thermal Images) as a predictor to classify the oil palm FFB ripeness. A total of 270 oil palm fresh fruit bunches from most common cultivar of oil palm bunches Nigresens according to three maturity categories: under ripe, ripe and over ripe were collected. Each sample was scanned by the thermal imaging cameras FLIR E60 and FLIR T440. The average temperature of each bunches were calculated by using image processing in FLIR Tools and FLIR ThermaCAM researcher pro 2.10 environment software. The results show that temperature content decreased from immature to over mature oil palm FFBs. An overall analysis-of-variance (ANOVA) test was proved that this predictor gave significant difference between underripe, ripe and overripe maturity categories. This shows that the temperature as predictors can be good indicators to classify oil palm FFB. Classification analysis was performed by using the temperature of the FFB as predictors through Linear Discriminant Analysis (LDA), Mahalanobis Discriminant Analysis (MDA), Artificial Neural Network (ANN) and K- Nearest Neighbor (KNN) methods. The highest overall classification accuracy was 88.2% by using Artificial Neural Network. This research proves that thermal imaging and neural network method can be used as predictors of oil palm maturity classification.

Keywords: artificial neural network, maturity classification, oil palm FFB, thermal imaging

Procedia PDF Downloads 360