Search results for: stochastic optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3630

Search results for: stochastic optimization

2130 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 355
2129 A New Multi-Target, Multi-Agent Search and Rescue Path Planning Approach

Authors: Jean Berger, Nassirou Lo, Martin Noel

Abstract:

Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.

Keywords: search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization

Procedia PDF Downloads 371
2128 Development of a Bioprocess Technology for the Production of Vibrio midae, a Probiotic for Use in Abalone Aquaculture

Authors: Ghaneshree Moonsamy, Nodumo N. Zulu, Rajesh Lalloo, Suren Singh, Santosh O. Ramchuran

Abstract:

The abalone industry of South Africa is under severe pressure due to illegal harvesting and poaching of this seafood delicacy. These abalones are harvested excessively; as a result, these animals do not have a chance to replace themselves in their habitats, ensuing in a drastic decrease in natural stocks of abalone. Abalone has an extremely slow growth rate and takes approximately four years to reach a size that is market acceptable; therefore, it was imperative to investigate methods to boost the overall growth rate and immunity of the animal. The University of Cape Town (UCT) began to research, which resulted in the isolation of two microorganisms, a yeast isolate Debaryomyces hansenii and a bacterial isolate Vibrio midae, from the gut of the abalone and characterised them for their probiotic abilities. This work resulted in an internationally competitive concept technology that was patented. The next stage of research was to develop a suitable bioprocess to enable commercial production. Numerous steps were taken to develop an efficient production process for V. midae, one of the isolates found by UCT. The initial stages of research involved the development of a stable and robust inoculum and the optimization of physiological growth parameters such as temperature and pH. A range of temperature and pH conditions were evaluated, and data obtained revealed an optimum growth temperature of 30ᵒC and a pH of 6.5. Once these critical growth parameters were established further media optimization studies were performed. Corn steep liquor (CSL) and high test molasses (HTM) were selected as suitable alternatives to more expensive, conventionally used growth medium additives. The optimization of CSL (6.4 g.l⁻¹) and HTM (24 g.l⁻¹) concentrations in the growth medium resulted in a 180% increase in cell concentration, a 5716-fold increase in cell productivity and a 97.2% decrease in the material cost of production in comparison to conventional growth conditions and parameters used at the onset of the study. In addition, a stable market-ready liquid probiotic product, encompassing the viable but not culturable (VBNC) state of Vibrio midae cells, was developed during the downstream processing aspect of the study. The demonstration of this technology at a full manufacturing scale has further enhanced the attractiveness and commercial feasibility of this production process.

Keywords: probiotics, abalone aquaculture, bioprocess technology, manufacturing scale technology development

Procedia PDF Downloads 152
2127 Quantum Statistical Machine Learning and Quantum Time Series

Authors: Omar Alzeley, Sergey Utev

Abstract:

Minimizing a constrained multivariate function is the fundamental of Machine learning, and these algorithms are at the core of data mining and data visualization techniques. The decision function that maps input points to output points is based on the result of optimization. This optimization is the central of learning theory. One approach to complex systems where the dynamics of the system is inferred by a statistical analysis of the fluctuations in time of some associated observable is time series analysis. The purpose of this paper is a mathematical transition from the autoregressive model of classical time series to the matrix formalization of quantum theory. Firstly, we have proposed a quantum time series model (QTS). Although Hamiltonian technique becomes an established tool to detect a deterministic chaos, other approaches emerge. The quantum probabilistic technique is used to motivate the construction of our QTS model. The QTS model resembles the quantum dynamic model which was applied to financial data. Secondly, various statistical methods, including machine learning algorithms such as the Kalman filter algorithm, are applied to estimate and analyses the unknown parameters of the model. Finally, simulation techniques such as Markov chain Monte Carlo have been used to support our investigations. The proposed model has been examined by using real and simulated data. We establish the relation between quantum statistical machine and quantum time series via random matrix theory. It is interesting to note that the primary focus of the application of QTS in the field of quantum chaos was to find a model that explain chaotic behaviour. Maybe this model will reveal another insight into quantum chaos.

Keywords: machine learning, simulation techniques, quantum probability, tensor product, time series

Procedia PDF Downloads 469
2126 Simulation of Wet Scrubbers for Flue Gas Desulfurization

Authors: Anders Schou Simonsen, Kim Sorensen, Thomas Condra

Abstract:

Wet scrubbers are used for flue gas desulfurization by injecting water directly into the flue gas stream from a set of sprayers. The water droplets will flow freely inside the scrubber, and flow down along the scrubber walls as a thin wall film while reacting with the gas phase to remove SO₂. This complex multiphase phenomenon can be divided into three main contributions: the continuous gas phase, the liquid droplet phase, and the liquid wall film phase. This study proposes a complete model, where all three main contributions are taken into account and resolved using OpenFOAM for the continuous gas phase, and MATLAB for the liquid droplet and wall film phases. The 3D continuous gas phase is composed of five species: CO₂, H₂O, O₂, SO₂, and N₂, which are resolved along with momentum, energy, and turbulence. Source terms are present for four species, energy and momentum, which are affecting the steady-state solution. The liquid droplet phase experiences breakup, collisions, dynamics, internal chemistry, evaporation and condensation, species mass transfer, energy transfer and wall film interactions. Numerous sub-models have been implemented and coupled to realise the above-mentioned phenomena. The liquid wall film experiences impingement, acceleration, atomization, separation, internal chemistry, evaporation and condensation, species mass transfer, and energy transfer, which have all been resolved using numerous sub-models as well. The continuous gas phase has been coupled with the liquid phases using source terms by an approach, where the two software packages are couples using a link-structure. The complete CFD model has been verified using 16 experimental tests from an existing scrubber installation, where a gradient-based pattern search optimization algorithm has been used to tune numerous model parameters to match the experimental results. The CFD model needed to be fast for evaluation in order to apply this optimization routine, where approximately 1000 simulations were needed. The results show that the complex multiphase phenomena governing wet scrubbers can be resolved in a single model. The optimization routine was able to tune the model to accurately predict the performance of an existing installation. Furthermore, the study shows that a coupling between OpenFOAM and MATLAB is realizable, where the data and source term exchange increases the computational requirements by approximately 5%. This allows for exploiting the benefits of both software programs.

Keywords: desulfurization, discrete phase, scrubber, wall film

Procedia PDF Downloads 265
2125 Multi-Objective Optimization of Assembly Manufacturing Factory Setups

Authors: Andreas Lind, Aitor Iriondo Pascual, Dan Hogberg, Lars Hanson

Abstract:

Factory setup lifecycles are most often described and prepared in CAD environments; the preparation is based on experience and inputs from several cross-disciplinary processes. Early in the factory setup preparation, a so-called block layout is created. The intention is to describe a high-level view of the intended factory setup and to claim area reservations and allocations. Factory areas are then blocked, i.e., targeted to be used for specific intended resources and processes, later redefined with detailed factory setup layouts. Each detailed layout is based on the block layout and inputs from cross-disciplinary preparation processes, such as manufacturing sequence, productivity, workers’ workplace requirements, and resource setup preparation. However, this activity is often not carried out with all variables considered simultaneously, which might entail a risk of sub-optimizing the detailed layout based on manual decisions. Therefore, this work aims to realize a digital method for assembly manufacturing layout planning where productivity, area utilization, and ergonomics can be considered simultaneously in a cross-disciplinary manner. The purpose of the digital method is to support engineers in finding optimized designs of detailed layouts for assembly manufacturing factories, thereby facilitating better decisions regarding setups of future factories. Input datasets are company-specific descriptions of required dimensions for specific area reservations, such as defined dimensions of a worker’s workplace, material façades, aisles, and the sequence to realize the product assembly manufacturing process. To test and iteratively develop the digital method, a demonstrator has been developed with an adaptation of existing software that simulates and proposes optimized designs of detailed layouts. Since the method is to consider productivity, ergonomics, area utilization, and constraints from the automatically generated block layout, a multi-objective optimization approach is utilized. In the demonstrator, the input data are sent to the simulation software industrial path solutions (IPS). Based on the input and Lua scripts, the IPS software generates a block layout in compliance with the company’s defined dimensions of area reservations. Communication is then established between the IPS and the software EPP (Ergonomics in Productivity Platform), including intended resource descriptions, assembly manufacturing process, and manikin (digital human) resources. Using multi-objective optimization approaches, the EPP software then calculates layout proposals that are sent iteratively and simulated and rendered in IPS, following the rules and regulations defined in the block layout as well as productivity and ergonomics constraints and objectives. The software demonstrator is promising. The software can handle several parameters to optimize the detailed layout simultaneously and can put forward several proposals. It can optimize multiple parameters or weight the parameters to fine-tune the optimal result of the detailed layout. The intention of the demonstrator is to make the preparation between cross-disciplinary silos transparent and achieve a common preparation of the assembly manufacturing factory setup, thereby facilitating better decisions.

Keywords: factory setup, multi-objective, optimization, simulation

Procedia PDF Downloads 152
2124 Optimum Performance of the Gas Turbine Power Plant Using Adaptive Neuro-Fuzzy Inference System and Statistical Analysis

Authors: Thamir K. Ibrahim, M. M. Rahman, Marwah Noori Mohammed

Abstract:

This study deals with modeling and performance enhancements of a gas-turbine combined cycle power plant. A clean and safe energy is the greatest challenges to meet the requirements of the green environment. These requirements have given way the long-time governing authority of steam turbine (ST) in the world power generation, and the gas turbine (GT) will replace it. Therefore, it is necessary to predict the characteristics of the GT system and optimize its operating strategy by developing a simulation system. The integrated model and simulation code for exploiting the performance of gas turbine power plant are developed utilizing MATLAB code. The performance code for heavy-duty GT and CCGT power plants are validated with the real power plant of Baiji GT and MARAFIQ CCGT plants the results have been satisfactory. A new technology of correlation was considered for all types of simulation data; whose coefficient of determination (R2) was calculated as 0.9825. Some of the latest launched correlations were checked on the Baiji GT plant and apply error analysis. The GT performance was judged by particular parameters opted from the simulation model and also utilized Adaptive Neuro-Fuzzy System (ANFIS) an advanced new optimization technology. The best thermal efficiency and power output attained were about 56% and 345MW respectively. Thus, the operation conditions and ambient temperature are strongly influenced on the overall performance of the GT. The optimum efficiency and power are found at higher turbine inlet temperatures. It can be comprehended that the developed models are powerful tools for estimating the overall performance of the GT plants.

Keywords: gas turbine, optimization, ANFIS, performance, operating conditions

Procedia PDF Downloads 425
2123 Revisiting the Fiscal Theory of Sovereign Risk from the DSGE View

Authors: Eiji Okano, Kazuyuki Inagaki

Abstract:

We revisit Uribe's `Fiscal Theory of Sovereign Risk' advocating that there is a trade-off between stabilizing inflation and suppressing default. We develop a class of dynamic stochastic general equilibrium (DSGE) model with nominal rigidities and compare two de facto inflation stabilization policies, optimal monetary policy and optimal monetary and fiscal policy with the minimizing interest rate spread policy which completely suppress the default. Under the optimal monetary and fiscal policy, not only the nominal interest rate but also the tax rate work to minimize welfare costs through stabilizing inflation. Under the optimal monetary both inflation and output gap are completely stabilized although those are fluctuating under the optimal monetary policy. In addition, volatility in the default rate under the optimal monetary policy is considerably lower than one under the optimal monetary policy. Thus, there is not the SI-SD trade-off. In addition, while the minimizing interest rate spread policy makes inflation rate severely volatile, the optimal monetary and fiscal policy stabilize both the inflation and the default. A trade-off between stabilizing inflation and suppressing default is not so severe what pointed out by Uribe.

Keywords: sovereign risk, optimal monetary policy, fiscal theory of the price level, DSGE

Procedia PDF Downloads 321
2122 Optimization Aluminium Design for the Facade Second Skin toward Visual Comfort: Case Studies & Dialux Daylighting Simulation Model

Authors: Yaseri Dahlia Apritasari

Abstract:

Visual comfort is important for the building occupants to need. Visual comfort can be fulfilled through natural lighting (daylighting) and artificial lighting. One strategy to optimize natural lighting can be achieved through the facade second skin design. This strategy can reduce glare, and fulfill visual comfort need. However, the design strategy cannot achieve light intensity for visual comfort. Because the materials, design and opening percentage of the facade of second skin blocked sunlight. This paper discusses aluminum material for the facade second skin design that can fulfill the optimal visual comfort with the case studies Multi Media Tower building. The methodology of the research is combination quantitative and qualitative through field study observed, lighting measurement and visual comfort questionnaire. Then it used too simulation modeling (DIALUX 4.13, 2016) for three facades second skin design model. Through following steps; (1) Measuring visual comfort factor: light intensity indoor and outdoor; (2) Taking visual comfort data from building occupants; (3) Making models with different facade second skin design; (3) Simulating and analyzing the light intensity value for each models that meet occupants visual comfort standard: 350 lux (Indonesia National Standard, 2010). The result shows that optimization of aluminum material for the facade second skin design can meet optimal visual comfort for building occupants. The result can give recommendation aluminum opening percentage of the facade second skin can meet optimal visual comfort for building occupants.

Keywords: aluminium material, Facade, second skin, visual comfort

Procedia PDF Downloads 352
2121 Generative Design of Acoustical Diffuser and Absorber Elements Using Large-Scale Additive Manufacturing

Authors: Saqib Aziz, Brad Alexander, Christoph Gengnagel, Stefan Weinzierl

Abstract:

This paper explores a generative design, simulation, and optimization workflow for the integration of acoustical diffuser and/or absorber geometry with embedded coupled Helmholtz-resonators for full-scale 3D printed building components. Large-scale additive manufacturing in conjunction with algorithmic CAD design tools enables a vast amount of control when creating geometry. This is advantageous regarding the increasing demands of comfort standards for indoor spaces and the use of more resourceful and sustainable construction methods and materials. The presented methodology highlights these new technological advancements and offers a multimodal and integrative design solution with the potential for an immediate application in the AEC-Industry. In principle, the methodology can be applied to a wide range of structural elements that can be manufactured by additive manufacturing processes. The current paper focuses on a case study of an application for a biaxial load-bearing beam grillage made of reinforced concrete, which allows for a variety of applications through the combination of additive prefabricated semi-finished parts and in-situ concrete supplementation. The semi-prefabricated parts or formwork bodies form the basic framework of the supporting structure and at the same time have acoustic absorption and diffusion properties that are precisely acoustically programmed for the space underneath the structure. To this end, a hybrid validation strategy is being explored using a digital and cross-platform simulation environment, verified with physical prototyping. The iterative workflow starts with the generation of a parametric design model for the acoustical geometry using the algorithmic visual scripting editor Grasshopper3D inside the building information modeling (BIM) software Revit. Various geometric attributes (i.e., bottleneck and cavity dimensions) of the resonator are parameterized and fed to a numerical optimization algorithm which can modify the geometry with the goal of increasing absorption at resonance and increasing the bandwidth of the effective absorption range. Using Rhino.Inside and LiveLink for Revit, the generative model was imported directly into the Multiphysics simulation environment COMSOL. The geometry was further modified and prepared for simulation in a semi-automated process. The incident and scattered pressure fields were simulated from which the surface normal absorption coefficients were calculated. This reciprocal process was repeated to further optimize the geometric parameters. Subsequently the numerical models were compared to a set of 3D concrete printed physical twin models, which were tested in a .25 m x .25 m impedance tube. The empirical results served to improve the starting parameter settings of the initial numerical model. The geometry resulting from the numerical optimization was finally returned to grasshopper for further implementation in an interdisciplinary study.

Keywords: acoustical design, additive manufacturing, computational design, multimodal optimization

Procedia PDF Downloads 159
2120 Bayesian Value at Risk Forecast Using Realized Conditional Autoregressive Expectiel Mdodel with an Application of Cryptocurrency

Authors: Niya Chen, Jennifer Chan

Abstract:

In the financial market, risk management helps to minimize potential loss and maximize profit. There are two ways to assess risks; the first way is to calculate the risk directly based on the volatility. The most common risk measurements are Value at Risk (VaR), sharp ratio, and beta. Alternatively, we could look at the quantile of the return to assess the risk. Popular return models such as GARCH and stochastic volatility (SV) focus on modeling the mean of the return distribution via capturing the volatility dynamics; however, the quantile/expectile method will give us an idea of the distribution with the extreme return value. It will allow us to forecast VaR using return which is direct information. The advantage of using these non-parametric methods is that it is not bounded by the distribution assumptions from the parametric method. But the difference between them is that expectile uses a second-order loss function while quantile regression uses a first-order loss function. We consider several quantile functions, different volatility measures, and estimates from some volatility models. To estimate the expectile of the model, we use Realized Conditional Autoregressive Expectile (CARE) model with the bayesian method to achieve this. We would like to see if our proposed models outperform existing models in cryptocurrency, and we will test it by using Bitcoin mainly as well as Ethereum.

Keywords: expectile, CARE Model, CARR Model, quantile, cryptocurrency, Value at Risk

Procedia PDF Downloads 110
2119 Off-Farm Work and Cost Efficiency in Staple Food Production among Small-Scale Farmers in North Central Nigeria

Authors: C. E. Ogbanje, S. A. N. D. Chidebelu, N. J. Nweze

Abstract:

The study evaluated off-farm work and cost efficiency in staple food production among small-scale farmers in North Central Nigeria. Multistage sampling technique was used to select 360 respondents (participants and non-participants in off-farm work). Primary data obtained were analysed using stochastic cost frontier and test of means’ difference. Capital input was lower for participants (N2,596.58) than non-participants (N11,099.14). Gamma (γ) was statistically significant. Farm size significantly (p<0.01) increased cost outlay for participants and non-participants. Average input prices of enterprises one and two significantly (p<0.01) increased cost. Sex, household size, credit obtained, formal education, farming experience, and farm income significantly (p<0.05) reduced cost inefficiency for non-participants. Average cost efficiency was 11%. Farm capital was wasted. Participants’ substitution of capital for labour did not put them at a disadvantage. Extension agents should encourage farmers to obtain financial relief from off-farm work but not to the extent of endangering farm cost efficiency.

Keywords: cost efficiency, mean difference, North Central Nigeria, off-farm work, participants and non-participants, small-scale farmers

Procedia PDF Downloads 362
2118 Optimizing the Passenger Throughput at an Airport Security Checkpoint

Authors: Kun Li, Yuzheng Liu, Xiuqi Fan

Abstract:

High-security standard and high efficiency of screening seem to be contradictory to each other in the airport security check process. Improving the efficiency as far as possible while maintaining the same security standard is significantly meaningful. This paper utilizes the knowledge of Operation Research and Stochastic Process to establish mathematical models to explore this problem. We analyze the current process of airport security check and use the M/G/1 and M/G/k models in queuing theory to describe the process. Then we find the least efficient part is the pre-check lane, the bottleneck of the queuing system. To improve passenger throughput and reduce the variance of passengers’ waiting time, we adjust our models and use Monte Carlo method, then put forward three modifications: adjust the ratio of Pre-Check lane to regular lane flexibly, determine the optimal number of security check screening lines based on cost analysis and adjust the distribution of arrival and service time based on Monte Carlo simulation results. We also analyze the impact of cultural differences as the sensitivity analysis. Finally, we give the recommendations for the current process of airport security check process.

Keywords: queue theory, security check, stochatic process, Monte Carlo simulation

Procedia PDF Downloads 200
2117 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology

Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon

Abstract:

There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental values

Keywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)

Procedia PDF Downloads 541
2116 Aggregating Buyers and Sellers for E-Commerce: How Demand and Supply Meet in Fairs

Authors: Pierluigi Gallo, Francesco Randazzo, Ignazio Gallo

Abstract:

In recent years, many new and interesting models of successful online business have been developed. Many of these are based on the competition between users, such as online auctions, where the product price is not fixed and tends to rise. Other models, including group-buying, are based on cooperation between users, characterized by a dynamic price of the product that tends to go down. There is not yet a business model in which both sellers and buyers are grouped in order to negotiate on a specific product or service. The present study investigates a new extension of the group-buying model, called fair, which allows aggregation of demand and supply for price optimization, in a cooperative manner. Additionally, our system also aggregates products and destinations for shipping optimization. We introduced the following new relevant input parameters in order to implement a double-side aggregation: (a) price-quantity curves provided by the seller; (b) waiting time, that is, the longer buyers wait, the greater discount they get; (c) payment time, which determines if the buyer pays before, during or after receiving the product; (d) the distance between the place where products are available and the place of shipment, provided in advance by the buyer or dynamically suggested by the system. To analyze the proposed model we implemented a system prototype and a simulator that allows studying effects of changing some input parameters. We analyzed the dynamic price model in fairs having one single seller and a combination of selected sellers. The results are very encouraging and motivate further investigation on this topic.

Keywords: auction, aggregation, fair, group buying, social buying

Procedia PDF Downloads 294
2115 Ultrasound-Assisted Extraction of Carotenoids from Tangerine Peel Using Ostrich Oil as a Green Solvent and Optimization of the Process by Response Surface Methodology

Authors: Fariba Tadayon, Nika Gharahgolooyan, Ateke Tadayon, Mostafa Jafarian

Abstract:

Carotenoid pigments are a various group of lipophilic compounds that generate the yellow to red colors of many plants, foods and flowers. A well-known type of carotenoids which is pro-vitamin A is β-carotene. Due to the color of citrus fruit’s peel, the peel can be a good source of different carotenoids. Ostrich oil is one of the most valuable foundations in many branches of industry, medicine, cosmetics and nutrition. The animal-based ostrich oil could be considered as an alternative and green solvent. Following this study, wastes of citrus peel will recycle by a simple method and extracted carotenoids can increase properties of ostrich oil. In this work, a simple and efficient method for extraction of carotenoids from tangerine peel was designed. Ultrasound-assisted extraction (UAE) showed significant effect on the extraction rate by increasing the mass transfer rate. Ostrich oil can be used as a green solvent in many studies to eliminate petroleum-based solvents. Since tangerine peel is a complex source of different carotenoids separation and determination was performed by high-performance liquid chromatography (HPLC). In addition, the ability of ostrich oil and sunflower oil in carotenoid extraction from tangerine peel and carrot was compared. The highest yield of β-carotene extracted from tangerine peel using sunflower oil and ostrich oil were 75.741 and 88.110 (mg/L), respectively. Optimization of the process was achieved by response surface methodology (RSM) and the optimal extraction conditions were tangerine peel powder particle size of 0.180 mm, ultrasonic intensity of 19 W/cm2 and sonication time of 30 minutes.

Keywords: β-carotene, carotenoids, citrus peel, ostrich oil, response surface methodology, ultrasound-assisted extraction

Procedia PDF Downloads 316
2114 Integrating Optuna And Synthetic Data Generation For Optimized Medical Transcript Classification Using BioBERT

Authors: Sachi Nandan Mohanty, Shreya Sinha, Sweeti Sah, Shweta Sharma

Abstract:

The advancement of natural language processing has majorly influenced the field of medical transcript classification, providing a robust framework for enhancing the accuracy of clinical data processing. It has enormous potential to transform healthcare and improve people's livelihoods. This research focuses on improving the accuracy of medical transcript categorization using Bidirectional Encoder Representations from Transformers (BERT) and its specialized variants, including BioBERT, ClinicalBERT, SciBERT, and BlueBERT. The experimental work employs Optuna, an optimization framework, for hyperparameter tuning to identify the most effective variant, concluding that BioBERT yields the best performance. Furthermore, various optimizers, including Adam, RMSprop, and Layerwise adaptive large batch optimization (LAMB), were evaluated alongside BERT's default AdamW optimizer. The findings show that the LAMB optimizer achieves equally good performance as AdamW. Synthetic data generation techniques from Gretel were utilized to augment the dataset, expanding the original dataset from 5,000 to 10,000 rows. Subsequent evaluations demonstrated that the model maintained its performance with synthetic data, with the LAMB optimizer showing marginally better results. The enhanced dataset and optimized model configurations improved classification accuracy, showcasing the efficacy of the BioBERT variant and the LAMB optimizer. It resulted in an accuracy of up to 98.2% and 90.8% for the original and combined datasets, respectively.

Keywords: BioBERT, clinical data, healthcare AI, transformer models

Procedia PDF Downloads 0
2113 Rain Gauges Network Optimization in Southern Peninsular Malaysia

Authors: Mohd Khairul Bazli Mohd Aziz, Fadhilah Yusof, Zulkifli Yusop, Zalina Mohd Daud, Mohammad Afif Kasno

Abstract:

Recent developed rainfall network design techniques have been discussed and compared by many researchers worldwide due to the demand of acquiring higher levels of accuracy from collected data. In many studies, rain-gauge networks are designed to provide good estimation for areal rainfall and for flood modelling and prediction. In a certain study, even using lumped models for flood forecasting, a proper gauge network can significantly improve the results. Therefore existing rainfall network in Johor must be optimized and redesigned in order to meet the required level of accuracy preset by rainfall data users. The well-known geostatistics method (variance-reduction method) that is combined with simulated annealing was used as an algorithm of optimization in this study to obtain the optimal number and locations of the rain gauges. Rain gauge network structure is not only dependent on the station density; station location also plays an important role in determining whether information is acquired accurately. The existing network of 84 rain gauges in Johor is optimized and redesigned by using rainfall, humidity, solar radiation, temperature and wind speed data during monsoon season (November – February) for the period of 1975 – 2008. Three different semivariogram models which are Spherical, Gaussian and Exponential were used and their performances were also compared in this study. Cross validation technique was applied to compute the errors and the result showed that exponential model is the best semivariogram. It was found that the proposed method was satisfied by a network of 64 rain gauges with the minimum estimated variance and 20 of the existing ones were removed and relocated. An existing network may consist of redundant stations that may make little or no contribution to the network performance for providing quality data. Therefore, two different cases were considered in this study. The first case considered the removed stations that were optimally relocated into new locations to investigate their influence in the calculated estimated variance and the second case explored the possibility to relocate all 84 existing stations into new locations to determine the optimal position. The relocations of the stations in both cases have shown that the new optimal locations have managed to reduce the estimated variance and it has proven that locations played an important role in determining the optimal network.

Keywords: geostatistics, simulated annealing, semivariogram, optimization

Procedia PDF Downloads 302
2112 Service Flow in Multilayer Networks: A Method for Evaluating the Layout of Urban Medical Resources

Authors: Guanglin Song

Abstract:

(Objective) Situated within the context of China's tiered medical treatment system, this study aims to analyze spatial causes of urban healthcare access difficulties from the perspective of the configuration of healthcare facilities. (Methods) A social network analysis approach is employed to construct a healthcare demand and supply flow network between major residential clusters and various tiers of hospitals in the city.(Conclusion) The findings reveal that:1.there exists overall maldistribution and over-concentration of healthcare resources in Study Area, characterized by structural imbalance; 2.the low rate of primary care utilization in Study Area is a key factor contributing to congestion at higher-tier hospitals, as excessive reliance on these institutions by neighboring communities exacerbates the problem; 3.gradual optimization of the healthcare facility layout in Study Area, encompassing holistic, local, and individual institutional levels, can enhance systemic efficiency and resource balance.(Prospects) This research proposes a method for evaluating urban healthcare resource distribution structures based on service flows within hierarchical networks. It offers spatially targeted optimization suggestions for promoting the implementation of the tiered healthcare system and alleviating challenges related to accessibility and congestion in seeking medical care. Provide some new ideas for researchers and healthcare managers in countries, cities, and healthcare management around the world with similar challenges.

Keywords: flow of public services, urban networks, healthcare facilities, spatial planning, urban networks

Procedia PDF Downloads 68
2111 A Parallel Cellular Automaton Model of Tumor Growth for Multicore and GPU Programming

Authors: Manuel I. Capel, Antonio Tomeu, Alberto Salguero

Abstract:

Tumor growth from a transformed cancer-cell up to a clinically apparent mass spans through a range of spatial and temporal magnitudes. Through computer simulations, Cellular Automata (CA) can accurately describe the complexity of the development of tumors. Tumor development prognosis can now be made -without making patients undergo through annoying medical examinations or painful invasive procedures- if we develop appropriate CA-based software tools. In silico testing mainly refers to Computational Biology research studies of application to clinical actions in Medicine. To establish sound computer-based models of cellular behavior, certainly reduces costs and saves precious time with respect to carrying out experiments in vitro at labs or in vivo with living cells and organisms. These aim to produce scientifically relevant results compared to traditional in vitro testing, which is slow, expensive, and does not generally have acceptable reproducibility under the same conditions. For speeding up computer simulations of cellular models, specific literature shows recent proposals based on the CA approach that include advanced techniques, such the clever use of supporting efficient data structures when modeling with deterministic stochastic cellular automata. Multiparadigm and multiscale simulation of tumor dynamics is just beginning to be developed by the concerned research community. The use of stochastic cellular automata (SCA), whose parallel programming implementations are open to yield a high computational performance, are of much interest to be explored up to their computational limits. There have been some approaches based on optimizations to advance in multiparadigm models of tumor growth, which mainly pursuit to improve performance of these models through efficient memory accesses guarantee, or considering the dynamic evolution of the memory space (grids, trees,…) that holds crucial data in simulations. In our opinion, the different optimizations mentioned above are not decisive enough to achieve the high performance computing power that cell-behavior simulation programs actually need. The possibility of using multicore and GPU parallelism as a promising multiplatform and framework to develop new programming techniques to speed-up the computation time of simulations is just starting to be explored in the few last years. This paper presents a model that incorporates parallel processing, identifying the synchronization necessary for speeding up tumor growth simulations implemented in Java and C++ programming environments. The speed up improvement that specific parallel syntactic constructs, such as executors (thread pools) in Java, are studied. The new tumor growth parallel model is proved using implementations with Java and C++ languages on two different platforms: chipset Intel core i-X and a HPC cluster of processors at our university. The parallelization of Polesczuk and Enderling model (normally used by researchers in mathematical oncology) proposed here is analyzed with respect to performance gain. We intend to apply the model and overall parallelization technique presented here to solid tumors of specific affiliation such as prostate, breast, or colon. Our final objective is to set up a multiparadigm model capable of modelling angiogenesis, or the growth inhibition induced by chemotaxis, as well as the effect of therapies based on the presence of cytotoxic/cytostatic drugs.

Keywords: cellular automaton, tumor growth model, simulation, multicore and manycore programming, parallel programming, high performance computing, speed up

Procedia PDF Downloads 244
2110 Multivariate Control Chart to Determine Efficiency Measurements in Industrial Processes

Authors: J. J. Vargas, N. Prieto, L. A. Toro

Abstract:

Control charts are commonly used to monitor processes involving either variable or attribute of quality characteristics and determining the control limits as a critical task for quality engineers to improve the processes. Nonetheless, in some applications it is necessary to include an estimation of efficiency. In this paper, the ability to define the efficiency of an industrial process was added to a control chart by means of incorporating a data envelopment analysis (DEA) approach. In depth, a Bayesian estimation was performed to calculate the posterior probability distribution of parameters as means and variance and covariance matrix. This technique allows to analyse the data set without the need of using the hypothetical large sample implied in the problem and to be treated as an approximation to the finite sample distribution. A rejection simulation method was carried out to generate random variables from the parameter functions. Each resulting vector was used by stochastic DEA model during several cycles for establishing the distribution of each efficiency measures for each DMU (decision making units). A control limit was calculated with model obtained and if a condition of a low level efficiency of DMU is presented, system efficiency is out of control. In the efficiency calculated a global optimum was reached, which ensures model reliability.

Keywords: data envelopment analysis, DEA, Multivariate control chart, rejection simulation method

Procedia PDF Downloads 374
2109 Aerodynamic Analysis by Computational Fluids Dynamics in Building: Case Study

Authors: Javier Navarro Garcia, Narciso Vazquez Carretero

Abstract:

Eurocode 1, part 1-4, wind actions, includes in its article 1.5 the possibility of using numerical calculation methods to obtain information on the loads acting on a building. On the other hand, the analysis using computational fluids dynamics (CFD) in aerospace, aeronautical, and industrial applications is already in widespread use. The application of techniques based on CFD analysis on the building to study its aerodynamic behavior now opens a whole alternative field of possibilities for civil engineering and architecture; optimization of the results with respect to those obtained by applying the regulations, the possibility of obtaining information on pressures, speeds at any point of the model for each moment, the analysis of turbulence and the possibility of modeling any geometry or configuration. The present work compares the results obtained on a building, with respect to its aerodynamic behavior, from a mathematical model based on the analysis by CFD with the results obtained by applying Eurocode1, part1-4, wind actions. It is verified that the results obtained by CFD techniques suppose an optimization of the wind action that acts on the building with respect to the wind action obtained by applying the Eurocode1, part 1-4, wind actions. In order to carry out this verification, a 45m high square base truncated pyramid building has been taken. The mathematical model on CFD, based on finite volumes, has been calculated using the FLUENT commercial computer application using a scale-resolving simulation (SRS) type large eddy simulation (LES) turbulence model for an atmospheric boundary layer wind with turbulent component in the direction of the flow.

Keywords: aerodynamic, CFD, computacional fluids dynamics, computational mechanics

Procedia PDF Downloads 137
2108 Microwave Heating and Catalytic Activity of Iron/Carbon Materials for H₂ Production from the Decomposition of Plastic Wastes

Authors: Peng Zhang, Cai Liang

Abstract:

The non-biodegradable plastic wastes have posed severe environmental and ecological contaminations. Numerous technologies, such as pyrolysis, incineration, and landfilling, have already been employed for the treatment of plastic waste. Compared with conventional methods, microwave has displayed unique advantages in the rapid production of hydrogen from plastic wastes. Understanding the interaction between microwave radiation and materials would promote the optimization of several parameters for the microwave reaction system. In this work, various carbon materials have been investigated to reveal microwave heating performance and the ensuing catalytic activity. Results showed that the diversity in the heating characteristic was mainly due to the dielectric properties and the individual microstructures. Furthermore, the gaps and steps among the surface of carbon materials would lead to the distortion of the electromagnetic field, which correspondingly induced plasma discharging. The intensity and location of local plasma were also studied. For high-yield H₂ production, iron nanoparticles were selected as the active sites, and a series of iron/carbon bifunctional catalysts were synthesized. Apart from the high catalytic activity, the iron particles in nano-size close to the microwave skin depth would transfer microwave irradiation to the heat, intensifying the decomposition of plastics. Under microwave radiation, iron is supported on activated carbon material with 10wt.% loading exhibited the best catalytic activity for H₂ production. Specifically, the plastics were rapidly heated up and subsequently converted into H₂ with a hydrogen efficiency of 85%. This work demonstrated a deep understanding of microwave reaction systems and provided the optimization for plastic treatment.

Keywords: plastic waste, recycling, hydrogen, microwave

Procedia PDF Downloads 71
2107 Sintering of YNbO3:Eu3+ Compound: Correlation between Luminescence and Spark Plasma Sintering Effect

Authors: Veronique Jubera, Ka-Young Kim, U-Chan Chung, Amelie Veillere, Jean-Marc Heintz

Abstract:

Emitting materials and all solid state lasers are widely used in the field of optical applications and materials science as a source of excitement, instrumental measurements, medical applications, metal shaping etc. Recently promising optical efficiencies were recorded on ceramics which result from a cheaper and faster ways to obtain crystallized materials. The choice and optimization of the sintering process is the key point to fabricate transparent ceramics. It includes a high control on the preparation of the powder with the choice of an adequate synthesis, a pre-heat-treatment, the reproducibility of the sintering cycle, the polishing and post-annealing of the ceramic. The densification is the main factor needed to reach a satisfying transparency, and many technologies are now available. The symmetry of the unit cell plays a crucial role in the diffusion rate of the material. Therefore, the cubic symmetry compounds having an isotropic refractive index is preferred. The cubic Y3NbO7 matrix is an interesting host which can accept a high concentration of rare earth doping element and it has been demonstrated that SPS is an efficient way to sinter this material. The optimization of diffusion losses requires a microstructure of fine ceramics, generally less than one hundred nanometers. In this case, grain growth is not an obstacle to transparency. The ceramics properties are then isotropic thereby to free-shaping step by orienting the ceramics as this is the case for the compounds of lower symmetry. After optimization of the synthesis route, several SPS parameters as heating rate, holding, dwell time and pressure were adjusted in order to increase the densification of the Eu3+ doped Y3NbO7 pellets. The luminescence data coupled with X-Ray diffraction analysis and electronic diffraction microscopy highlight the existence of several distorted environments of the doping element in the studied defective fluorite-type host lattice. Indeed, the fast and high crystallization rate obtained to put in evidence a lack of miscibility in the phase diagram, being the final composition of the pellet driven by the ratio between niobium and yttrium elements. By following the luminescence properties, we demonstrate a direct impact on the SPS process on this material.

Keywords: emission, niobate of rare earth, Spark plasma sintering, lack of miscibility

Procedia PDF Downloads 268
2106 Optimizing Recycling and Reuse Strategies for Circular Construction Materials with Life Cycle Assessment

Authors: Zhongnan Ye, Xiaoyi Liu, Shu-Chien Hsu

Abstract:

Rapid urbanization has led to a significant increase in construction and demolition waste (C&D waste), underscoring the need for sustainable waste management strategies in the construction industry. Aiming to enhance the sustainability of urban construction practices, this study develops an optimization model to effectively suggest the optimal recycling and reuse strategies for C&D waste, including concrete and steel. By employing Life Cycle Assessment (LCA), the model evaluates the environmental impacts of adopted construction materials throughout their lifecycle. The model optimizes the quantity of materials to recycle or reuse, the selection of specific recycling and reuse processes, and logistics decisions related to the transportation and storage of recycled materials with the objective of minimizing the overall environmental impact, quantified in terms of carbon emissions, energy consumption, and associated costs, while adhering to a range of constraints. These constraints include capacity limitations, quality standards for recycled materials, compliance with environmental regulations, budgetary limits, and temporal considerations such as project deadlines and material availability. The strategies are expected to be both cost-effective and environmentally beneficial, promoting a circular economy within the construction sector, aligning with global sustainability goals, and providing a scalable framework for managing construction waste in densely populated urban environments. The model is helpful in reducing the carbon footprint of construction projects, conserving valuable resources, and supporting the industry’s transition towards a more sustainable future.

Keywords: circular construction, construction and demolition waste, material recycling, optimization modeling

Procedia PDF Downloads 57
2105 Some Accuracy Related Aspects in Two-Fluid Hydrodynamic Sub-Grid Modeling of Gas-Solid Riser Flows

Authors: Joseph Mouallem, Seyed Reza Amini Niaki, Norman Chavez-Cussy, Christian Costa Milioli, Fernando Eduardo Milioli

Abstract:

Sub-grid closures for filtered two-fluid models (fTFM) useful in large scale simulations (LSS) of riser flows can be derived from highly resolved simulations (HRS) with microscopic two-fluid modeling (mTFM). Accurate sub-grid closures require accurate mTFM formulations as well as accurate correlation of relevant filtered parameters to suitable independent variables. This article deals with both of those issues. The accuracy of mTFM is touched by assessing the impact of gas sub-grid turbulence over HRS filtered predictions. A gas turbulence alike effect is artificially inserted by means of a stochastic forcing procedure implemented in the physical space over the momentum conservation equation of the gas phase. The correlation issue is touched by introducing a three-filtered variable correlation analysis (three-marker analysis) performed under a variety of different macro-scale conditions typical or risers. While the more elaborated correlation procedure clearly improved accuracy, accounting for gas sub-grid turbulence had no significant impact over predictions.

Keywords: fluidization, gas-particle flow, two-fluid model, sub-grid models, filtered closures

Procedia PDF Downloads 124
2104 Isolation, Characterization and Optimization of Alkalophilic and Thermotolerant Lipase from Bacillus subtilis Strain

Authors: Indu Bhushan Sharma, Rashmi Saraswat

Abstract:

The thermotolerant, solvent stable and alkalophilic lipase producing bacterial strain was isolated from the water sample of the foothills of Trikuta Mountain in Kakryal (Reasi district) in Jammu and Kashmir, India. The lipase-producing microorganisms were screened using tributyrin agar plates. The selected microbe was optimized for maximum lipase production by subjecting to various carbon and nitrogen sources, incubation period and inoculum size. The selected strain was identified as Bacillus subtilis strain kakrayal_1 (BSK_1) using 16S rRNA sequence analysis. Effect of pH, temperature, metal ions, detergents and organic solvents were studied on lipase activity. Lipase was found to be stable over a pH range of 6.0 to 9.0 and exhibited maximum activity at pH 8. Lipolytic activity was highest at 37°C and the enzyme activity remained at 60°C for 24hrs, hence, established as thermo-tolerant. Production of lipase was significantly induced by vegetable oil and the best nitrogen source was found to be peptone. The isolated Bacillus lipase was stimulated by pre-treatment with Mn2+, Ca2+, K+, Zn2+, and Fe2+. Lipase was stable in detergents such as triton X 100, tween 20 and Tween 80. The 100% ethyl acetate enhanced lipase activity whereas, lipase activity were found to be stable in Hexane. The optimization resulted in 4 fold increase in lipase production. Bacillus lipases are ‘generally recognized as safe’ (GRAS) and are industrially interesting. The inducible alkaline, thermo-tolerant lipase exhibited the ability to be stable in detergents and organic solvents. This could be further researched as a potential biocatalyst for industrial applications such as biotransformation, detergent formulation, bioremediation and organic synthesis.

Keywords: bacillus, lipase, thermotolerant, alkalophilic

Procedia PDF Downloads 255
2103 Real-Time Inventory Management and Operational Efficiency in Manufacturing

Authors: Tom Wanyama

Abstract:

We have developed a weight-based parts inventory monitoring system utilizing the Industrial Internet of Things (IIoT) to enhance operational efficiencies in manufacturing. The system addresses various challenges, including eliminating downtimes caused by stock-outs, preventing human errors in parts delivery and product assembly, and minimizing motion waste by reducing unnecessary worker movements. The system incorporates custom QR codes for simplified inventory tracking and retrieval processes. The generated data serves a dual purpose by enabling real-time optimization of parts flow within manufacturing facilities and facilitating retroactive optimization of stock levels for informed decision-making in inventory management. The pilot implementation at SEPT Learning Factory successfully eradicated data entry errors, optimized parts delivery, and minimized workstation downtimes, resulting in a remarkable increase of over 10% in overall equipment efficiency across all workstations. Leveraging the IIoT features, the system seamlessly integrates information into the process control system, contributing to the enhancement of product quality. This approach underscores the importance of effective tracking of parts inventory in manufacturing to achieve transparency, improved inventory control, and overall profitability. In the broader context, our inventory monitoring system aligns with the evolving focus on optimizing supply chains and maintaining well-managed warehouses to ensure maximum efficiency in the manufacturing industry.

Keywords: industrial Internet of things, industrial systems integration, inventory monitoring, inventory control in manufacturing

Procedia PDF Downloads 36
2102 Large Core Silica Few-Mode Optical Fibers with Reduced Differential Mode Delay and Enhanced Mode Effective Area over 'C'-Band

Authors: Anton V. Bourdine, Vladimir A. Burdin, Oleg R. Delmukhametov

Abstract:

This work presents a fast and simple method for the design of large core silica optical fibers with differential mode delay (DMD) management. Some results are reported concerned with refractive index profile optimization for 42 µm core 16-LP-mode optical fiber for next-generation optical networks. Here special refractive index profile form provides total DMD reducing over all mode staff under desired enhanced mode effective area. Method for the simulation of 'real manufactured' few-mode optical fiber (FMF) core geometry differing from the desired optimized structure by core non-symmetrical ellipticity and refractive index profile deviation including local fluctuations is proposed. Results of the following analysis of optimized FMF with inserted geometry distortions performed by earlier on developed modification of rigorous mixed finite-element method showed strong DMD degradation that requires additional higher-order mode management. In addition, this work also presents a method for design mode division multiplexer channel precision spatial positioning scheme at FMF core end that provides one of the potentiality solutions of described DMD degradation problem concerned with 'distorted' core geometry due to features of optical fiber manufacturing techniques.

Keywords: differential mode delay, few-mode optical fibers, nonlinear Shannon limit, optical fiber non-circularity, ‘real manufactured’ optical fiber core geometry simulation, refractive index profile optimization

Procedia PDF Downloads 157
2101 Deciding Graph Non-Hamiltonicity via a Closure Algorithm

Authors: E. R. Swart, S. J. Gismondi, N. R. Swart, C. E. Bell

Abstract:

We present an heuristic algorithm that decides graph non-Hamiltonicity. All graphs are directed, each undirected edge regarded as a pair of counter directed arcs. Each of the n! Hamilton cycles in a complete graph on n+1 vertices is mapped to an n-permutation matrix P where p(u,i)=1 if and only if the ith arc in a cycle enters vertex u, starting and ending at vertex n+1. We first create exclusion set E by noting all arcs (u, v) not in G, sufficient to code precisely all cycles excluded from G i.e. cycles not in G use at least one arc not in G. Members are pairs of components of P, {p(u,i),p(v,i+1)}, i=1, n-1. A doubly stochastic-like relaxed LP formulation of the Hamilton cycle decision problem is constructed. Each {p(u,i),p(v,i+1)} in E is coded as variable q(u,i,v,i+1)=0 i.e. shrinks the feasible region. We then implement the Weak Closure Algorithm (WCA) that tests necessary conditions of a matching, together with Boolean closure to decide 0/1 variable assignments. Each {p(u,i),p(v,j)} not in E is tested for membership in E, and if possible, added to E (q(u,i,v,j)=0) to iteratively maximize |E|. If the WCA constructs E to be maximal, the set of all {p(u,i),p(v,j)}, then G is decided non-Hamiltonian. Only non-Hamiltonian G share this maximal property. Ten non-Hamiltonian graphs (10 through 104 vertices) and 2000 randomized 31 vertex non-Hamiltonian graphs are tested and correctly decided non-Hamiltonian. For Hamiltonian G, the complement of E covers a matching, perhaps useful in searching for cycles. We also present an example where the WCA fails.

Keywords: Hamilton cycle decision problem, computational complexity theory, graph theory, theoretical computer science

Procedia PDF Downloads 373